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Abstract
Many popular reinforcement learning problems
(e.g., navigation in a maze, some Atari games,
mountain car) are instances of the episodic set-
ting under its stochastic shortest path (SSP) for-
mulation, where an agent has to achieve a goal
state while minimizing the cumulative cost. De-
spite the popularity of this setting, the exploration-
exploitation dilemma has been sparsely studied
in general SSP problems, with most of the theo-
retical literature focusing on different problems
(i.e., finite-horizon and infinite-horizon) or mak-
ing the restrictive loop-free SSP assumption (i.e.,
no state can be visited twice during an episode).
In this paper, we study the general SSP prob-
lem with no assumption on its dynamics (some
policies may actually never reach the goal). We
introduce UC-SSP, the first no-regret algorithm
in this setting, and prove a regret bound scaling
as Õ(DS

√
ADK) after K episodes for any un-

known SSP with S states,A actions, positive costs
and SSP-diameter D, defined as the smallest ex-
pected hitting time from any starting state to the
goal. We achieve this result by crafting a novel
stopping rule, such that UC-SSP may interrupt the
current policy if it is taking too long to achieve
the goal and switch to alternative policies that are
designed to rapidly terminate the episode.

1. Introduction
We consider the problem of exploration-exploitation in
episodic Markov decision processes (MDPs), where the
objective is to minimize the expected cost to reach a spe-
cific goal state. Several popular reinforcement learning
(RL) problems fall into this framework, such as navigation
problems, many Atari games (e.g., breakout) and Mujoco
environments (e.g., reacher). In all these problems, the
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length of an episode (i.e., the time to reach the goal state)
is unknown and depends on the policy executed during the
episode. Furthermore, the performance is not directly con-
nected to the length of the episode, as the objective is to
minimize the cost over time rather than reaching the goal
state as fast as possible. The conditions for the existence and
the computation of an optimal policy have been studied in
the MDP literature under the name of the stochastic shortest
path (SSP) problem (Bertsekas, 2012, Sect. 3).

The exploration-exploitation dilemma has been extensively
studied in the finite-horizon (see e.g., Azar et al., 2017;
Zanette & Brunskill, 2019) and infinite-horizon settings (see
e.g., Jaksch et al., 2010; Fruit et al., 2018a;b). In the former,
the performance is optimized over a fixed and known hori-
zon of H steps. Typically, this model is used to solve SSP
problems by settingH large enough. While forH →∞ the
optimal finite-horizon policy converges to the optimal SSP
policy, for any finite H , this approach may introduce a bias
leading exploration algorithms to converge to suboptimal
policies and suffer linear regret (see e.g., Toromanoff et al.,
2019, for a discussion of this problem in Atari games). In
the latter, the performance is optimized for the asymptotic
average cost. While this removes any strict “deadline”, it
does not introduce any incentive to reach the goal state. This
may favor policies with small average cost and yet poor per-
formance in the SSP sense, as they may never terminate.
Note that SSP forms an important class of MDPs as both
infinite-horizon (discounted) and finite-horizon MDPs, two
much more extensively researched settings, are a subtype of
SSP-MDPs (Bertsekas, 2012; Guillot & Stauffer, 2020).

Prior work on exploration in SSPs can be divided in two
cases. The first is the online shortest path routing problem,
which has deterministic dynamics and stochastic rewards.
In this case, the optimal policy is open-loop (i.e., it is a se-
quence of actions independent from the states) and it can be
solved as an instance of a combinatorial bandit problem (see
e.g., György et al., 2007; Talebi et al., 2017). Exploration
algorithms know the set of admissible paths of bounded
length and regret bounds are available in both the semi- and
full-bandit setting. The second case allows for stochastic
transitions and mostly considers adversarial problems, but
it is restricted to loop-free environments (see e.g., Jin et al.,
2020; Rosenberg & Mansour, 2019a;b; Neu et al., 2012;
2010; Zimin & Neu, 2013). Under this assumption, the state
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space can be decomposed into L non-intersecting layers
X0, . . . , XL such that X0 = {x0} and XL = {xL}, and
transitions are only possible between consecutive layers. In
this case, it is possible to derive regret bounds leveraging the
fact that any episode length is upper bounded by L almost
surely. Unfortunately, this requirement is restrictive and
fails to hold in many realistic environments.

In this paper, exploration in general SSP problems is inves-
tigated for the first time. The solution of an SSP is obtained
by computing the policy minimizing the value function, i.e.,
the expected costs accumulated until reaching the goal state.
Studying SSP value functions poses technical difficulties
that do not appear in the conventional settings such as loop-
free SSP, finite-horizon and infinite-horizon: 1) it features
two possibly conflicting objectives: quickly reaching the
goal state while minimizing the costs along the way; 2) it is
unbounded for policies that may never reach the goal state
(i.e., non-proper policies); 3) it is not state-independent (a
crucial property of the gain of any optimal policy in infinite-
horizon); 4) its number of summands may differ from one
trajectory to another due to variations in the time to reach
the goal state (thus making the regret decomposition tricky
compared to finite-horizon); 5) it cannot be computed us-
ing backward induction (a crucial technique used in finite-
horizon); 6) it cannot be discounted (since a discount factor
would have a undesirable effect of biasing importance to-
wards short-term behavior and thus weakening the incentive
to eventually reach the goal state). This last point means that
SSP-MDPs do not have a notion of “equivalent horizon”,
which is 1/(1−γ) in the special case of infinite-horizon dis-
counted MDPs with known discount factor γ, thus making
the general setting of SSP-MDPs more difficult to analyze.

While we leverage algorithmic and technical tools from both
finite- and infinite-horizon settings, tackling the general SSP
problem requires introducing novel techniques to manage
the challenges highlighted above. Notably, we investigate
the properties of optimistic policies and their associated
discrete phase-type distributions (i.e., the hitting time dis-
tribution) to design a novel criterion to stop executing the
current optimistic SSP policy during an episode and switch
to alternative policies designed to rapidly reach the goal.

The main contributions of this paper are: 1) We formalize
exploration-exploitation in SSP problems by defining an
adequate notion of regret (Sect. 2). 2) We show that the
special case of SSP with uniform costs can be cast as an
infinite-horizon problem and tackled by UCRL2 (Jaksch
et al., 2010) with a regret bound adapting to the complexity
of the environment (Sect. 3). 3) We then introduce UC-SSP,
the first algorithm with vanishing regret in general SSP
problems (Sect. 4). We also show that not only UC-SSP
effectively deals with the general case, but it remains com-
petitive (if not better) even in the limit cases of uniform costs

or loop-free SSP, which can be addressed by infinite- and
finite-horizon regret minimization algorithms respectively.
4) Moreover, we demonstrate how our (mild) assumptions
(e.g., no dead-end states, positive costs) can be effectively
relaxed using variants of UC-SSP (Sect. 5). Finally, we
support our theoretical findings with experiments in App. J.

2. Stochastic Shortest Path (SSP)
We consider a finite stochastic shortest path problem (Bert-
sekas, 2012, Sect. 3) M := 〈S ′,A, c, p, s0〉, where S ′ :=
S ∪ {s} is the set of states with s being the goal state (also
called the terminal state) and s0 ∈ S being the starting
state1, and A is the set of actions. We denote by A = |A|
and S = |S| the number of actions and non-goal states.
Each state-action pair (s, a) ∈ S ×A is characterized by a
known, deterministic cost c(s, a) and an unknown transition
probability distribution p(· | s, a) over next states. The goal
state s is absorbing (i.e., p(s | s, a) = 1 for all a ∈ A) and
cost-free (i.e., c(s, a) = 0 for all a ∈ A). We assume the
following property of the cost function.

Assumption 1. There exist known constants 0 < cmin ≤
cmax such that c(s, a) ∈ [cmin, cmax] for all (s, a) ∈ S ×A.

Extending the setting to unknown, stochastic costs poses
no major difficulty, as long as the learner knows in advance
the range of the costs, i.e., the constants cmin and cmax (see
App. I.1). Moreover, in Sect. 5 we derive a variant of our
algorithm that can handle zero costs (i.e., cmin = 0).

Bertsekas (2012) showed that under Asm. 1 we can restrict
the attention to the set of stationary deterministic policies
ΠSD := {π : S → A}. For any π ∈ ΠSD and (s, s′) ∈
S × S ′, the (possibly unbounded) hitting time to s′ starting
from s is denoted by τπ(s → s′) := inf{t ≥ 0 : st+1 =
s′ | s1 = s, π}. We also set τπ(s) := τπ(s→ s).

Assumption 2. We define the SSP-diameter D as

D := max
s∈S

min
π∈ΠSD

E[τπ(s)], (1)

and we assume that D < +∞.

We say that M is SSP-communicating when Asm. 2 holds.
We defer to Sect. 5 the treatment of the case D = +∞.

The value function (also called expected cost-to-go) of any
π ∈ ΠSD is defined as

V π(s0) := E
[ τπ(s0)∑

t=1

c(st, π(st))
∣∣∣ s0

]
.

For any vector V ∈ RS , the optimal Bellman operator is

1 Our algorithm can handle any (possibly unknown) distribution
of initial states.
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defined as

LV (s) := min
a∈A

{
c(s, a) +

∑
y∈S

p(y | s, a)V (y)
}
.

An important role in the definition of the SSP is played by
the set ΠPSD ⊆ ΠSD of proper stationary policies.

Definition 1. A stationary policy π is proper if s is reached
with probability 1 from any state in S following π.2

The next lemma shows that the SSP problem is well-posed.

Lemma 1. Under Asm. 1 and 2, there exists an optimal
policy π? ∈ arg minπ∈ΠPSD V π(s0) for which V ? = V π

?

is
the unique solution of the optimality equations V ? = LV ?
and V ?(s) < +∞ for any s ∈ S.

Similarly to the average-reward case, we can provide a
bound on the range of the optimal value function depending
on the largest cost and the SSP-diameter.

Lemma 2. Under Asm. 1 and 2, ‖V ?‖∞ ≤ cmaxD.

For any π ∈ ΠPSD, its (almost surely finite) hitting time
starting from any state in S follows a discrete phase-type
distribution, or in short discrete PH distribution (see e.g., La-
touche & Ramaswami, 1999, Sect. 2.5 for an introduction).
Indeed, its induced Markov chain is terminating with a
single absorbing state s and all the other states are tran-
sient. The transition matrix associated to π, denoted by
Pπ ∈ R(S+1)×(S+1), can thus be arranged in the following
canonical form

Pπ =

[
Qπ Rπ
0 1

]
,

where Qπ ∈ RS×S is the transition matrix between non-
absorbing states (i.e., S) and Rπ ∈ RS is the transition
vector from S to s. Note that Qπ is strictly substochas-
tic (Qπ1 ≤ 1 where 1 := (1, . . . , 1)T ∈ RS and ∃j
s.t. (Qπ1)j < 1). Denoting by 1s the S-sized one-hot
vector at the position of state s ∈ S, we have the following
result (see e.g., Latouche & Ramaswami, 1999, Thm. 2.5.3).

Proposition 1. For any π ∈ ΠPSD, s ∈ S and n > 0,

P(τπ(s) > n) = 1>s Q
n
π1 =

∑
s′∈S

(Qnπ)ss′ .

Finally, for any X ∈ Rm×n we define the∞-matrix-norm
‖X‖∞ := max1≤i≤m

∑n
j=1|Xij |.

