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Lemma 2. Assume that the modeled distribution µθ slightly
collapses on a specific data point, i.e. there exists x ∈
E,µθ(x) > 0. Assume also that µ? is a continuous prob-
ability measure and that µθ has a recall β = 1. Then the
precision must be such that α = 0.

Proof. Using Definition 1, we have that there exists µ such
that

µ? = αµ+ (1− α)νµ? and µθ = µ

Thus, 0 = µ?(x) > αµ(x) = αµθ(x). Which implies that
α = 0.

B. Proof of Theorem 1
The proof of Theorem 1 relies on theoretical results from
non-parametric estimation of the supports of probability
distribution studied by Devroye & Wise (1980).

For the following proofs, we will require the following no-
tation: let ϕ be a strictly monotonous function be such
that lim

n→∞
ϕ(n)
n = 0 and lim

n→∞
ϕ(n)

log(n) = ∞. We note

B(x, r) ⊆ E, the open ball centered in x and of radius
r. For a given probability distribution µ, Sµ refers to its sup-
port. We recall that for any x in a dataset D, x(k) denotes
its k nearest neighbor in D. Finally, for a given probability
distribution µ and a dataset Dµ sampled from µn, we note
Rmin and Rmax the following:

Rmin = min
x∈E
‖x− x(ϕ(n))‖, Rmax = max

x∈E
‖x− x(ϕ(n))‖

(2)

In the following lemma, we show asymptotic behaviours for
both Rmin and Rmax.

Lemma 3. Let µ be a probability distribution associated
with a uniformly continuous probability density function fµ.
Assume that there exists constants a1 > 0, a2 > 0 such that
for all x ∈ E, we have a1 < fµ(x) 6 a2. Then,

Rmin −→
n→∞

0 a.s. and Rdmin −→
n→∞

∞ a.s.

Rmax −→
n→∞

0 a.s. and Rdmax −→
n→∞

∞ a.s.

Proof. We will only prove that Rmax −→
n→∞

0 a.s. and

and Rdmin −→n→∞∞ a.s. as the rest follows.

The result is based on a nearest neighbor result from Biau
& Devroye (2015). Considering the ϕ(n) nearest neighbor
density estimate fϕ(n)

n based on a finite sample dataset Dµ,
Theorem 4.2 states that if fµ is uniformly continuous then:

sup
x∈E
‖fϕ(n)
n (x)− fµ(x)‖ → 0.

where fϕ(n)
n (x) = ϕ(n)

nVd‖x−xϕ(n)‖d
with Vd being the volume

of the unit ball in Rd.

Let ε > 0 such that ε < a1/2. There exists N ∈ N such
that for all n > N , we have, almost surely, for all x ∈ E:

a1 − ε 6 fϕ(n)
n (x) 6 a2 + ε

a1 − ε 6
ϕ(n)

nVd‖x− xϕ(n)‖d
6 a2 + ε

Consequently, for all n > N , for all x ∈ E almost surely:

‖x− xϕ(n)‖ 6
( ϕ(n)

nVd(a1 − ε)

)1/d

Thus ,sup
x∈E
‖x− xϕ(n)‖ → 0 a.s.

Also, almost surely

n‖x− xϕ(n)‖d >
ϕ(n)

Vd(a2 + ε)

Thus, inf
x∈E
‖x− xϕ(n)‖ → ∞ a.s.

Lemma 4. Let µ, ν be two probability distributions associ-
ated with uniformly continuous probability density functions
fµ and fν . Assume that there exists constants a1 > 0, a2 >
0 such that for all x ∈ E, we have a1 < fµ(x) 6 a2 and
a1 < fν 6 a2. Also, let Dµ, Dν be datasets sampled from
νn, µn. If µ is an estimator for ν, then

(i) for all x ∈ Dµ, α
n
ϕ(n)(x) →

n→∞
1supp(ν)(x) in proba.

(ii) for all y ∈ Dν , β
n
ϕ(n)(y) →

n→∞
1supp(µ)(x) in proba.

Proof. We will only show the result for (i), since a similar
proof holds for (ii).

Thus, we want to show that

for all x ∈ Dµ, α
n
ϕ(n)(x) →

n→∞
1supp(ν)(x) a. s.

First, let’s assume that x /∈ Sν . Biau & Devroye (2015,
Lemma 2.2) have shown that

lim
n→∞

‖x(ϕ(n)) − x‖ = inf{‖x− y‖ | y ∈ Sν} a.s.

As Sν is a closed set - e.g. (Kallenberg, 2006) - we have

lim
n→∞

‖x− x(ϕ(n))‖ > 0 a.s.

and

for all y ∈ Dν , lim
n→∞

‖y − y(ϕ(n))‖ = 0 a.s.
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Thus, lim
n→∞

αnϕ(n)(x) = 0 a.s..