Learning problem. We consider the learning problem
where S ′,A, and c are known, while the dynamics p is

2Note that Def. 1 is slightly different from (and is implied
by) the conventional definition of Bertsekas (2012, Sect. 3.1), for
which a policy is proper if there is a positive probability that s will
be reached after at most S stages.

unknown and can be estimated online. An environmental
episode starts at s0 and ends only when the goal state s is
reached. We evaluate the performance of an algorithm A af-
ter K environmental episodes by its cumulative SSP-regret

∆(A,K) :=

K∑
k=1

[( τk(s0)∑
h=1

c(sk,h, µk(sk,h))
)
− V ?(s0)

]
,

where for any k ∈ [K],3 τk(s0) is the length of
episode k following a possibly non-stationary policy µk =
(πk,0, πk,1, πk,2, . . .), πk,i ∈ ΠSD, until s is reached. More-
over, sk,h denotes the h-th state visited during episode k.
∆(A,K) also corresponds to the cumulative SSP-regret af-
ter TK steps, where TK :=

∑K
k=1 τk(s0) is the time step at

the end of episode K. This definition resembles the infinite-
horizon regret, where the performance of the algorithm is
evaluated by the costs accumulated by executing µk. At
the same time, it incorporates the episodic nature of finite-
horizon problems, where the performance of the optimal
policy is evaluated by its value function at the initial state.
Nonetheless, notice that we cannot use the finite-horizon
regret definition, i.e.,

∑K
k=1 V

µk(s0)−V ?(s0), where a pol-
icy µk is chosen at the beginning of the episode and run until
its termination. Indeed, as µk may be non-proper and sat-
isfy V µk(s0) = +∞, the execution of a single non-proper
policy would directly lead to an unbounded regret.

3. Uniform-cost SSP
In this section we focus on the SSP problems with uniform
costs to illustrate a very first case where a sublinear regret
can be achieved without any restrictive loop-free assumption.
In particular, we show that in this case the SSP problem can
be cast as an infinite-horizon problem and that an algorithm
such as UCRL2 (Jaksch et al., 2010) can be directly applied
and achieve surprisingly good regret guarantees.

Assumption 3 (only in Sect. 3). The costs c(s, a) are con-
stant (equal to 1 w.l.o.g.) for all (s, a) ∈ S ×A.

In this case, solving the SSP problem corresponds to com-
puting the policy minimizing the expected hitting time to
the goal s.

We introduce the infinite-horizon reward-based MDP
M∞ := 〈S ′,A, r∞, p∞, s0〉, with reward r∞ = 1s and
p∞(· | s, a) = p(· | s, a) for s 6= s and p∞(· | s, a) = 1s0
for all a. In words, the transitions in M∞ behave as in M
and give zero rewards except at s where all actions give a
reward of 1 and loop back to s0 instead of self-looping with
probability 1. We show that the solution of M∞ coincides
with solving the original SSP and we bound the SSP-regret
of UCRL2 applied to this problem.

3For any integer n, we denote by [n] the set {1, . . . , n}.
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Theorem 1. For any policy π ∈ ΠSD, let ρπ :=
limT→+∞ Eπ

[∑T
t=1 rt/T

]
be the average reward of π in

the MDP M∞. Under Asm. 3, we have

π? = arg min
π

V π(s0) = arg min
π

E[τπ(s0)] = arg max
π

ρπ.

With probability 1− δ, UCRL2 run for any K ≥ 1 episodes
suffers a regret

∆(UCRL2,K) ≤ 34(V ?(s0)+1)DS

√
ATK log

(TK

δ

)
, (2)

with

TK ≤ 2(V ?(s0) + 1)K + Õ
(
V ?(s0)2D2S2A

)
. (3)

Up to logarithmic and lower-order terms, the pre-
vious bound scales as Õ(V ?(s0)DS

√
ATK). This

can be contrasted with the infinite-horizon regret
∆∞ := Tρ? −

∑
t rt of UCRL2, which in general infinite-

horizon problems scales as Õ(D∞S
√
AT ), where

D∞ := maxs6=s′∈S′ minπ∈ΠSD E[τπ(s→ s′)] is the diam-
eter of M∞ (Jaksch et al., 2010) and measures the longest
shortest path between any two states. We first notice that
the “extra” factor V ?(s0) is a direct consequence of the
different definition of regret in the two settings. In fact,
we have ∆ = (V ?(s0) + 1)∆∞. As UCRL2 is designed
for general infinite-horizon problems, we can only bound
the regret ∆∞ and use the previous equality to translate
it into the corresponding SSP-regret. As such, the factor
V ?(s0) is the price to pay for adapting UCRL2 to the SSP
case. On the other hand, it is easy to see that in general
D ≤ D∞. Interestingly, Asm. 2 does not imply that M∞ is
communicating, which is needed for proving regret bounds
for UCRL2 in general MDPs. Thm. 1 shows that even when
M∞ is weakly-communicating (D∞ = +∞) and some
states may not be accessible from one another, UCRL2 is
able to adapt to the SSP nature of the problem and achieve
a bounded regret.

Importantly, notice that no assumption is made about the
properness of the policies. The key for UCRL2 to manage
policies that may never reach the goal state is the construc-
tion of internal episodes, where policies are interrupted
when the number of samples collected in a state-action pair
is doubled. This allows UCRL2 to avoid accumulating too
much regret when executing non-proper policies (they are
eventually stopped) and, at the same time, perform well
when the current policy is near-optimal (it is not stopped
too early). Nonetheless, the stopping condition only relies
on the number of samples and it is completely agnostic to
the episodic nature of the SSP problem.

While the previous analysis suggests that algorithms for
infinite-horizon MDPs could be readily executed in SSP

s0 s

action a1,
cost cmin

action a2,
cost cmax

Figure 1. Deterministic two-state
SSPM with two available actions:
a1 which self-loops on s0 with
cost cmin and a2 which goes from
s0 to s with cost cmax > 2cmin.

problems with strong regret guarantees, this is no longer
the case when moving to the general setting of non-uniform
costs. Indeed, in order to estimate the performance of a
stationary policy w.r.t. its value function, we cannot use the
average-cost criterion since it does not capture the incentive
to reach the goal state. As an illustrative example, consider
the deterministic two-state SSP M from Fig. 1. The optimal
SSP policy π? always selects action a2 since it has minimal
value V ?(s0) = cmax. The optimal infinite-horizon policy
always selects action a1 since it has minimal average cost
ρ? = cmin, whereas ρπ? = cmax/2. Consequently, running
UCRL2 in general SSP may converge to a suboptimal policy
and yield linear SSP-regret.

In the next section, we propose a novel algorithm designed
to target the general SSP objective function (non-uniform
costs) with a two-phase structure and a carefully designed
condition to interrupt executing policies.

4. General SSP
The general SSP problem requires (i) to quickly reach the
goal state while (ii) at the same time minimizing the cu-
mulative costs. On the one hand, if we constrain the costs
to be all equal, objectives (i) and (ii) coincide and the SSP
problem can be addressed using infinite-horizon algorithms
as seen in Sect. 3. On the other hand, all previous works in
the SSP setting constrain the hitting time of all policies (i.e.,
the loop-free assumption), which means that objective (i) is
always guaranteed and the algorithm can focus its efforts on
objective (ii).

In this section, we tackle head-on the general SSP prob-
lem for the first time, where we need to optimize over the
two possibly conflicting objectives (i) and (ii) at the same
time. This poses algorithmic and technical challenges (e.g.,
non-proper policies may never reach the goal state and have
unbounded value function) that require devising a novel op-
timistic algorithm, specifically designed for SSP problems.

4.1. The UC-SSP Algorithm

We present UC-SSP, an algorithm for efficient exploration in
general SSP problems (Alg. 1). At a high level, UC-SSP pro-
ceeds through each environmental episode k in a two-phase
fashion. In phase ¬, UC-SSP executes a policy trying to
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Algorithm 1 UC-SSP algorithm
Input: Confidence δ ∈ (0, 1), costs, S ′,A.
Initialization: Set the state-action counter N0,0(s, a) := 0 for
any (s, a) ∈ S ×A and the time step t := 1.
Set k := 0. // episode index

Set G0,0 := 0. // number of attempts in phases 

while k < K do
// New environmental episode

Increment k += 1.
Set j := 0 // attempts in phase  of episode k

while st 6= s do
Set tk,j := t and counter νk,j(s, a) := 0.
Set Gk,j = Gk,0 + j
Compute (π̃k,j , Hk,j) := EVISSP(k, j).
while t ≤ tk,j +Hk,j and st 6= s do

Execute action at = π̃k,j(st), observe cost c(st, at)
and next state st+1.
Set νk,j(st, at) += 1.
Set t += 1.

end while
if st 6= s then
// Switch to phase 

Set Nk,j+1(s, a) := Nk,j(s, a) + νk,j(s, a)
Set j += 1

end if
end while
Set Nk+1,0(s, a) := Nk,j(s, a) + νk,j(s, a).
Set Gk+1,0 := Gk,j .

end while

solve the SSP problem by tackling both objectives (i) and (ii)
(i.e., reach the goal while minimizing the cumulative costs).
We refer to this first policy as an attempt in phase ¬. As
UC-SSP relies on estimates of the true (unknown) SSP, it
may select a non-proper policy that would never reach the
goal state and incur an unbounded regret. In order to avoid
this situation, if the goal state is not reached after a given
pivot horizon, the algorithm deems the whole episode as a
failure and it switches to phase , whose only objective is
to terminate the episode as fast as possible (i.e., it only con-
siders objective (i) and disregards the costs). Nonetheless,
optimizing an estimate of the hitting time (i.e., objective
(i)) does not guarantee that the corresponding policy suc-
cessfully reaches the goal state (i.e., is proper) and multiple
attempts (i.e., policies) in phase  may be needed. Similar
to phase ¬, whenever the goal state is not reached after a
certain pivot horizon, the current policy is terminated and a
new policy is computed. Phase  and the overall episode
ends when the goal state is eventually reached. Notation-
wise, the k-th phase ¬ is indexed by (k, 0) (note that k
coincides with the current number of episodes), while the
j-th attempt in the phase  of episode k is indexed by (k, j)
for j ≥ 1. Moreover, we denote by Jk the number of at-
tempts performed during the phase  of episode k, and by
Gk,j the total number of attempts in phases  up to (and
including) attempt (k, j).

Optimistic policies. UC-SSP relies on the principle of opti-

Algorithm 2 EVISSP

Input: Attempt index (k, j) and Nk,j(s, a) samples.
if j = 0 then
εk,0 := cmin

2tk,0
, γk,j := 1√

k
.

else
εk,j := 1

2tk,j
, γk,j := 1√

Gk,j
.

end if
Compute estimates p̂k,j and confidence setMk,j with the Nk,j

samples collected so far.
Define the extended optimal Bellman operator L̃k,j as in Eq. (4).
// EVI scheme
Set m := 0, v0 := 0 (S-sized vector) and v1 := L̃k,jv0.
while ‖vm+1 − vm‖∞ > εk,j do
m += 1.
vm+1 := L̃k,jvm.

end while
Set ṽk,j := vm.
Compute π̃k,j the optimistic greedy policy w.r.t. ṽk,j .
Compute p̃k,j the corresponding optimistic model.
Compute Q̃k,j the transition matrix of π̃k,j in the optimistic
model p̃k,j over S, i.e., for any (s, s′) ∈ S2,

Q̃k,j(s, s
′) :=

∑
a∈A

π̃k,j(a|s)p̃k,j(s′|s, a).

Compute Hk,j := min
{
n > 1 : ‖Q̃n−1

k,j ‖∞ ≤ γk,j
}

.
Output: policy π̃k,j and horizon Hk,j .

mism in face of uncertainty. At each attempt, it executes a
policy with either lowest optimistic (cost-weighted) value
for an attempt in phase ¬, or with lowest optimistic expected
hitting time for an attempt in phase . At the beginning
of any attempt (k, j), the algorithm computes a set of plau-
sible MDPs defined asMk,j := {〈S,A, c, p̃〉 | p̃(·|s, a) ∈
Bk,j(s, a)} where Bk,j(s, a) is a high-probability confi-
dence set on the transition probabilities of the true MDP M .
We set Bk,j(s, a) := {p̃ ∈ C | p̃(· | s, a) = 1s, ‖p̃(· | s, a)−
p̂k,j(· | s, a)‖1 ≤ βk,j(s, a)}, with C the S′-dimensional
simplex, p̂k,j the empirical average of transitions prior to
attempt (k, j) and

βk,j(s, a) :=

√√√√8S log
(
2AN+

k,j(s, a) δ−1
)

N+
k,j(s, a)

,

where N+
k,j(s, a) := max{1, Nk,j(s, a)} with Nk,j being

the state-action counts prior to attempt (k, j). The construc-
tion of βk,j(s, a) guarantees that M ∈ Mk,j with high
probability, as shown in the following lemma.