Now, let’s assume that x ∈ Sν . Using Definition 2, the
precision of a given data point x can be rewritten as follows:

αnϕ(n)(x) = 1 ⇐⇒ ∃y ∈ Dν , x ∈ B(y, ‖y − y(ϕ(n))‖)

Using notation from (2), we note

Rmin = min
y∈
‖y − y(ϕ(n))‖, Rmax = max

y∈E
‖y − y(ϕ(n))‖.

It is clear that :⋃
y∈Dν

B(y,Rmin) ⊆ Snν ⊆
⋃
y∈Dν

B(y,Rmax), (3)

where Snν =
⋃
y∈Dν B(y, ‖y − y(ϕ(n))‖)).

Besides, combining Lemma 3 with Devroye & Wise (1980,
Theorem 1), we have that:

ν(Sν∆
⋃
y∈Dν

B(y,Rmin)) −→
n→0

0 in proba.

ν(Sν∆
⋃
y∈Dν

B(y,Rmax)) −→
n→0

0 in proba.

where ∆ here refers to the symmetric difference.

Thus, using (3), it is now clear that, µ(Sν∆Snν ) → 0 in
probability. Finally, given x ∈ Sµ, we have µ(x ∈ Snν ) =
ν(αnϕ(n)(x) = 1)→ 1 in probability.

We can now finish the proof for Theorem 1. Recall that
ᾱ = µ

(
Sν
)

and similarly, β̄ = ν
(
Sµ
)
.

Proof. We have that

|αnϕ(n) − ᾱ| = |
1

n

∑
xi∈Dµ

αnϕ(n)(xi)−
∫
E

1x∈Sνµ(dx)|

Then,

|αnϕ(n) − ᾱ| = |
1

n

∑
xi∈Dµ

(αnϕ(n)(xi)− 1xi∈Sν )

+
( 1

n

∑
xi∈Dµ

1xi∈Sν −
∫
E

1x∈Sνµ(dx)
)
|

= |Exi∼µn(αnϕ(n)(xi)− 1xi∈Sν ) (4)

+
(
Eµn1Sν − Eµ1Sν

)
| (5)

where µn is the empirical distribution of µ. As µn converges
weakly to µ almost surely (e.g. Dudley (2002, Theorem
11.4.1)) and since 1x∈Sν is bounded, we can bound (5) as
follows:

lim
n→∞

Ex∼µn1x∈supp(µ) − Ex∼µ1x∈supp(µ) = 0 a. s.

Now, to bound (4), we use the fact that for any x ∈ Dµ, the
random variable αnϕ(n)(x) converges to 1x∈Sν in probability
(Lemma 4) and that for all x ∈ Dµ, both αnϕ(n)(x) 6 1 and
1x∈Sν 6 1. Consequently, using results from the weak law
for triangular arrays, we have that

lim
n→∞

1

n

∑
xi∈Dµ

(αnϕ(n)(xi)− 1xi∈Sν ) = 0 in proba.

Finally,
|αnϕ(n) − ᾱ| →n→∞ 0 in proba.,

which proves the result. The same proof works for
lim
k→∞

βnk = β̄.

C. Proof of Theorem 2
This proof is based on the Gaussian isoperimetric inequality
historically shown by (Borell, 1975; Sudakov & Tsirelson,
1978).

Proof. Let µ? be a distribution defined on E laying on two
disconnected manifolds M1 and M2 such that µ?(M1) =
µ?(M2) = 1

2 and d(M1,M2) = D. Note that for any
subsets A ⊆ E and B ⊆ E, d(A,B) := inf

(x,y)∈A×B
‖x−y‖.

Let G−1
θ (M1) (respectively G−1

θ (M2) be the subset in Rd

be the pre-images of M1 (respectively M2).

Consequently, we have for all k ∈ [1, n]

γ(G−1
θ (M1)) = µθ(M1) = γ(G−1

θ (M2)) >
ᾱ

2

We consider (G−1
θ (M1))ε (respectively (G−1

θ (M2))ε) the
ε enlargement of G−1

θ (M1) (respectively G−1
θ (M2) where

ε = D
2L . We know that (G−1

θ (M1))ε
⋂

(G−1
θ (M2))ε = ∅.

Thus, we have that:

γ
(
(G−1

θ (M1))ε
)

+ γ
(
(G−1

θ (M2))ε
)
6 1

Besides, by denoting Φ the function defined for any t ∈ R
by Φ(t) =

∫ t
−∞

exp(−t2/2)√
2π

ds, we have

γ
(
(G−1

θ (M1))ε
)

+ γ
(
(G−1

θ (M2))ε
)
> 2Φ

(
Φ−1(

α

2
) + ε

)
(using Theorem 1.3 from (Ledoux, 1996))

> α+
2ε√
2π
e−Φ−1(α2 )2/2

(since Φ−1(
α

2
) + ε < 0 and Φ convex on ]−∞, 0])

Thus, we have that

α+
2ε√
2π
e−Φ−1(α2 )2/2 6 1
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Thus, by noting

α? = sup{α ∈ [0, 1] | α+
2ε√
2π
e
−Φ−1(α

2
)2

2 6 1},

we have our result.

For α > 3/4. By noting α = 1− x, we have

Φ−1(
α

2
) =

√
2πx

2
+O(x3)

And, e
−Φ−1(α

2
)2

2 = e
−πx2

4 +O(e−x
4

)

Thus, 1− x+
2ε√
2π
e
−πx2

4 +O(e−x
4

) 6 1

⇐⇒ x >
2ε√
2π
e
−πx2

4 +O(e−x
4

)

=⇒ x >

√
2

π
W (ε2)

where W is the product log function. Thus, α 6 1 −√
2
πW (ε2).

As an example, in the case where ε = 1, we have that
W (1) ≈ 0.5671, x > 0.4525 and α < 0.5475.

D. Proof of Theorem 3
D.1. Equitable setting

This result is a consequence of Prop. 1 that we will assume
true in this section.

We consider that the unknown true distribution µ? lays on
M disjoint manifolds of equal measure. As specified in
Section 3, the latent distribution γ is a multivariate Gaussian
defined on Rd. For each k ∈ [1,M ], we consider in the
latent space, the pre-images Ak.

It is clear that A1, . . . , AM are pairwise disjoint Borel sub-
sets of Rd. We denote M̄ , the number of classes covered
by the estimator µθ, such that for all i ∈ [1, M̄ ], we have
γ(Ai) > 0. We know that M̄ >Mβ̄ > 1.

For each i ∈ [1, M̄ ], we denote Aεi , the ε-enlargement
of Ai. For any pair (i, j) it is clear that Aεi

⋂
Aεj = 0

where ε = D
2L (D being the minimum distance between

two sub-manifolds and L being the Lipschitz constant of
the generator).

As assumed, we know that Aεi , i ∈ [1, M̄ ] partition the
latent space in equal measure, consequently, we assume that

n∑
i=1

γ(Aεi ) = 1 and γ(A1) = . . . = γ(AM̄ ) = 1/M̄

(6)

Thus, we have that

ᾱ =

M̄∑
i=1

γ(Aεi ) = 1− γ(∆−ε(Aε1, . . . , A
ε
M̄ ))

Using Proposition 1, we have

γ(∆−ε(Aε1, . . . , A
ε
n)) > 1− 1 + x2

x2
e−

1
2 ε

2

e−εx

Thus, ᾱ 6
1 + y2

y2
e−

1
2 ε

2

e−εy

where y = Φ−1
(
1−maxk∈[M̄] γ(Aεk)

)
= Φ−1( M̄−1

M̄
) and

Φ(t) =
∫ t
−∞

exp(−t2/2)√
2π

ds.

Knowing that M̄ > β̄M we have that

Φ−1(1− 1

M̄
) > Φ−1(1− 1

β̄M
)

We conclude by saying that the function x 7→ 1+x2

x2 e−εx is
decreasing for x > 0. Thus,

ᾱ 6
1 + y2

y2
e−

1
2 ε

2

e−εy (7)

where y = Φ−1(1− 1
β̄M

) and Φ(t) =
∫ t
−∞

exp(−t2/2)√
2π

ds.

For further analysis, when M̄ →∞, refer to subsection E
and note using the result in (15) that one obtains the desired
upper-bound on ᾱ

ᾱ
M̄→∞
6 e−

1
2 ε

2

e−ε
√

2 log(M̄)

D.2. More general setting

As done previously, we denote M̄ , the number of classes
covered by the estimator µθ, such that for all i ∈ [1, M̄ ], we
have γ(Ai) > 0. We still assume that M̄ > 1. However,
we now relax the previous assumption made in (6) and as-
sume the milder assumption that there exists w1, . . . , wM ∈
[0, 1]M such that for all m ∈ [1,M ], γ(Aεm) = wm,∑
m wm 6 1 and max

i∈[1,M ]
wm = wmax < 1.

Consider, A{ =
(⋃M̄

i=1A
ε
i

){
and denote wc = γ(A{) 6

1− ᾱ. Consequently, we have

n∑
i=1

γ(Aεi ) + γ(A{) = 1

γ(∆−ε(Aε1, . . . , A
ε
M , A

{)) +

M∑
i=1

γ(Aεi ) = 1− γ(A{)

ᾱ = 1− w{ − γ(∆−ε(Aε1, . . . , A
ε
M , A

{))
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In this setting, it is clear thatA1, . . . , AM̄ , A
{ is a a partition

of Rd under the measure γ. Using, result from Proposition
1, we have

γ(∆−ε(Aε1, . . . , A
ε
M , A

{)) > 1− 1 + x2

x2
e−

1
2 ε

2

e−εx

where x = Φ−1
(

1−max(w{, wmax)
)

and Φ(t) =∫ t
−∞

exp(−t2/2)√
2π

ds.