Lemma 3. Introduce the event E :=
⋂+∞
k=1

⋂Jk
j=1{M ∈

Mk,j}. Then P(E) ≥ 1− δ
3 .

Once Mk,j has been computed, UC-SSP applies an ex-
tended value iteration (EVI) scheme (Alg. 2) to compute
a policy with lowest optimistic value (if j = 0) or lowest
optimistic expected hitting time (if j ≥ 1). Formally, we
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define the extended optimal Bellman operator L̃k,j such that
for any v ∈ RS and s ∈ S,

L̃k,jv(s) := min
a∈A

{
ck,j(s, a)

+ min
p̃∈Bk,j(s,a)

∑
y∈S

p̃(y | s, a)v(y)
}
, (4)

where the costs ck,j depend on the phase as follows

ck,j(s, a) :=

{
c(s, a) if j = 0
1 otherwise.

As explained by Jaksch et al. (2010, Sect. 3.1), we can com-
bine all the MDPs in Mk,j into a single MDP M̃ with
extended action set A′. As proved by Bertsekas (2012,
Sect. 3.3) about the generalization of the SSP results to a
compact action set, the Bellman operator L̃k,j satisfies the
contraction property and thus EVISSP converges to a vector
we denote by Ṽ ?k,j . We have the following component-wise
inequalities when the stopping condition of Alg. 2 is met.4

Lemma 4. For any attempt (k, j), denote by ṽk,j the out-
put of EVISSP with operator L̃k,j and accuracy εk,j . Then
L̃k,j ṽk,j ≤ ṽk,j + εk,j . Furthermore, under the event E we
have ṽk,j ≤ V ? if j = 0 or ṽk,j ≤ minπ E(τπ) otherwise.

The optimistic policy π̃k,j executed during attempt (k, j)
is the greedy policy w.r.t. ṽk,j . We also denote by p̃k,j the
optimistic transition probabilities and by Q̃k,j the transition
matrix of π̃k,j in p̃k,j over the non-goal states S.

The pivot horizon. A crucial aspect for the correct func-
tioning of the algorithm is to carefully select the “pivot”
horizon. If the pivot horizon is too small, the algorithm may
switch from phase ¬ to  too quickly and may perform
too many attempts in phase . As the policies in phase 
completely disregard the costs, they may lead to suffer large
regret. On the other hand, if the pivot horizon is too large
and UC-SSP selects a non-proper policy in phase ¬, then
the regret accumulated during phase ¬ would be too large.

We select the following length for attempt (k, j)

Hk,j = min
{
n>1 : ‖(Q̃k,j)

n−1‖∞ ≤ 1j=0√
k

+
1j≥1√
Gk,j

}
. (5)

If π̃k,j is executed for Hk,j steps without reaching s, then
attempt (k, j) is said to have failed and the next attempt
(k, j + 1) (necessarily in phase ) is performed. Otherwise,
the attempt is said to have succeeded, a new episode begins
and the next attempt (k + 1, 0) (in phase ¬) is performed.

4Note that the stopping condition is different from the standard
one for VI for average reward MDPs (see e.g., Puterman, 2014;
Jaksch et al., 2010) that is defined in span seminorm. Also note
that as opposed to standard VI, we do not have guarantees of the
type ‖vn − Ṽ ?

k,j‖∞ ≤ ε where Ṽ ?
k,j = L̃k,j Ṽ

?
k,j .

Denote by τ̃k,j the hitting time in the model p̃k,j of the
policy π̃k,j . We first prove that π̃k,j is proper in p̃k,j by
connecting its value function to ṽk,j , which is finite from
Lem. 4 (see App. E and Eq. 13). As a result, τ̃k,j follows a
discrete PH distribution and plugging Prop. 1 into Eq. (5)
entails that

max
s∈S

P(τ̃k,j(s) ≥ Hk,j) ≤
1j=0√
k

+
1j≥1√
Gk,j

.

Hk,j is thus selected so that the tail probability of the op-
timistic hitting time is small enough, i.e., there is a high
probability that π̃k,j will optimistically reach s within Hk,j

steps. The maximum over s ∈ S guarantees this property
for any state s from which attempt (k, j) begins (since at-
tempts in phase  do not necessarily start at s0).

4.2. Regret Analysis of UC-SSP

As proved in the following theorem, UC-SSP is the first
no-regret learning algorithm in the general SSP setting.
Theorem 2. With overwhelming probability, for anyK ≥ 1,
if at each attempt (k, j) EVISSP is run with accuracy εk,j :=
cmin1j=0+1j≥1

2tk,j
, where tk,j is the time index at the beginning

of the attempt, then UC-SSP suffers a regret

∆(UC-SSP,K) = Õ
(
cmaxDS

√
cmax

cmin
ADK

+ cmaxS
2AD2

)
.

Dependency on K and D. Significantly, UC-SSP achieves
an overall rate Õ(

√
K) which is optimal w.r.t. the number of

episodes K. The bound also illustrates how UC-SSP is able
to adapt to the complexity of navigating through the MDP
as shown by the dependency on the SSP-diameter D, which
measures the longest shortest path to the goal state from
any state. Interestingly, this is achieved without any prior
knowledge either on an upper bound of the optimal value
function V ? (or of the SSP-diameter itself), or whether the
set of policies ΠSD contains proper policies or not. We can
further inspect the dependency on D by rewriting the regret
bound of UC-SSP, which scales as D3/2

√
K in Thm. 2, as

D
√
TK , where TK is the total number of steps executed

until the end of episode of K.5 As shown in Lem. 2, up to
a factor of cmax, the SSP-diameter D is an upper bound on
the range of the optimal value function and as such it can be
(qualitatively) related to the horizon H in the finite-horizon
setting and the diameter D∞ in the infinite-horizon setting,
which bound the range of the optimal value function and
bias function respectively.

Dependency on cost range. The multiplicative constant
cmax

cmin
appearing in the bound quantifies the range of the cost

5Even though TK is a random quantity, inspecting the proof
(see Sect. 4.3) provides a bound TK . DK for K large enough.
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function and accounts for the difference from the uniform-
cost setting. Interestingly, the presence of the ratio cmax

cmin

implies that the regret bound is not invariant w.r.t. a uniform
additive perturbation of all costs. This behavior, which does
not appear in the finite- or infinite-horizon settings, stems
from the fact that an additive offset of costs may alter the
optimal policy in the SSP sense (see Lem. 17, App. I).

While the previous discussion shows that UC-SSP success-
fully tackles general SSP problems, we can also study its
behavior in the limit (and much simpler) cases of uniform-
cost and loop-free SSP, and compare its regret to infinite-
and finite-horizon algorithms respectively.

Uniform-cost SSP. Under Asm. 3, UC-SSP achieves a
regret of Õ(DS

√
ADK), in contrast with the bound

Õ(V ?(s0)DS
√
AV ?(s0)K) of UCRL2 derived in Sect. 3.

While in this restricted setting UCRL2 performs better when
s0 is a privileged starting state to reach s compared to the
rest of states in S, UC-SSP yields an improvement over
UCRL2 whenever V ?(s0) ≥ D1/3. Our experiments in
App. J illustrate that UC-SSP suffers smaller regret than
UCRL2 in a gridworld with uniform costs, showcasing that
UC-SSP manages to better adapt to the goal-oriented struc-
ture of the problem.

Loop-free SSP. Let us assume that there exists a known
upper bound H on the hitting time of any policy. Then a
slight variation of the finite-horizon algorithm UCBVI (Azar
et al., 2017) can be applied. While its bound would scale as
Õ(
√
HSAT ) and showcase an improved

√
S-dependency,

it would regrettably scale with
√
H which may be much

larger than the D factor appearing in Thm. 2 as soon as
the hitting times τπ differ significantly across policies π.
Moreover, UC-SSP does not require the prior knowledge of
H , as opposed to UCBVI or any other existing algorithm in
the finite-horizon or loop-free setting.

The analysis of UC-SSP reveals the crucial role of the pivot
horizon in shaping the behavior and performance of the
algorithm. In the uniform-cost case, EVISSP and standard
EVI used in UCRL2 both converge to the same policy. The
main difference between the two algorithms consists in the
stopping criterion for the execution of the optimistic policy.
While UCRL2 applies a generic doubling scheme (i.e., an
internal episode is terminated when the number of samples
is doubled in at least a state-action pair), UC-SSP leverages
the episodic nature of the SSP problem and sets a pivot
horizon such that the current policy should successfully
terminate with high (optimistic) probability. In the loop-
free setting, UCBVI picks a single policy per episode and
waits until termination. While all policies are guaranteed
to terminate in finite time, the length of the episode may
still be very long. On the other hand, UC-SSP goes through
different policies within each episode whenever they are
taking too long to reach the goal state.

4.3. Proof Sketch of Thm. 2

As explained in Sect. 2, tackling the general SSP problem
requires introducing the novel notion of SSP-regret. It can
neither be managed by a step-by-step comparison between
the algorithmic and optimal performances as in infinite-
horizon, nor by an episode-by-episode comparison as in
finite-horizon. We thus need to derive a new analysis to
handle the specificities of the SSP-regret.

Denoting by TK the total number of steps at the end of
episode K, we decompose TK = TK,1 + TK,2, with
TK,1 (resp.TK,2) the total time during attempts in phase
¬ (resp. phase ). We introduce the truncated regret

WK :=

K∑
k=1

[(Hk,0∑
h=1

c(sk,h, π̃k,0(sk,h))
)
− V ?(s0)

]
, (6)

which is obtained by considering the cumulative cost up to
Hk,0 steps rather than for the actual duration of each attempt
in phase ¬. By assigning a regret of cmax to each step in
phase , we can then decompose the regret as

∆(UC-SSP,K) ≤ WK + cmaxTK,2. (7)

This decomposition directly justifies the different nature
of the two phases employed by UC-SSP. While phase ¬
directly tries to minimizeWK , phase  only needs to keep
TK,2 under control, which requires executing policies that
reach the goal state as quickly as possible.

Bound onWK . We first boundWK by drawing inspira-
tion from techniques in the finite-horizon setting (see e.g.,
Azar et al., 2017), by successively unrolling the Bellman
operator to get a telescopic sum which can be bounded using
the Azuma-Hoeffding inequality and a pigeonhole principle.

Lemma 5. Introduce ΩK := maxk∈[K]Hk,0. With proba-
bility at least 1− δ,

WK = O

(
cmaxDS

√
AΩKK log

(ΩKK

δ

))
.

Bound on ΩK . On the one hand, sinceWK directly scales
with

√
ΩK , we must ensure that the lengths of attempts in

phase ¬ are not too long. Ideally, we would set them as
relatively tight upper bounds of V ?(s0) or D, yet these are
critically unknown. Instead, in Eq. (5) we tune the lengths
Hk,0 depending on optimistic quantities (which can be eas-
ily computed at the start of each attempt), and prove in the
following lemma that they crucially scale as Õ(D).

Lemma 6. Under the event E ,

ΩK ≤
⌈

6
cmax

cmin
D log(2

√
K)

⌉
.
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Proof sketch. Consider a state y ∈ S such that

‖(Q̃k,0)Hk,0−2‖∞ = 1>y (Q̃k,0)Hk,0−21.