Finally, we have that

ᾱ 6
1 + x2

x2
e−

1
2 ε

2

e−εx − w{ (8)

In the case where γ(A{) = 0, we find a result similar to (7).

E. Lower-bounding boundaries of partitions
in a Gaussian space

Notations and preliminaries Given ε ≥ 0 and a subsetA
of euclidean space Rd = (Rd, ‖·−·‖), letAε := {z ∈ Rd |
dist(z,A) ≤ ε} be its ε-enlargement, where dist(z,A) :=
infz′∈A ‖z′ − z‖2 is the distance of the point z ∈ Rd from
A. Let γ be the standard Gaussian distribution in Rd and
let A1, . . . , AK be K ≥ 2 pairwise disjoint Borel subsets
of Rd whose union has unit (i.e full) Gaussian measure∑K
k=1 wk = 1, where wk := γ(Ak). Such a collection

{A1, . . . , AK} will be called an (w1, . . . , wK)-partition of
standard d-dimensional Gaussian space (Rd, γ).

For each k ∈ [[K]], define the compliment A−k :=
∪k′ 6=kAk′ , and let ∂−εAk := {z ∈ Ak | dist(z,A−k) ≤
ε} be the inner ε-boundary of Ak, i.e the points of Ak
which are within distance ε of some other Ak′ . For every
(k, k′) ∈ [[K]]2 with k′ 6= k, it is an easy exercise to show
that

∂−εAk ∩ ∂−εAk′ = ∅ (9)

∂−εAk ∩A−k = ∅
Aε−k = ∂−εAk ∪A−k

Now, let ∆−ε(A1, . . . , AK) := ∪Kk=1∂
−εAk be the union

of all the inner ε-boundaries. This is ∆−ε(A1, . . . , AK) the
set of points of ∪Kk=1Ak which are on the boundary between
some two distinct Ak and Ak′ . We want to find a lower
bound in the measure γ(∆−ε(A1, . . . , AK)).

Proposition 1. Given K ≥ 4 and w1, . . . , wK ∈ (0, 1/4]

such that
∑K
k=1 wk = 1, we have the bound:

inf
A1,...,AK

γ(∆−ε(A1, . . . , AK)) ≥ 1− 1 + x2

x2
e−

1
2 ε

2

e−εx

where the infinimum is taken over all (w1, . . . , wk)-
partitions of standard Gaussian space (Rd, γ), and x :=
Φ−1

(
1−maxk∈[[M ]] wk

)
.

Proof. By (9), we have the formula

γ(∆−ε(A1, . . . , AK)) =

K∑
k=1

γ(∂−εAk) (10)

=

K∑
k=1

γ(Aε−k)− γ(A−k). (11)

Let w−k := γ(A−k) = 1 − wk, and assume w−k ≥ 3/4,
i.e wk ≤ 1/4, for all k ∈ [[K]].

For example, this condition holds in the equitable scenario
where wk = 1/K for all k.

Now, by standard Gaussian Isoperimetric Inequality (see
(Boucheron et al., 2013) for example), one has

γ(Aε−k) ≥ Φ(Φ−1(γ(A−k) + ε)

= Φ(Φ−1(1− wk) + ε). (12)

Using the bound x
1+x2ϕ(x) < 1− Φ(x) < 1

xϕ(x) ∀x > 0
where ϕ is the density of the standard Gaussian law. We can
further find that

Φ(Φ−1(1− wk) + ε) ≥ 1− wk
1 + Φ−1(1− wk)2

Φ−1(1− wk)2
×

e−
1
2 ε

2

e−εΦ
−1(1−wk)

≥ 1− wk
1 + x2

x2
e−

1
2 ε

2

e−εx > 0

(13)

(since the function x 7→ 1 + x2

x2
e−εx is decreasing for x > 0)

where x := mink∈[[K]] Φ−1(1 − wk) =

Φ−1
(
1−maxk∈[[K]] wk

)
≥ Φ−1(3/4) > 0.67. Combin-

ing (10), (12), and (13) yields the following

γ(∆−ε(A1, . . . , AK)) ≥
K∑
k=1

(
1− wk

1 + x2

x2
e−

1
2 ε

2

e−εx

− (1− wk))
)

=

K∑
k=1

(
1− 1 + x2

x2
e−

1
2 ε

2

e−εx
)
wk

= 1− 1 + x2

x2
e−

1
2 ε

2

e−εx,

Asymptotic analysis In the limit, it is easy to check that in
the case where maxk∈[[K]] wk −→ 0, we have that x −→∞.
In this setting, we thus have 1+x2

x2 −→ 1 and can now derive
the following bound:

inf
A1,...,AK

γ(∆−ε(A1, . . . , AK))
maxk∈[[K]] wk→0

−→ 1−e− 1
2 ε

2

e−εx.
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Equitable scenario In the equitable scenario wherewk =
1/K for all k, we have

inf
A1,...,AK

γ(∆−ε(A1, . . . , AK)) > 1− 1 + x2

x2
e−

1
2 ε

2

e−εx

where x = Φ−1(1− 1/K). When K ≥ 8 we have:

Φ−1(1− 1/K) >

√
2 log

(
K (q(K)2 − 1)√

2πq(K)3

)
(14)

where q(K) =
√

2 log(
√

2πK).