From Lem. 1, the above is equal to P(τ̃k,0(y) ≥ Hk,0 − 1).
To bound it, we apply a corollary of Markov’s inequality

P(τ̃k,0(y) ≥ Hk,0 − 1) ≤ E[(τ̃k,0)r]

(Hk,0 − 1)r
,

for a carefully chosen exponent r := dlog(2
√
k)e ≥ 1. We

then prove that τ̃k,0 follows a discrete PH distribution that
satisfies E[τ̃k,0(s)] ≤ 2cmaxD

cmin
for all s ∈ S. This leads us

to derive an upper bound on the r-th moment of any hitting
time distribution with bounded expectation starting from
any state (Lem. 15, App. E, which may be of independent
interest). Applying this result to τ̃k,0 yields

E[(τ̃k,0)r] ≤ 2

(
r

2cmaxD

cmin

)r
,

which gives on the one hand

‖(Q̃k,0)Hk,0−2‖∞ ≤
2
(
r 2cmaxD

cmin

)r
(Hk,0 − 1)r

.

On the other hand, the choice of Hk,0 in Eq. (5) entails that

1√
k
< ‖(Q̃k,0)Hk,0−2‖∞.

Combining the two previous inequalities finally provides
the desired upper bound on Hk,0.

Bound on TK,2. On the other hand, since TK,2 increases
with the number of attempts in phase , we must ensure
that there are not too many of such attempts and that their
lengths can be adequately controlled. In light of this and
leveraging the way the length Hk,0 is constructed (Eq. 5),
we bound the number of failed attempts in phase ¬ up to
episode K, which we denote by FK .

Lemma 7. With probability at least 1− δ,

FK ≤ 2
√
K + 2

√
2ΩKK log

(
2(ΩKK)2

δ

)

+ 4S

√
8AΩKK log

(
2AΩKK

δ

)
.

Proof sketch. We write FK = F ′K + F ′′K with
F ′K :=

∑K
k=1 P(τ̃k,0(s0) > Hk,0) and F ′′K :=∑K

k=1

[
1{τk,0(s0)>Hk,0} − P(τ̃k,0(s0) > Hk,0)

]
. A martin-

gale argument and the pigeonhole principle bound F ′′K ,
while the choice ofHk,0 controls each summand of F ′K .

Equipped with Lem. 7, we proceed in bounding the total
duration of the attempts in phase .
Lemma 8. With probability at least 1− δ,

TK,2 = Õ

(
DS

√
cmax

cmin
ADK + S2AD2

)
.

Putting everything together, we obtain Thm. 2 by plugging
Lem. 5, 6 and 8 into Eq. (7). Note that while the regret
decomposition in the two-phase process (Eq. 7) has the ad-
vantage of making the analysis intuitive and modular, it
renders Bernstein techniques less effective in capturing low-
variance deviations, as opposed to the analysis of UCBVI
and UCRL2B (Fruit et al., 2020) which shave off a term of√
H or

√
D∞ for large enough time steps in the finite- and

infinite-horizon settings, respectively.

5. Relaxation of Assumptions
Although Asm. 1 and 2 seem natural in the SSP problem, we
design variants of UC-SSP that can handle dead-end states
and/or zero costs. We defer to App. I the complete analysis.

Relaxation of Asm. 2 (D = +∞). If M is non-SSP-
communicating, there exists at least one (possibly unknown)
dead-end state from which reaching the goal s is impossible.
This implies that EVISSP, which operates on the entire state
space S , fails to converge since the values at dead-end states
are infinite. To tackle this problem, we assume that the agent
has prior knowledge on an upper bound J ≥ V ?(s0) and
that it has at any time step the “resetting” ability to transition
with probability 1 to s0 with a cost of J (to prevent it from
getting stuck). Equipped with these two assumptions, by
optimizing a value function that is truncated at J (Kolobov
et al., 2012), we prove that a variant of UC-SSP achieves a
regret guarantee identical to Thm. 2 except that the infinite
term D is replaced by J (see Lem. 16, App. I.2).

Relaxation of Asm. 1 (cmin = 0). Under the existence of
zero costs, the optimal policy is not even guaranteed to be
proper (Bertsekas, 2012). We thus change the definition of
SSP-regret and compare to the best proper policy, by con-
sidering as optimal comparator the quantity minπ∈ΠPSD V π

instead of minπ∈ΠSD V π . We observe that having cmin = 0
renders the bound on ΩK of Lem. 6 vacuous. To circumvent
this issue, we introduce an additive perturbation ηk,0 > 0 to
the cost of each transition in the optimistic model of each
attempt (k, 0). Our resulting variant of UC-SSP achieves a
Õ(K2/3) regret bound (see Lem. 18, App. I.3 for the com-
plete bound). The difference in rate (K2/3 vs.

√
K) com-

pared to Thm. 2 stems from the fact that our procedure of
offsetting the costs introduces a bias, which we minimize
with the choice of perturbation ηk,0 = 1/k1/3. Note that
the later work of (Cohen et al., 2020) devises an algorithm
with a Bernstein-based analysis that achieves a

√
K-rate in

the case cmin = 0.
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6. Conclusion and Extensions
Although it encompasses numerous goal-oriented RL prob-
lems, the setting of episodic RL under its general SSP for-
mulation had until now been neglected by the theoretical
literature of RL, or had been studied under the strong, loop-
free restriction on the MDP structure. Our key contribution
is the design and analysis of UC-SSP, the first no-regret
algorithm in the challenging setting of goal-oriented RL.
Our analysis carefully combines existing techniques from
the related settings of finite-horizon and infinite-horizon
RL, as well as introduces refined ingredients to address the
novel trade-off between minimizing costs and reaching the
goal state. Interesting directions for further investigation
include (1) designing a model-free algorithm for exploration
in SSP, and (2) tackling SSP in the setting of linear function
approximation.
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A. Proof of Lem. 1, 2 and 4
Proof of Lem. 1. Asm. 2 implies that there exists at least one proper policy (i.e., ΠPSD 6= ∅), and Asm. 1 implies that for
every non-proper policy π, the corresponding value function V π(s) is +∞ for at least one state s ∈ S. The rest follows
from Bertsekas (2012, Sect. 3.2).

Proof of Lem. 2. From the definition of the infinity norm and Asm. 1 and 2, we have

‖V ?‖∞ = max
s∈S

min
π∈ΠSD

E

τπ(s)∑
t=1

c(st, π(st))
∣∣∣ s
 ≤ cmax max

s∈S
min
π∈ΠSD

E[τπ(s)] = cmaxD.

Proof of Lem. 4. The first inequality comes from the chosen stopping condition. As for the second, since we consider the
initial vector v(0) = 0, we know that v(0) ≤ Ṽ ?k,j with Ṽ ?k,j = L̃k,j Ṽ ?k,j . By monotonicity of the operator L̃k,j (Puterman,
2014; Bertsekas, 2012) we obtain ṽk,j ≤ Ṽ ?k,j . If M ∈Mk,j and j = 0, then Ṽ ?k,j ≤ V ?. If M ∈Mk,j and j ≥ 1, then all
costs are equal to 1 so the optimal value function is minπ E(τπ) and hence Ṽ ?k,j ≤ minπ E(τπ).

B. Proof of Thm. 1
Recall that we introduce the MDP M∞ := 〈S ′,A, r∞, p∞, s0〉, with reward r∞ = 1s and p∞(· | s, a) = p(· | s, a) for
s 6= s and p∞(· | s, a) = 1s0 for all a. The SSP problem with uniform costs boils down to minimizing the expected hitting
time of the goal state, which according to the following lemma is equivalent to maximizing the long-term average reward (or
gain) in M∞. Recall that for any policy π ∈ ΠSD, its gain ρπ(s) starting from any s ∈ S is defined as

ρπ(s) := lim
T→+∞

Eπ

[
1

T

T∑
t=1

r∞(st, π(st))
∣∣∣ s].

Lemma 9. Let π∞ ∈ arg maxπ ρπ(s). Then π∞ is optimal in the SSP sense and its constant gain ρ∞ verifies

ρ∞ =
1

V ?(s0) + 1
.

Proof. Let π be a policy such that s is reachable from s0. Denote by Sπ the set of communicating states for policy π in
M∞. Then the underlying Markov chain (restricted to Sπ) is irreducible with a finite number of states and is thus recurrent
positive (see e.g., Brémaud, 2013, Thm. 3.3). Denoting by µπ its unique stationary distribution, we have almost surely that

ρπ(s) = lim
T→+∞

Eπ

[∑T
t=1 rt
T

]
= lim
T→+∞

Eπ

[∑T
t=1 1{st=s}

T

]
(a)
=
∑
s∈Sπ

1{s=s}µπ(s)
(b)
=

1

1 + E[τπ(s0)]
,

where (a) comes from the Ergodic Theorem for Markov Chains (see e.g., Brémaud, 2013, Thm. 4.1) and (b) uses the fact
that 1/µπ(s) corresponds to the mean return time in state s, i.e., the expected time to reach s starting from s. We conclude
with the fact that V π(s0) = E[τπ(s0)].

Hence, we can prove that UCRL2 satisfies the following SSP-regret bound.

Lemma 10. Under Asm. 3, with probability at least 1− δ, for any K ≥ 1,

∆(UCRL2,K) ≤ 34(V ?(s0) + 1)DS

√
ATK log

(
TK
δ

)
,

where TK =
∑K
k=1 τk(s0).
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Proof. Using the fact that K =
∑TK
t=1 1{st=s}, the SSP-regret can be written as

∆(A,K) =

K∑
k=1

[
τk∑
t=1

1{st 6=s} − V
?(s0)

]
= TK −K − V ?(s0)K = TK − (V ?(s0) + 1)K.

For any T ≥ 1 denote by ∆∞(A, T,M∞) the (reward-based) infinite-horizon total regret of algorithm A after T steps in
M∞, i.e., ∆∞(A, T,M∞) = Tρ† −

∑T
t=1 rt where ρ† := maxπ ρπ(s) for all s ∈ S. From Lem. 9 we have ρ† = ρ∞.

Moreover, since the rewards satisfy r∞ = 1s, we have
∑TK
t=1 rt = K. Putting everything together yields

∆(A,K) = TK − (V ?(s0) + 1)K = (V ?(s0) + 1)(TKρ
† −K) = (V ?(s0) + 1)∆∞(A, TK ,M∞).

Note that M∞ is weakly-communicating, where its communicating set of states corresponds to all the states in S ′ that are
accessible from s0 with non-zero probability. Although it is weakly-communicating, the specific reward structure, combined
with the fact that rewards are necessarily known (since we consider the uniform-cost SSP setting and since the goal state s is
assumed to be known), allows to run UCRL2 on this problem (see the Remark at the end of App. B for more detail).

Technically, EVI is guaranteed to converge since the associated extended MDP is weakly-communicating and by Puter-
man (2014) it is sufficient for convergence of value iteration, see e.g., Puterman (2014, Chap. 9) for finite action space
or Schweitzer (1985, Thm. 1) for compact spaces.

From Jaksch et al. (2010, Thm. 2) and using the anytime nature of UCRL2, we have with probability at least 1− δ for any
T > 1,

∆∞(UCRL2, T,M∞) ≤ 34D∞S

√
AT log(

T

δ
),

where D∞ := maxs6=s′∈S′ minπ∈ΠSD(M∞) E[τπ(s→ s′)] is the diameter of M∞. However, this bound may be vacuous
since it depends on D∞ which may be equal to +∞. By slightly changing the analysis of this result we can obtain an
improved dependency on the SSP-diameter D. In particular it is sufficient to prove that for any UCRL2 episode k and for
any iteration i of the optimal extended Bellman operator LMk

(with h0 = 0 and hi = (LMk
)ih0), we have that sp(hi) ≤ D

instead of the conventional upper bound D∞. The remainder of the proof shows this result. It is straightforward that
hi(s) ≥ hi(s) for any s ∈ S (this can be proved by recurrence on i using the definition of hi = LMk

hi−1 and the fact
that the reward inMk is equal to 1s). Introduce s ∈ arg mins hi(s) and ϕ

M̃
(s→ s) the minimum expected shortest path

from s to s in any MDP M̃ . Then from Lem. 12 we have sp(hi) = hi(s)− hi(s) ≤ ϕMk
(s→ s). Since the “true” MDP

M∞ ∈Mk, we have ϕMk
(s→ s) ≤ ϕM∞(s→ s). Furthermore, ϕM∞(s→ s) = ϕM (s→ s) ≤ D. Putting everything

together, we obtain that sp(hi) ≤ D. We thus have with probability at least 1− δ for any T > 1,

∆∞(UCRL2, T,M∞) ≤ 34DS

√
AT log(

T

δ
).

While we would like to assess the dependency of the regret on the number of episodes K (as in the finite-horizon case), the
bound in Lem. 10 contains the random total number of steps TK needed to reach K episodes. In light of this, we derive in
the following lemma an upper bound of TK that depends on the quantity of interest K. Plugging it in Lem. 10 finally yields
the result of Thm. 1.

Lemma 11. Under the same event for which Lem. 10 holds with probability at least 1− δ, we have

TK ≤ 2(V ?(s0) + 1)K + Õ

(
V ?(s0)2D2S2A log

(
1

δ

))
.

Proof. With probability at least 1− δ, we have from the proof of Lem. 10 that

TK − (V ?(s0) + 1)K ≤ 34(V ?(s0) + 1)DS

√
ATK log

(
TK
δ

)
.
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s0s1 s
a10 a01

a00 as0

r(s1) = 0 r(s0) = 0 r(s) = 1

Figure 2. A toy example of SSP-communicating (D = 2) reward-based MDP.

This implies that

TK ≤ 2(V ?(s0) + 1)K −TK + 68(V ?(s0) + 1)DS

√
ATK log

(
TK
δ

)
︸ ︷︷ ︸

:=(y)

,

where (y) can be bounded using Lem. 13 (with the constants a1 = 68(V ?(s0) + 1)DS
√
A, a2 = 1

δ and a3 = 1) as follows

(y) ≤ 16

9

(
68(V ?(s0) + 1)DS

√
A
)2
[

log

(
136(V ?(s0) + 1)DS

√
Ae√

δ

)]2

.

Lemma 12. Consider an (extended) MDP M̃ and define L
M̃

as the associated optimal (extended) Bellman operator (of
undiscounted value iteration). Given h0 = 0 and hi = (L

M̃
)ih0 we have that

∀s1, s2 ∈ S ′, hi(s2)− hi(s1) ≤ rmax ϕM̃ (s1 → s2),

where ϕ
M̃

(s1 → s2) is the minimum expected shortest path from s1 to s2 in M̃ and rmax is the maximal state-action reward.

Proof. The proof follows from the application of the argument of Jaksch et al. (2010, Sect. 4.3.1).

Lemma 13 (Kazerouni et al., 2017, Lem. 8). For any x ≥ 2 and a1, a2, a3 > 0, the following holds

−a3x+ a1

√
x log(a2x) ≤ 16a2

1

9a3

[
log

(
2a1
√
a2e

a3

)]2

.

Remark. Consider the reward-based SSP M in Fig. 2. M is SSP-communicating while the associated MDP M∞ is weakly-
communicating since s1 is transient under every policy. There are just two possible deterministic policies: π0(s0) = a00

and π1(s0) = a01. If rewards are unknown, UCRL2 will periodically alternate between policy π0 and π1 without converging
to any of the two. This is due to the fact that, in the set of plausible MDPsMk there will always be (i.e., ∀k > 0) an MDP
with arbitrarily small but non-zero transition probability p̃ to state s1, where, due to maximum uncertainty, there will be
a self loop with probability 1 and reward rmax (since Nk(s1, a10) ∈ {0, 1} depending on the initial state for any k). The
probability p̃ will be sometimes higher for action a00 and sometimes for a01 depending on the counter Nk. This is why
UCRL2 will never converge. However, if the rewards are known (which is always the case under Asm. 3 and as long as
the goal state s is known), after a burn-in phase, it will be clear to UCRL2 that action a00 is suboptimal. Even if there is
probability p̃ > 0 to go to s1, in s1 the optimistic behaviour will be to go to s since it is the only one to provide reward.
However, this imagined policy is suboptimal since it has an additional step and thus UCRL2 will select π1. Note that while it
is possible to make the MDP stochastic, this will lead to a longer burn-in phase but will not change the behaviour of UCRL2
in the long run.
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C. Proof of Lem. 3
The proof is almost identical to the proof of Fruit et al. (2020, Thm. 10) and we report it below for completeness.

Recall that we define Mk,j := {〈S,A, c, p̃〉 | p̃ ∈ Bk,j} to be the extended MDP defined by the confidence interval
Bk,j := {p̃ ∈ C | p̃(·|s, a) = 1s and ∀(s, a) ∈ S ×A, ‖p̃(·|s, a)− p̂k,j(·|s, a)‖1 ≤ βk,j(s, a)}, with C the S′-dimensional
simplex and

βk,j(s, a) :=

√√√√√8S log

(
2AN+

k,j(s,a)

δ

)
N+
k,j(s, a)

.

Furthermore we introduce Bk,j(s, a) := {p̃ ∈ C : ‖p̃(·|s, a)− p̂k,j(·|s, a)‖1 ≤ βk,j(s, a)} (and similarly for Bk,j(s, a, s′)).
We want to bound the probability of event EC :=

⋃+∞
k=1

⋃Jk
j=1{M 6∈ Mk,j}. As explained by Lattimore & Szepesvári (2020,

Chap. 5), when (s, a) is visited for the n-th times, the next state that we observe is the n-th element of an infinite sequence
of i.i.d. r.v. lying in S ′ with probability density function p(·|s, a). In UCRL2 (Jaksch et al., 2010), the sample means p̂k,j
and the confidence intervals Bk,j are defined as depending on (k, j). Actually, these quantities depend only on the first
Nk,j(s, a) elements of the infinite i.i.d. sequences that we just mentioned. For the rest of the proof, we will therefore slightly
change our notations and denote by p̂n(s′|s, a) and Bn(s′|s, a) the sample means and confidence intervals after the first n
visits in (s, a). Thus, the r.v. that we denoted by p̂k,j actually corresponds to p̂Nk,j(s,a) with our new notation (and similarly
for Bk,j). This change of notation will make the proof easier.

If M 6∈ Mk,j , then there exists a k ≥ 1 and j ≥ 0 s.t. p(·|s, a) 6∈ BNk,j(s,a)(s, a) for at least one (s, a, s′) ∈ S ×A× S ′.
This means that there exists at least one value n ≥ 0 s.t. p(s′|s, a) 6∈ Bn(s, a, s′). Consequently we have the following
inclusion

EC ⊆
⋃
s,a

+∞⋃
n=0

{p(·|s, a) 6∈ Bn(s, a)}.

Using Boole’s inequality we have

P(EC) ≤
∑
s,a

+∞∑
n=0

P(p(·|s, a) 6∈ Bn(s, a)).

Let us fix a tuple (s, a) ∈ S ×A and define for all n ≥ 0

εn(s, a) :=

√
2 log((2S′ − 2)5SA(n+)2/δ)

n+
,

where n+ := max{n, 1}. Since S′ = S + 1 ≤ 2S, it is immediate to verify that almost surely, εn(s, a) ≤ βn(s, a). Using
Weissman’s inequality (Weissman et al., 2003; Jaksch et al., 2010) we have that for all n ≥ 1

P(‖p(·|s, a)− p̂n(·|s, a)‖1 ≥ βn(s, a)) ≤ P(‖p(·|s, a)− p̂n(·|s, a)‖1 ≥ εn(s, a)) ≤ δ

5n2SA
.

Note that when n = 0 (i.e., when there has not been any observation of (s, a)), ε0(s, a) ≥ 2 so P(‖p(·|s, a)− p̂0(·|s, a)‖1 ≥
ε0(s, a)) = 0 by definition. As a result, we have that for all n ≥ 1

P(p(·|s, a) /∈ Bn(s, a)) ≤ δ

5n2SA
,

and this probability is equal to 0 if n = 0. Finally we obtain

P(∃k ≥ 1,∃j ∈ [0, Jk], s.t. M 6∈ Mk,j) ≤
∑
s,a

(
0 +

+∞∑
n=1

δ

5n2SA

)
=
π2δ

30
≤ δ

3
,

which concludes the proof.



No-Regret Exploration in Goal-Oriented Reinforcement Learning

D. Proof of Lem. 5
For notational ease, in Sect. D we adopt the notation Hk := Hk,0, π̃k := π̃k,0, εk := εk,0 (i.e., we remove the subscript 0).

Furthermore, for any k ∈ [K] and h ∈ [Hk], we denote by sk,h the state visited in the h-th step of episode k.

Assume from now on that the event E holds. From Lem. 4 we have

WK =

K∑
k=1

[(
Hk∑
h=1

c(sk,h, π̃k(sk,h))

)
− V ?(s0)

]
≤

K∑
k=1

[(
Hk∑
h=1

c(sk,h, π̃k(sk,h))

)
− ṽk(s0)

]
=

K∑
k=1

Θk,1(sk,1),

where sk,1 := s0, and for any k ∈ [K] and h ∈ [Hk], we introduce

Θk,h(sk,h) :=

Hk∑
t=h

c(sk,t, π̃k(sk,t))− ṽk(sk,h).

For any h ∈ [Hk − 1], we introduce

Φk,h := ṽk(sk,h+1)−
∑
y∈S

p(y | sk,h, π̃k(sk,h))ṽk(y).

We then have

Θk,h(sk,h) =

Hk∑
t=h

c(sk,t, π̃k(sk,t))− ṽk(sk,h)

≤
Hk∑
t=h

c(sk,t, π̃k(sk,t))− L̃kṽk(sk,h) + εk

(a)
=

Hk∑
t=h

c(sk,t, π̃k(sk,t))− c(sk,h, π̃k(sk,h))−
∑
y∈S

p̃k(y | sk,h, π̃k(sk,h))ṽk(y) + εk

=

Hk∑
t=h+1

c(sk,t, π̃k(sk,t))−
∑
y∈S

[p̃k(y | sk,h, π̃k(sk,h))− p(y | sk,h, π̃k(sk,h)) + p(y | sk,h, π̃k(sk,h))]ṽk(y) + εk

(b)
≤

Hk∑
t=h+1

c(sk,t, π̃k(sk,t))−
∑
y∈S

p(y | sk,h, π̃k(sk,h))ṽk(y)

+ ‖p(· |sk,h, π̃k(sk,h))− p̃k(· |sk,h, π̃k(sk,h))‖1‖ṽk‖∞ + εk

(c)
≤

Hk∑
t=h+1

c(sk,t, π̃k(sk,t))−
∑
y∈S

p(y | sk,h, π̃k(sk,h))ṽk(y) + 2βk(sk,h, π̃k(sk,h))cmaxD + εk

= Θk,h+1(sk,h+1) + ṽk(sk,h+1)−
∑
y∈S

p(y | sk,h, π̃k(sk,h))ṽk(y) + 2βk(sk,h, π̃k(sk,h))cmaxD + εk

= Θk,h+1(sk,h+1) + Φk,h + 2βk(sk,h, π̃k(sk,h))cmaxD + εk, (8)

where (a) stems from the fact that π̃k is the greedy policy with respect to (ṽk, εk), (b) leverages that ṽk ≥ 0 component-wise
and (c) combines Lem. 4 and 2. Furthermore, whatever the value of sk,Hk we have

Θk,Hk(sk,Hk) = c(sk,Hk , π̃k(sk,Hk))− ṽk(sk,Hk)

≤ c(sk,Hk , π̃k(sk,Hk))− L̃kṽk(sk,Hk) + εk

= c(sk,Hk , π̃k(sk,Hk))− c(sk,Hk , π̃k(sk,Hk))−
∑
y∈S

p̃k(y | sk,Hk , π̃k(sk,Hk)) ṽk(y)︸ ︷︷ ︸
≥0

+εk

≤ εk.
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By telescopic sum we get (using Eq. 8)

Θk,1(sk,1) =

Hk−1∑
h=1

(Θk,h(sk,h)−Θk,h+1(sk,h+1)) + Θk,Hk(sk,Hk)

≤
Hk−1∑
h=1

Φk,h + 2cmaxD

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) + (Hk − 1)εk + Θk,Hk(sk,Hk)

≤
Hk−1∑
h=1

Φk,h + 2cmaxD

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) +Hkεk.