Consequently, we have when K →∞, the following behav-
ior:

γ(∆−ε(A1, . . . , AK))
K→∞
6 1− e− 1

2 ε
2

e−ε
√

2 log(K)

(15)

Proof of the inequality (14). Set p := 1/K. First, for any
x > 0, we have the following upper:∫ ∞
x

e−y
2/2dy =

∫ ∞
x

y

y
e−y

2/2dy ≤ 1

x

∫ ∞
x

ye−y
2/2dy =

e−x
2/2

x
.

For a lower bound:∫ ∞
x

e−y
2/2dy =

∫ ∞
x

y

y
e−y

2/2dy =
e−x

2/2

x
−
∫ ∞
x

1

y2
e−y

2/2dy

and ∫ ∞
x

1

y2
e−y

2/2dy =

∫ ∞
x

y

y3
e−y

2/2dy ≤ e−x
2/2

x3

and combining these gives∫ ∞
x

e−y
2/2dy ≥

(
1

x
− 1

x3

)
e−x

2/2.

Thus

1√
2π

(
1

x
− 1

x3

)
e−x

2/2 ≤ 1− Φ(x) ≤ 1√
2π

1

x
e−x

2/2,

from where

1√
2π

(
1

Φ−1(1− p)
− 1

Φ−1(1− p)3

)
e−Φ−1(1−p)2/2

(16)

≤ p ≤ 1√
2π

1

Φ−1(1− p)
e−Φ−1(1−p)2/2 (17)

Using (17), when Φ−1(1 − p) ≥ 1 (that is p 6 0.15 or
equivalently K ≥ 8), we have the following upper bound

Φ−1(1− p) 6 q(p) where q(p) :=
√

2 log(
√

2π/p). Then,
injecting q(p) in (16):

1√
2π

(
1

q(p)
− 1

q(p)3

)
e−Φ−1(1−p)2/2 ≤ p.

Now when q(p) ≥ 1 you have:

e−Φ−1(1−p)2/2 ≤
√

2πpq(p)3

q(p)2 − 1

and

Φ−1(1− p) ≥

√
2 log

(
q(p)2 − 1√
2πpq(p)3

)
.

There is one additional requirement on p which is simply
that the argument of the log should be ≥ 1 i.e. q(p)2 − 1 ≥√

2πpq(p)3, which is true as soon as K ≥ 8.
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F. Visualization of Theorem 3

(a) WGAN 4 classes:
visualisation of ‖JG(z)‖F .

(b) Green blobs: true densi-
ties. Dots: generated points.

(c) WGAN 9 classes:
visualisation of ‖JG(z)‖F .

(d) Green blobs: true densi-
ties. Dots: generated points.

(e) WGAN 3 classes:
visualisation of
‖JG(z)‖F .

(f) Green blobs: true densi-
ties. Dots: generated points.

(g) WGAN 5 classes:
visualisation of
‖JG(z)‖F .

(h) Green blobs: true densi-
ties. Dots: generated points.

Figure 6. Learning disconnected manifolds: visualization of the
gradient of the generator (JFN) in the latent space and densities in
the output space.

G. Definition of the different metrics used
In the sequel, we present the different metrics used in Sec-
tion 4 of the paper to assess performances of GANs. We
have:

• Improved Precision/Recall (PR) metric (Kynkäänniemi
et al., 2019): it has been presented in Definition 2.
Intuitively, Based on a k-NN estimation of the mani-
fold of real (resp. generated) data, it assesses whether
generated (resp. real) points belong in the real (resp.
generated) data manifold or not. The proportion of
generated (resp. real) points that are in the real (resp.
generated) data manifold is the precision (resp. recall).

• the Hausdorff distance: it is defined by

Haus(A,B) = max

{
max
a∈A

min
b∈B
‖a− b‖,max

b∈B
min
a∈A
‖a− b‖

}
Such a distance is useful to evaluate the closeness of
two different supports from a metric space, but is sen-
sitive to outliers because of the max operation. It has
been recently used for theoretical purposes by Pandeva
& Schubert (2019).

• the Frechet Inception distance: first proposed by Dow-
son & Landau (1982), the Frechet distance was applied
in the setting of GANs by Heusel et al. (2017). This dis-
tance between mutlivariate Gaussians compares statis-
tic of generated samples to real samples as follows

FID = ‖ν? − νθ‖2 + Tr
(
Σ? + Σθ + 2(Σ?Σθ)

1
2

)
where X? = N (ν?,Σ?) and Xθ = N (νθ,Σθ) are the
activations of a pre-softmax layer. However, when
dealing with disconnected manifolds, we argue that
this distance is not well suited as it approximates the
distributions with unimodal one, thus loosing many
information.

The choice of such metrics is motivated by the fact that
metrics measuring the performances of GANs should not
rely on relative densities but should rather be point sets
based metrics.



Learning disconnected manifolds: no GAN’s land

H. Saturation of a MLP neural network
In Section 4.2, we claim that the generator reduces the
sampling of off-manifold data points up to a saturation point.
Figure 7 below provides a visualization of this phenomenon.
In this synthetic case, we learn a 9-component mixture
of Gaussians using simple GANs architecture (both the
generator and the discriminator are MLP with two hidden
layers). The minimal distance between two modes is set to
9. We clearly see in Figure 7d that the precision saturates
around 80%.

(a) Data points sampled after
5,000 steps of training.

(b) Data points sampled after
50,000 steps of training.

(c) Data points sampled after
100,000 steps of training.

(d) Evolution of the preci-
sion ᾱ during training.

Figure 7. Learning 9 disconnected manifolds with a standard
GANs architecture.

I. More results and visualizations on
MNIST/F-MNIST/CIFAR10

Additionally to those in Section 4.3, we provide in Figure
9 and Table 2 supplementary results for MNIST, F-MNIST
and CIFAR-10 datasets.

(a) MNIST: examples of data
points selected by our JBT
with a truncation ratio of 90%
(we thus removed the 10%
highest gradients).

(b) MNIST: examples of data
points removed by our JBT
with a truncation ratio of 90%
(these are the 10% highest gra-
dients data points).

(c) F-MNIST: examples of
data points selected by our
JBT with a truncation ratio
of 90% (we thus removed the
10% highest gradients)..

(d) F-MNIST: examples of
data points removed by our
JBT with a truncation ratio of
90% (these are the 10% high-
est gradients data points).

Figure 8. Visualization of our truncation method on CIFAR10.

(a) CIFAR-10: examples of
data points selected by our
JBT with a truncation ratio
of 90% (we thus removed the
10% highest gradients).

(b) MNIST: examples of data
points removed by our JBT
with a truncation ratio of 90%
(these are the 10% highest gra-
dients data points).

Figure 9. Visualization of our truncation method (JBT) on three
real-world datasets: MNIST, F-MNIST and CIFAR-10.



Learning disconnected manifolds: no GAN’s land

Figure 10. For high levels of kept samples, the marginal precision plummets of newly added samples, underlining the efficiency of our
truncation method (JBT). Reported confidence intervals are 97% confidence intervals. On the second row, generated samples ordered by
their JFN (left to right, top to bottom). In the last row, the data points generated are blurrier and outside the true manifold.

MNIST Prec. Rec. F1 Haus. FID EMD
WGAN 91.2± 0.3 93.7± 0.5 92.4± 0.4 49.7± 0.2 24.3± 0.3 21.5± 0.1
WGAN 90% lowest JFN 92.5± 0.5 92.9± 0.3 92.7± 0.4 48.1± 0.2 26.9± 0.5 21.3± 0.2
WGAN 80% lowest JFN 93.3± 0.3 91.8± 0.4 92.6± 0.4 50.6± 0.4 33.1± 0.3 21.4± 0.4
W-Deligan 89.0± 0.6 93.6± 0.3 91.2± 0.5 50.7± 0.3 31.7± 0.5 22.4± 0.1
DMLGAN 93.4± 0.2 92.3± 0.2 92.8± 0.2 48.2± 0.3 16.8± 0.4 20.7± 0.1
Fashion-MNIST
WGAN 86.3± 0.4 88.2± 0.2 87.2± 0.3 140.6± 0.7 259.7± 3.5 61.9± 0.3
WGAN 90% lowest JFN 88.6± 0.6 86.6± 0.5 87.6± 0.5 138.7± 0.9 257.4± 3.0 61.3± 0.6
WGAN 80% lowest JFN 89.8± 0.4 84.9± 0.5 87.3± 0.4 146.3± 1.1 396.2± 6.4 63.3± 0.7
W-Deligan 88.5± 0.3 85.3± 0.6 86.9± 0.4 141.7± 1.1 310.9± 3.1 60.9± 0.4
DMLGAN 87.4± 0.3 88.1± 0.4 87.7± 0.4 141.9± 1.2 253.0± 2.8 60.9± 0.4
CIFAR10
WGAN 74.3± 0.5 70.3± 0.4 72.3± 0.5 334.7± 3.5 634.8± 4.6 151.2± 0.2
WGAN 90% lowest JFN 76.0± 0.7 69.4± 0.5 72.5± 0.6 318.1± 3.7 631.3± 4.5 150.7± 0.2
WGAN 80% lowest JFN 76.9± 0.5 68.6± 0.5 72.5± 0.5 323.5± 4.0 725.0± 3.5 150.1± 0.3
W-Deligan 71.5± 0.7 69.8± 0.7 70.6± 0.7 328.7± 2.1 727.8± 3.9 154.0± 0.3
DMLGAN 74.1± 0.5 65.7± 0.6 69.7± 0.6 328.6± 2.7 967.2± 4.1 152.0± 0.4