Summing over the episode index k yields
K∑
k=1

Θk,1(sk,1) ≤
K∑
k=1

Hk−1∑
h=1

Φk,h︸ ︷︷ ︸
:=XK

+2cmaxD

K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h))︸ ︷︷ ︸
:=YK

+

K∑
k=1

Hkεk︸ ︷︷ ︸
:=ZK

.

In order to bound XK , we can write

P

 K∑
k=1

Hk−1∑
h=1

Φk,h ≥ 2cmaxD

√√√√√√2

(
K∑
k=1

Hk

)
log

2
(∑K

k=1Hk

)2

δ




≤
+∞∑
n=1

P

(
K∑
k=1

Hk∑
h=1

Φk,h ≥ 2cmaxD

√
2n log

(
2n2

δ

) ⋂ K∑
k=1

Hk = n

)

≤
+∞∑
n=1

P

(
n∑
t=1

Φ̃t ≥ 2cmaxD

√
2n log

(
2n2

δ

))
,

where we introduce for any t > 0,

Φ̃t =

{
Φk̃t,t−Zt if t > Zt,

Φk̃t+1,1 otherwise,

where k̃t = max {k |
∑k
k′=1Hk′ ≤ t} and Zt =

∑k̃t−1
k′=1 Hk′ + 1, i.e., we map a value t to the double index (k, h). Denote

by Gq the history of all random events up to (and including) step h of episode k (i.e., q =
∑k−1
k′=1Hk + h). We have

E[Φk,h|Gq] = 0 (since ṽk(s) = 0), and furthermore the stopping time Hk is selected at the beginning of episode k so it is
adapted w.r.t.Gq . Hence, (Φ̃t) is a martingale difference sequence, such that |Φ̃t| ≤ 2cmaxD. For any fixed n > 0, we thus
have from Azuma-Hoeffding’s inequality that

P

(
n∑
t=1

Φ̃t ≥ 2cmaxD

√
2n log

(
2n2

δ

))
≤ δ

2n2
.

As a result, from a union bound over all possible values of n > 0, we have with probability at least 1− 2δ
3 ,

K∑
k=1

Hk−1∑
h=1

Φk,h ≤ 2cmaxD

√√√√√√2

(
K∑
k=1

Hk

)
log

3
(∑K

k=1Hk

)2

δ

. (9)

We now proceed in bounding YK using a pigeonhole principle. Denoting by N (1) the counter of samples only collected
during attempts in phase ¬, we get

K∑
k=1

Hk−1∑
h=1

√
1

N
(1)
k (sk,h, π̃k(sk,h))

≤
∑
s,a

N
(1)
K (s,a)∑
n=1

√
1

n
≤
∑
s,a

2

√
N

(1)
K (s, a) ≤ 2

√
SA

√∑
s,a

N
(1)
K (s, a) ≤ 2

√
SATK,1.
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We have N+
k (s, a) ≥ N (1)+

k (s, a) so by applying the technical Lem. 14 (and considering that A ≥ 2 since if A = 1 there is
no learning problem), we get

βk(s, a) =

√√√√8S log
(

2AN+
k (s,a)

δ

)
N+
k (s, a)

≤

√√√√√√8S log

(
2AN

(1)+
k (s,a)

δ

)
N

(1)+
k (s, a)

.

Therefore we obtain

K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) ≤ 2S

√
8ATK,1 log

(
2ATK,1

δ

)
. (10)

We finally bound ZK . We have for any k ∈ [K], Hk ≤ ΩK and we select εk = cmin
2tk,0

, hence we have TK,1 ≤ ΩKK and

K∑
k=1

Hkεk ≤
cmin

2

TK,1∑
t=1

ΩK
t
≤ cmin

2
ΩK(1 + log(ΩKK)).

Putting everything together, a union bound and Lem. 3 yields with probability at least 1− δ,

K∑
k=1

[(
Hk∑
h=1

c(sk,h, π̃k(sk,h))

)
− ṽk(s0)

]
≤ 4cmaxDS

√
8ATK,1 log

(
2ATK,1

δ

)

+ 2cmaxD

√√√√2TK,1 log

(
3T 2

K,1

δ

)
+
cmin

2
ΩK(1 + log(ΩKK)).

Lemma 14. For any constant c ≥ 4, the function f(x) :=
√

log(cx)
x is a non-increasing function for x ≥ 1.

Proof. Introduce the function g(x) := f(x)2. We have g′(x) = 1−log(cx)
x2 ≤ 0 since x ≥ 1 ≥ e

c . So g is non-increasing,
hence by composition of functions, f =

√
g is also non-increasing.

Interestingly, the bound of Lem. 5 resembles a combination of finite- and infinite-horizon guarantees. On the one hand, we
have the standard dependency of finite-horizon problems on the horizon H and number of episodes K. On the other hand,
H is no longer bounding the range of the value functions, which is replaced by cmaxD as in infinite-horizon problems.

E. Proof of Lem. 6
We start the proof of Lem. 6 by deriving a general result — which may be of independent interest — that upper bounds the
moments of any discrete PH distribution.6

Lemma 15. Consider an absorbing Markov Chain with state space Y ∪ {y}, a single absorbing state y and |Y| transient
states. Denote by Q ∈ RY×Y the transition matrix within the states in Y and by τ(y) := τ(y → y) the first hitting
time of state y starting from state y. Suppose that there exists a constant λ ≥ 2 such that for any state y ∈ Y , we have
E[τ(y → y)] ≤ λ. Then for any r ≥ 1 and any state y ∈ Y , we have

E[τ(y)r] ≤ 2(rλ)
r
.

6Note that while there actually exists a closed-form expression of the moments of a continuous PH distribution (see e.g., Latouche &
Ramaswami, 1999, Eq. 2.13), it does not extend to the discrete case.
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Proof. We first leverage a closed-form expression of the factorial moments of discrete PH distributions. For any r ≥ 1,
denoting by (τ)r the r-th factorial moment of τ , i.e., (τ)r := τ(τ − 1)...(τ − r + 1), we have (see e.g., Latouche &
Ramaswami, 1999, Eq. 2.15) that for any starting state y ∈ Y ,

E[(τ)r(y)] = r!1>y (I −Q)−rQr−11.

Recalling that the ‖·‖∞ (resp. ‖·‖1) norm of a matrix is equal to its maximum absolute row (resp. column) sum, we have by
Hölder’s inequality, for any j ∈ [r],

E[(τ)j(y)] = j!
〈
(1>y (I −Q)−j)>, Qj−11

〉
≤ j!‖(1>y (I −Q)−j)>‖1‖Qj−11‖∞
= j!‖((I −Q)−j)>1y‖1‖Qj−11‖∞
≤ j!‖((I −Q)−j)>‖1‖1y‖1‖Qj−1‖∞‖1‖∞
≤ j!‖(I −Q)−j‖∞‖Qj−1‖∞
≤ j!‖(I −Q)−1‖j∞, (11)

where the last inequality uses the fact that ‖Qj−1‖∞ ≤ 1 since the matrix Qj−1 is substochastic. There remains to upper
bound the quantity ‖(I −Q)−1‖∞. Consider a state

z ∈ arg max
y∈Y

∑
y′∈Y

(I −Q)−1
yy′ .

By choice of z and non-negativity of the matrix (I −Q)−1, we have

‖(I −Q)−1‖∞ =
∑
y′∈Y
|(I −Q)−1

zy′ |

=
∑
y′∈Y

(I −Q)−1
zy′

= 1>z (I −Q)−11

=

∞∑
n=0

1>z Q
n1.

Since τ(z) follows a discrete PH distribution, we have from Lem. 1 that

1>z Q
n1 = P(τ(z) > n).

Consequently,

‖(I −Q)−1‖∞ =

∞∑
n=0

P(τ(z) > n) = E[τ(z)] ≤ λ. (12)

Plugging Eq. (12) into Eq. (11) thus yields for any y ∈ Y ,

E[(τ)j(y)] ≤ j!λj .

Furthermore, the (raw) moment of a random variable can be expressed in terms of its factorial moments by the following
formula (see e.g., Joarder & Mahmood, 1997, Eq. 3.1)

E[τ(y)r] =

r∑
j=1

{
r

j

}
E[(τ)j(y)],

where the curly braces denote Stirling numbers of the second kind, i.e.,{
r

j

}
:=

1

j!

j∑
i=0

(−1)j−i
(
j

i

)
ir.
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Using the upper bound (see e.g., Canfield & Pomerance, 2002, Eq. 9){
r

j

}
≤ jr

j!
,

we obtain

E[τ(y)r] ≤
r∑
j=1

jrλj .

We conclude the proof of Lem. 15 with the fact that

r∑
j=1

jrλj ≤ rr
r∑
j=1

λj ≤ rrλλ
r − 1

λ− 1
≤ rr2λr,

where the last inequality holds since λ ≥ 2.

We are now ready to prove Lem. 6.

For notational ease, in Sect. E we adopt the notation Hk := Hk,0, π̃k := π̃k,0, εk := εk,0 (i.e., we remove the subscript 0).

Denote by Gk−1 the history of all random events up to (and including) episode k − 1. In this section as well as in Sect. F,
we will write E

[
1{τpπ(s)>Hk−1} | Gk−1

]
= P(τpπ(s) > Hk − 1), i.e. the probability P is only over the randomization of the

sequence of states generated by the policy π in the model p starting from state s (i.e., it is conditioned on Gk−1, the policy π,
the model p and the starting state s).

Suppose that the event E holds and fix an episode k ∈ [K]. Denote by Q̃ := Qp̃kπ̃k the optimistic transition matrix within S
of policy π̃k in the transition model p̃k. Also, for any state s ∈ S, denote by τ̃(s) := τ p̃kπ̃k (s) the hitting time of s starting
from s following policy π̃k in the transition model p̃k.

We introduce the Bellman operator T π̃kεk for policy π̃k, that verifies for any vector v ∈ RS and state s ∈ S,

T π̃kεk v(s) := c(s, π̃k(s))− εk +
∑
y∈S

p̃k(y | s, π̃k(s))v(y),

i.e., it corresponds to the operator L̃π̃kk with εk subtracted to all the costs. Note that its costs are all positive by choice of
εk = cmin

2tk
. Combining Lem. 4 and the fact that π̃k is the greedy policy w.r.t. ṽk yields that L̃π̃kk ṽk = L̃kṽk ≤ ṽk + εk.

Consequently, we have the following component-wise inequality

T π̃kεk ṽk ≤ ṽk.