Table 2. Scores on MNIST and Fashion-MNIST. JFN stands for Jacobian Frobenius norm. ± is 97% confidence interval.
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J. More results on BigGAN and ImageNet
In Figure 11, we show images from the Bubble class of Im-
ageNet. It supports our claim of manifold disconectedness,
even within a class, and outlines the importance of study-
ing the learning of disconnected manifolds in generative
models. Then, in Figure 12, we give more exemples from
BigGAN 128x128 class-conditionned generator. We plot
in the same format than in 4.4. Specifically, for different
classes, we plot 128 images ranked by JFN. Here again, we
see a concentration of off-manifold samples on the last row,
proving the efficiency of our method. Example of classes
responding particularly well to our ranking are House Finch
(c), Monnarch Butterfly (i) or Wood rabbit (m). For each
class, we also show an histogram of JFN based on 1024
samples. It shows that the JFN is a good indicator of the
complexity of the class. For example, classes such as Cornet
(q) or Football helmet (s) are very diverse and disconnected,
resulting in high JFNs.

Figure 11. Images from the Bubble class of ImageNet showing
that the class is complex and slightly multimodal.
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(a) ’Black swan’ class.

0 25 50 75 100 125
Jacobian Frobenius Norm

= 51
= 13

(b) ’Black swan’ class his-
togram.

(c) ’House finch’ class.
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= 47
= 14

(d) ’House finch’ class histogram.

(e) ’Indigo bunting’ class.
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= 45
= 12

(f) ’Indigo bunting’ class his-
togram.

(g) ’Cheetah’ class.
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= 12

(h) ’Cheetah’ class histogram.

(i) ’Monarch butterfly’ class.
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(j) ’Monarch butterfly’ class his-
togram.

(k) ’Loggerhead turtle’ class.
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(l) ’Loggerhead turtle’ class his-
togram.

(m) ’Wood rabbit’ class.
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(n) ’wood rabbit’ class histogram.

(o) ’Trash can’ class.
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(p) ’Trash can’ class histogram.
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(q) ’Cornet/Horn’ class.
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= 20

(r) ’Cornet/Horn’ class histogram.

(s) ’Football helmet’ class.
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(t) ’Football helmet’ class his-
togram.

(u) ’Harmonica’ class.
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(v) ’Harmonica’ class histogram.

(w) ’Parachute’ class.
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= 14

(x) ’Parachute’ class histogram.

(y) ’Peacock’ class.
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= 52
= 12

(z) ’Peacock’ class histogram.

Figure 12. For several classes with BigGAN model.



Learning disconnected manifolds: no GAN’s land

K. Network Architecture and Hyperparameters

Table 3. Models for Synthetic datasets

Operation Feature Maps Activation

G(z): z ∼ N (0, 1) 2
Fully Connected - layer1 20 ReLU
Fully Connected - layer2 20 ReLU

D(x)
Fully Connected - layer1 20 ReLU
Fully Connected - layer2 20 ReLU

Batch size 32
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam: β1 = 0.5 β2 = 0.5

Table 4. WGAN for MNIST/Fashion MNIST
Operation Kernel Strides Feature Maps Activation

G(z): z ∼ N(0, Id) 100
Fully Connected 7× 7× 128
Convolution 3× 3 1× 1 7× 7× 64 LReLU
Convolution 3× 3 1× 1 7× 7× 64 LReLU
Nearest Up Sample 14× 14× 64
Convolution 3× 3 1× 1 14× 14× 32 LReLU
Convolution 3× 3 1× 1 14× 14× 32 LReLU
Nearest Up Sample 14× 14× 64
Convolution 3× 3 1× 1 28× 28× 16 LReLU
Convolution 5× 5 1× 1 28× 28× 1 Tanh

D(x) 28× 28× 1
Convolution 4× 4 2× 2 14× 14× 32 LReLU
Convolution 3× 3 1× 1 14× 14× 32 LReLU
Convolution 4× 4 2× 2 7× 7× 64 LReLU
Convolution 3× 3 1× 1 7× 7× 64 LReLU
Fully Connected 1 -

Batch size 256
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 : 0.5 β2 : 0.5

For DeliGan, we use the same architecture and simply add 50 Gaussians for the reparametrization trick. For DMLGAN, we
re-use the architecture of the authors.
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Table 5. DMLGAN for MNIST/Fashion MNIST
Operation Kernel Strides Feature Maps BN Activation

G(z): z ∼ N(0, Id) 100
Fully Connected 7× 7× 128 -
Convolution 3× 3 1× 1 7× 7× 64 - Leaky ReLU
Convolution 3× 3 1× 1 7× 7× 64 - Leaky ReLU
Nearest Up Sample 14× 14× 64 -
Convolution 3× 3 1× 1 14× 14× 32 - Leaky ReLU
Convolution 3× 3 1× 1 14× 14× 32 - Leaky ReLU
Nearest Up Sample 14× 14× 64 -
Convolution 3× 3 1× 1 28× 28× 16 - Leaky ReLU
Convolution 5× 5 1× 1 28× 28× 1 - Tanh

Encoder Q(x), Discriminator D(x) 28× 28× 1
Convolution 4× 4 2× 2 14× 14× 32 - Leaky ReLU
Convolution 3× 3 1× 1 14× 14× 32 - Leaky ReLU
Convolution 4× 4 2× 2 7× 7× 64 - Leaky ReLU
Convolution 3× 3 1× 1 7× 7× 64 - Leaky ReLU
D Fully Connected 1 - -
Q Convolution 3× 3 7× 7× 64 Y Leaky ReLU
Q Convolution 3× 3 7× 7× 64 Y Leaky ReLU
Q Fully Connected ng = 10 - Softmax

Batch size 256
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.5 β2 = 0.5

Table 6. WGAN for CIFAR10, from (Gulrajani et al., 2017)

Operation Kernel Strides Feature Maps BN Activation

G(z): z ∼ N(0, Id) 128
Fully Connected 4× 4× 128 -
ResBlock [3× 3]× 2 1× 1 4× 4× 128 Y ReLU
Nearest Up Sample 8× 8× 128 -
ResBlock [3× 3]× 2 1× 1 8× 8× 128 Y ReLU
Nearest Up Sample 16× 16× 128 -
ResBlock [3× 3]× 2 1× 1 16× 16× 128 Y ReLU
Nearest Up Sample 32× 32× 128 -
Convolution 3× 3 1× 1 32× 32× 3 - Tanh

Discriminator D(x) 32× 32× 3
ResBlock [3× 3]× 2 1× 1 32× 32× 128 - ReLU
AvgPool 2× 2 1× 1 16× 16× 128 -
ResBlock [3× 3]× 2 1× 1 16× 16× 128 - ReLU
AvgPool 2× 2 1× 1 8× 8× 128 -
ResBlock [3× 3]× 2 1× 1 8× 8× 128 - ReLU
ResBlock [3× 3]× 2 1× 1 8× 8× 128 - ReLU
Mean pooling (spatial-wise) - - 128 -
Fully Connected 1 - -

Batch size 64
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0. β2 = 0.9
Discriminator steps 5
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Table 7. DMLGAN for CIFAR10, from (Gulrajani et al., 2017)
Operation Kernel Strides Feature Maps BN Activation

G(z): z ∼ N(0, Id) 128
Fully Connected 4× 4× 128 -
ResBlock [3× 3]× 2 1× 1 4× 4× 128 Y ReLU
Nearest Up Sample 8× 8× 128 -
ResBlock [3× 3]× 2 1× 1 8× 8× 128 Y ReLU
Nearest Up Sample 16× 16× 128 -
ResBlock [3× 3]× 2 1× 1 16× 16× 128 Y ReLU
Nearest Up Sample 32× 32× 128 -
Convolution 3× 3 1× 1 32× 32× 3 - Tanh

Encoder Q(x), Discriminator D(x) 32× 32× 3
ResBlock [3× 3]× 2 1× 1 32× 32× 128 - ReLU
AvgPool 2× 2 1× 1 16× 16× 128 -
ResBlock [3× 3]× 2 1× 1 16× 16× 128 - ReLU
AvgPool 2× 2 1× 1 8× 8× 128 -
ResBlock [3× 3]× 2 1× 1 8× 8× 128 - ReLU
D ResBlock [3× 3]× 2 1× 1 8× 8× 128 - ReLU
D Mean pooling (spatial-wise) 2× 2 1× 1 128 -
D Fully Connected 1 - -
Q ResBlock [3× 3]× 2 1× 1 8× 8× 128 - ReLU
Q Mean pooling (spatial-wise) 2× 2 1× 1 128 -
Q Fully Connected ng = 10 - Softmax

Batch size 64
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0. β2 = 0.9
Discriminator steps 5