By monotonicity of the operator T π̃kεk (Puterman, 2014; Bertsekas, 2012), we have for all m > 0,

(T π̃kεk )mṽk ≤ ṽk,

and hence taking the limit m→ +∞ yields Ũπ̃k,εk ≤ ṽk, where Ũπ̃k,εk is defined as the value function of policy π̃k in the
model p̃k with εk subtracted to all the costs, i.e.,

Ũπ̃k,εk(s) := Ep̃k

τ̃(s)∑
t=1

(c(st, π̃k(st))− εk) | s1 = s

 = Ṽπ̃k(s)− εkE[τ̃(s)],

where Ṽπ̃k(s) := Ep̃k
[∑τ̃(s)

t=1 c(st, π̃k(st)) | s1 = s
]

is the value function of policy π̃k in the model p̃k. Since Ṽπ̃k(s) ≥
cminE[τ̃(s)], we have

(cmin − εk)E[τ̃(s)] ≤ Ṽπ̃k(s)− εkE[τ̃(s)] = Ũπ̃k,εk(s) ≤ ṽk(s).
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Using successively the above inequality, the fact that εk ≤ cmin

2 , Lem. 4 and 2, we obtain for any s ∈ S,

E[τ̃(s)] ≤ ṽk(s)

cmin − εk
≤ 2V ?(s)

cmin
≤ 2cmaxD

cmin
. (13)

Fix any r ≥ 1 and s ∈ S. According to a corollary of Markov’s inequality (since x 7→ xr is a monotonically increasing
non-negative function for the non-negative reals), we have

P(τ̃(s) ≥ Hk − 1) ≤ E[τ̃(s)r]

(Hk − 1)r
.

We can apply Lem. 15 to the discrete PH distribution τ̃ with the choice of λ := 2cmaxD
cmin

guaranteed by Eq. (13). This yields

E[τ̃(s)r] ≤ 2

(
r

2cmaxD

cmin

)r
.

Hence, we have

P(τ̃(s) ≥ Hk − 1) ≤
2
(
r 2cmaxD

cmin

)r
(Hk − 1)r

. (14)

There exists y ∈ S such that

‖Q̃Hk−2‖∞ = 1>y Q̃
Hk−21 = P(τ̃(y) > Hk − 2) = P(τ̃(y) ≥ Hk − 1), (15)

where the before-last equality uses Lem. 1 applied to π̃k ∈ ΠPSD(〈S ′,A, c, p̃k, y〉) (the fact that π̃k is proper in p̃k
stems from Eq. 13), while the last equality uses that the hitting time τ̃(y) is an integer. By definition of Hk :=

min
{
n > 1 : ‖Q̃n−1‖∞ ≤ 1√

k

}
, we have ‖Q̃Hk−2‖∞ > 1√

k
. Combining this with Eq. (14) and (15) yields

2
(
r 2cmaxD

cmin

)r
(Hk − 1)r

>
1√
k
,

which implies that

Hk − 1 < r
2cmaxD

cmin

(
2
√
k
) 1
r

.

In particular, selecting r := dlog(2
√
k)e yields

Hk − 1 <
2cmaxD

cmin
dlog(2

√
k)e(2

√
k)

1

dlog(2
√
k)e

≤ 2cmaxD

cmin
dlog(2

√
k)e (2

√
k)

1

log(2
√
k)︸ ︷︷ ︸

=e

.

Hence,

ΩK ≤
⌈

6
cmax

cmin
D log(2

√
K)

⌉
.

F. Proof of Lem. 7
For notational ease, in Sect. F we adopt the notation Hk := Hk,0, π̃k := π̃k,0, εk := εk,0 (i.e., we remove the subscript 0).



No-Regret Exploration in Goal-Oriented Reinforcement Learning

We denote by τk (resp. τ̃k) the hitting time of policy πk in the true model p (resp. in the optimistic model p̃k). For any
h ∈ [Hk] we define

Γk,h(sk,h) = 1{τk(sk,h)>Hk−h} − P(τ̃k(sk,h) > Hk − h).

Since FK =
∑K
k=1 1{τk(sk,1)>Hk−1}, we have

FK =

K∑
k=1

Γk,1(sk,1) +

K∑
k=1

P(τ̃k(s0) > Hk − 1).

We have for h ∈ [Hk − 1], 1{τk(sk,h)>Hk−h} = 1{τk(sk,h+1)>Hk−h−1} and therefore

Γk,h(sk,h) = 1{τk(sk,h+1)>Hk−h−1} −
∑
y∈S′

p̃k(y | sk,h, π̃k(sk,h))P(τ̃k(y) > Hk − h− 1)

≤ 1{τk(sk,h+1)>Hk−h−1} −
∑
y∈S′

p(y | sk,h, π̃k(sk,h))P(τ̃k(y) > Hk − h− 1) + 2βk(sk,h, π̃k(sk,h))

= Γk,h+1(sk,h+1) + Ψk,h + 2βk(sk,h, π̃k(sk,h)),

where we define

Ψk,h = P(τ̃k(sk,h+1) > Hk − h− 1)−
∑
y∈S′

p(y | sk,h, π̃k(sk,h))P(τ̃k(y) > Hk − h− 1).

Furthermore, whatever the value of sk,Hk we have

Γk,Hk(sk,Hk) = 1{τk(sk,Hk )>0} − P(τ̃k(sk,Hk) > 0) = 1{sk,Hk 6=s} − 1{sk,Hk 6=s} = 0.

By telescopic sum we thus get

Γk,1(sk,1) =

Hk−1∑
h=1

(Γk,h(sk,h)− Γk,h+1(sk,h+1)) + Γk,Hk(sk,Hk)

≤
Hk−1∑
h=1

Ψk,h + 2

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)).

Summing over the episode index k yields

FK ≤
K∑
k=1

Hk−1∑
h=1

Ψk,h + 2

K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) +

K∑
k=1

P(τ̃k(s0) > Hk − 1).

(Ψk,h) is a martingale difference sequence with |Ψk,h| ≤ 2, so from Azuma-Hoeffding’s inequality, in the same vein as in
Eq. (9), we have with probability at least 1− 2δ

3

K∑
k=1

Hk−1∑
h=1

Ψk,h ≤ 2

√√√√√√2

(
K∑
k=1

Hk

)
log

3
(∑K

k=1Hk

)2

δ

 ≤ 2

√
2ΩKK log

(
3(ΩKK)2

δ

)
.

By the pigeonhole principle (Eq. 10), we have

K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) ≤ 2S

√
8AΩKK log

(
2AΩKK

δ

)
.
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From Lem. 1 and Hölder’s inequality, we have

K∑
k=1

P(τ̃k(s0) > Hk − 1) =

K∑
k=1

1s0(Qp̃kπ̃k)Hk−11 ≤
K∑
k=1

‖1s0‖1‖(Q
p̃k
π̃k

)Hk−11‖∞ ≤
K∑
k=1

‖(Qp̃kπ̃k)Hk−1‖∞.

Consequently, by choice of Hk := min{n > 1 | ‖(Qp̃kπ̃k)n−1‖∞ ≤ 1√
k
}, we get

K∑
k=1

P(τ̃k(s0) > Hk − 1) ≤
K∑
k=1

1√
k
≤ 2
√
K.

G. Proof of Lem. 8
Recall that TK,2 is the number of time steps during attempts in phase  up to the end of environmental episode K. We
introduce Ω′K := maxk∈[K] maxj∈[Jk]Hk,j and GK :=

∑K
k=1 Jk which is the total number of attempts in phase  up to

episode K. This means that TK,2 ≤ Ω′KGK .

First, by adapting Lem. 6 and using that in attempts in phase  we have cmax = cmin = 1, we have under the event E ,

Ω′K ≤
⌈
6D log(2

√
GK)

⌉
. (16)

We can decompose GK as the sum of attempts that succeed in reaching s (equal to FK which is upper bounded by Lem. 7)
and of those that fail in reaching s, whose number we denote by F †K . We then have

GK ≤ FK + F †K . (17)

By adapting Lem. 7, we have the following high-probability bound, for any value of GK ,

F †K = O

(
S

√
AΩ′KGK log

(
AΩ′KGK

δ

))
. (18)

Plugging Eq. (16) and (17) into Eq. (18) yields

GK ≤ FK +O

(
S
√
ADGK log

(
ADGK

δ

))
.

Hence we get

GK ≤ 2FK −GK +O

(
S
√
ADGK log

(
ADGK

δ

))
︸ ︷︷ ︸

:=(y)

,

where (y) can be bounded using the technical Lem. 13 as follows

(y) ≤ O

(
S2AD

[
log

(
SAD√

δ

)]2
)
.

Plugging in the result of Lem. 7 yields

GK = Õ

(
S

√
cmax

cmin
ADK log

(
K

δ

)
+ S2AD log

(
1

δ

))
.

This bound can be translated in a bound on TK,2 using Eq. (16) as follows

TK,2 = O
(
DGK log(S

√
GK)

)
= Õ

(
DS

√
cmax

cmin
ADK log

(
K

δ

)
log(K) + S2AD2 log

(
1

δ

)
log(K)

)
.
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H. Proof of Thm. 2
The (possibly non-stationary) policy µk executed at each episode k can be written as (π̃k,0, π̃k,1, . . . , π̃k,Jk). As explained
in Sect. 4.3, by assigning a regret of cmax to each time step during attempts in phase  (i.e., during the executions of the
policies π̃k,1, . . . , π̃k,Jk ), we can decompose the regret as

∆(UC-SSP,K) =

K∑
k=1

[(τk,0∑
h=1

c(sk,h, µk(sk,h))

)
− V ?(s0)

]
≤

K∑
k=1

Hk,0∑
h=1

c(sk,h, π̃k,0(sk,h))

− V ?(s0)

+ cmaxTK,2.

Suppose from now on that the event E is true (this holds with probability at least 1− δ
3 ). Lem. 5 yields that with probability

at least 1− 2δ
3 ,

K∑
k=1

Hk,0∑
h=1

c(sk,h, π̃k,0(sk,h))

− V ?(s0)

 ≤ 4cmaxDS

√
8AΩKK log

(
2AΩKK

δ

)

+ 2cmaxD

√
2ΩKK log

(
3(ΩKK)2

δ

)
+
cmin

2
ΩK(1 + log(ΩKK)),

where according to Lem. 6,

ΩK ≤
⌈

6
cmax

cmin
D log(2

√
K)

⌉
.

On the other hand, Lem. 8 yields

TK,2 = Õ

(
DS

√
cmax

cmin
ADK log

(
K

δ

)
log(K) + S2AD2 log

(
1

δ

)
log(K)

)
.

Putting everything together finally yields that with probability at least 1− δ, for any K ≥ 1,

∆(UC-SSP,K) = Õ

(
cmaxDS

√
cmax

cmin
ADK log

(
K

δ

)
log(K) + cmaxS

2AD2 log

(
1

δ

)
log(K)

)
.

I. Relaxation of Assumptions
I.1. Straightforward extension to unknown, stochastic costs

Although we assume (as in e.g., Azar et al., 2017) that the costs are known and deterministic for ease of exposition, we
emphasize that extending the setting to unknown stochastic costs poses no major difficulty. The only requirement is that
the learner needs to know in advance the range of the non-goal costs, i.e., the constants cmin and cmax. In that case, at the
beginning of each attempt (k, 0) (i.e., in phase ¬), the confidence setMk,0 is not only defined with the confidence interval
on the transition probabilities but also with a confidence interval on the costs. Namely, we consider

Mk,0 := {〈S,A, c̃, p̃〉 | p̃(·|s, a) ∈ Bk,0(s, a), c̃(s, a) ∈ B′k,0(s, a)},

where Bk,0(s, a) is defined as in Sect. 4.1, and where for any a ∈ A, c̃(s, a) = 0 while for any s ∈ S,

B′k,0(s, a) := [ĉk,0(s, a)− β′k,0(s, a), ĉk,0(s, a) + β′k,0(s, a)] ∩ [cmin, cmax],

with ĉk,0(s, a) the empirical costs and

β′k,0(s, a) := 2

√√√√√ log

(
6SAN+

k,0(s,a)

δ

)
N+
k,0(s, a)

.

The analysis on the regret bound of UC-SSP then only adds an additional error term on estimating the transition costs, which
is subsumed by the other terms. Consequently, we obtain exactly the same regret bound as in Thm. 2.
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I.2. Relaxation of Asm. 2 (i.e., if M is non-SSP-communicating, i.e., D = +∞)

The requirement that the goal is reachable from any state (Asm. 2) is a natural and inherent assumption of the SSP problem
as introduced in Bertsekas (2012). However, a reasonable extension is to allow for the existence of (potentially unknown)
dead-end states, i.e., states from which reaching the goal is impossible. In that case, EVISSP, which operates of the entire
state space S , fails to converge since the values at dead-end states are infinite. Kolobov et al. (2012) propose to put a “cap”
on any state’s cost by optimizing the truncated value function, or Finite-Penalty criterion,

V πJ (s) := min{J, V π(s)},

where J > 0 corresponds to a penalty incurred if a dead-end state is visited. From Kolobov et al. (2012), there exists an
optimal policy π?J(s) that minimizes V πJ (s) and the optimal truncated value function V ?J is a fixed point of the modified
Bellman operator LJ defined as

LJV (s) := min
{
J, min

a∈A

[
c(s, a) +

∑
y∈S

p(y|s, a)V (y)
]}
.

Denote by SDE ( S the set of dead-end states. We replace Asm. 2 with the following assumptions.

Assumption 4. 1) s0 /∈ SDE . 2) V ?(s0) < +∞ and an upper bound J on V ?(s0) is known. 3) We augment the action
space A with an action a that causes a transition from any state in S to the target state with probability 1 and cost J (i.e., we
place ourselves in a resetting environment).

Note that 1) and 3) of Asm. 4 are required to make the learning problem and the definition of regret sensible (i.e., we have
V ?(s0) < +∞ and we have the possibility to reset whenever we are stuck in a dead-end state). Moreover, 2) guarantees that
V ?(s0) = V ?J (s0) and that if we run EVISSP on LJ instead of L, then J is an upper bound on the optimistic value function
output by EVISSP(instead of cmaxD which is vacuous when D = +∞). Note that 2) is tightly related to the requirement of
Fruit et al. (2018b) of prior knowledge on an upper bound of the span of the optimal bias function, and that 1) is similar to
the assumption of a starting state belonging to the set of communicating states in TUCRL (Fruit et al., 2018a).

With those assumptions at hand, we consider the algorithm UC-SSP-LJ , which differs from UC-SSP in 3 ways: it iterates
EVISSP on the operator LJ , the length of the k-th phase ¬ is set to H(J)

k := 6 J
cmin

log(2
√
k), and it executes action a at the

end of each attempt ¬ (this means that there is no more phase , and the k-th attempt ¬ exactly corresponds to the k-th
environmental episode).

Lemma 16. Under Asm. 4 and 1, with probability at least 1− δ,

∆(UC-SSP-LJ ,K) = O

(
JS

√
AΩ

(J)
K K log

(
Ω

(J)
K K

δ

))
,

where Ω
(J)
K := 6 J

cmin
log(2

√
K).

Proof. We have

∆(UC-SSP-LJ ,K) =

K∑
k=1

τk(s0)∑
h=1

c(sk,h, π̃k(sk,h))

− V ?J (s0)

 ≤ K∑
k=1

H
(J)
k∑
h=1

c(sk,h, π̃k(sk,h))

− V ?J (s0)

+ JFK ,

where the double sum can be bounded by

O

(
JS

√
AΩKK log

(
ΩKK

δ

))

by adapting the proof of Lem. 5, since π̃k is the greedy policy w.r.t. the optimistic value function ṽ(J)
k which satisfies both

ṽ
(J)
k (s0) ≤ V ?J (s0) and ‖ṽ(J)

k ‖∞ ≤ J .
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s0 s

s1 s2

a0,0

a0,1

a1,0

a2,0

Figure 3. SSP instance used in the proof of Lem. 17.

Note that the optimistic hitting time τ p̃kπ̃k starting from any state in S \ SDE still follows a discrete PH distribution with
|SDE |+ 1 absorbing states (which can be reduced to a discrete PH distribution with a single absorbing state and with the
same distribution of the time to absorption). Consequently, using the same reasoning as in the proof of Lem. 6, we can prove
that under the event E ,

P(τ p̃kπ̃k (s0) ≥ H(J)
k ) ≤ 1√

k
.

Hence we can bound FK exactly as in Lem. 7. We obtain the desired regret bound by using that Ω
(J)
K := maxk∈[K]H

(J)
K =

6 J
cmin

log(2
√
K) by choice of H(J)

k .

Interesting future directions in the setting where D = +∞ could be to attempt to remove the need for the prior knowledge
J (i.e., weaken Asm. 4), or to focus on the related problem of maximizing the probability of reaching the goal state while
keeping cumulative costs low (see e.g., Kolobov et al., 2012, Sect. 6).

I.3. Relaxation of Asm. 1 (i.e., if cmin = 0)

While the assumption of positive costs seems natural in numerous episodic problems and is commonly used in the SSP
literature (see e.g., Hansen, 2012; Teichteil-Königsbuch, 2012), we now consider the case where zero non-goal costs may
exist, i.e., cmin = 0. In such case, the optimal policy is not guaranteed to be proper anymore (Bertsekas, 2012). We thus
change the definition of SSP-regret and compare to the best proper policy, that is,

∆(A,K) :=

K∑
k=1

[( τk(s0)∑
h=1

c(sk,h, µk(sk,h))
)
− V ?(s0)

]
, with V ? := min

π∈ΠPSD
V π, π? ∈ arg min

π∈ΠPSD
V π. (19)

The existence of cmin > 0 is leveraged in our analysis to bound ΩK , more specifically in Eq. (13), which uses that the
property of optimism w.r.t. the value functions (i.e., ṽk,0 ≤ V ? component-wise) yields a “cost-weighted optimism” w.r.t. the
expected hitting times, i.e., E(τ̃k,0) ≤ 2cmax

cmin
E(τπ?) component-wise. Yet if zero costs are possible (i.e., cmin = 0), then this

implication fails to hold.

To circumvent this problem a natural idea is to introduce an additive perturbation ηk,0 > 0 to the cost of each transition in
the true SSP (note that a small offset of costs to avoid to tricky case of zero costs is also performed by Bertsekas & Yu,
2013). One may hope that this would not affect the behavior of the optimal policy, yet whereas in finite- and infinite-horizon
this is indeed the case (i.e., offsetting the costs by a positive constant does not affect the behavior of the optimal policy),
Lem. 17 shows that this property does not hold in the SSP setting.

Lemma 17. For any η > 0, there exists an SSP instance whose optimal policy is different from the one of an identical SSP
with all of its transition costs offset by η.

Proof. Let us consider the SSP from Fig. 3, whose costs are c(s0, a0,0) = 4η and c(s0, a0,1) = c(s1, a1,0) = c(s2, a2,0) = η.
The optimal policy executes action a0,0 in state s0. Yet if the costs are all offset by η, the optimal policy executes action a0,1

in state s0.

Offsetting the costs thus introduces a bias which should be adequately controlled by the choice of ηk,0. We consider the
algorithm UC-SSP-Lη, which differs from UC-SSP by introducing an additive perturbation ηk,0 > 0 to the cost of each
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transition in the optimistic model for each attempt (k, 0) (i.e., in phase ¬), i.e., the algorithm iterates EVISSP up to an
accuracy of εk,0 := cmax

tk,0
on the operator Lη defined as

LηV (s) := min
a∈A

[
c(s, a) + η +

∑
y∈S

p(y|s, a)V (y)
]
,

where η > 0 depends on the episode k ∈ [K].

Lemma 18. If cmin = 0, under Asm. 2 and the regret definition of Eq. (19) , by selecting ηk,0 = 1
k1/3

, we get with
overwhelming probability that

∆(UC-SSP-Lη,K) = Õ
(
cmaxDS

√
cmaxDAK

2/3 + Υ?K2/3 + cmaxDS
√

Υ?AK

+Υ?S
√
cmaxDAK

1/3 + Υ?S
√

Υ?AK1/6 + S2AD2
)
,

where Υ? := ‖E[τπ? ]‖∞ is the worst-case (in terms of starting state) expected hitting time of the optimal policy π? in the
original SSP (i.e., without any cost offset).

Proof. For notational ease, throughout the proof of Lem. 18 we adopt the notation ηk := ηk,0, Hk := Hk,0, π̃k := π̃k,0,
εk := εk,0 (i.e., we remove the subscript 0).

UC-SSP-Lη modifies the EVI procedure so that it selects a pair (π̃k, p̃k) that satisfies for any s ∈ S,

(π̃k, p̃k) ∈ arg min
π̃,p̃

ṽ
(η)
π̃,p̃(s), (20)

where

ṽ
(η)
π̃,p̃(s) := Ep̃

τπ̃(s)∑
t=1

c(st, π̃(st)) + ηk

∣∣∣ s
 = Ep̃

τπ̃(s)∑
t=1

c(st, π̃(st))
∣∣∣ s
+ ηkEp̃[τπ̃(s)],

and we introduce for ease of notation ṽ(η)
k (s) := ṽ

(η)
π̃k,p̃k

(s) and ṽk(s) := Ep̃k
[∑τπ̃k (s)

t=1 c(st, π̃k(st))
∣∣∣ s].

From Eq. (20) we have that under the event E , ṽ(η)
k (s) ≤ ṽ(η)

π?,p(s), or equivalently by expanding,

ṽ
(η)
k (s) = ṽk(s) + ηkEp̃k [τπ̃k(s)] ≤ Ep

[
τπ?∑
t=1

c(st, π
?(st)) + ηk

∣∣∣ s] = V ?(s) + ηkE[τπ?(s)]. (21)

Plugging into Eq. (21) that ṽk(s) ≥ 0 and ‖V ?‖∞ ≤ cmaxD from Lem. 2 (which does not require cmin > 0) yields

‖Ep̃k [τπ̃k ]‖∞ ≤
cmaxD

ηk
+ Υ?. (22)

Hence the term cmaxD
cmin

in Eq. (13) (and thus in Lem. 6) can be replaced by the upper bound in Eq. (22), which implies that
under the event E ,

ΩK ≤ 6

(
cmaxD

ηK
+ Υ?

)
log(S

√
K).

Furthermore, using Eq. (21) the regret can be decomposed as

K∑
k=1

τk(s0)∑
h=1

c(sk,h, π̃k(sk,h))

− V ?(s0)

 ≤ K∑
k=1

[(
Hk∑
h=1

c(sk,h, π̃k(sk,h))

)
− ṽ(η)

k (s0)

]
+ Υ?

K∑
k=1

ηk + cmaxTK,2,
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where the double sum can be bounded by (excluding lower-order terms)

O

(
(cmaxD + ηKΥ?)S

√
AΩKK log

(
ΩKK

δ

))
,

by adapting the proof of Lem. 5, since π̃k is the greedy policy w.r.t. the optimistic value function ṽ(η)
k which satisfies

‖ṽ(η)
k ‖∞ ≤ cmaxD + ηkΥ? from Eq. (21). Moreover, we can bound TK,2 as in Sect. 4 by using Lem. 8.

Hence selecting ηk = 1
k1/3

and plugging in the bound on ΩK yields the desired bound.

An interesting future direction could be to allow for negative costs yet this extension is outside the scope of the paper.

I.4. Summary

We report in Table 1 the regret guarantees of UC-SSP (by isolating the dependencies on K and on D or J), depending
on the assumptions made (and the corresponding choices of Bellman operator for EVISSP). We notice that if D = +∞
and under Asm. 4, UC-SSP-LJ satisfies a regret bound where the infinite term D is replaced with the known upper bound
J ≥ V ?(s0). Moreover, UC-SSP-Lη can deal with the existence of zero costs, however the rate worsens from

√
K (in

Thm. 2 which requires cmin > 0) to K2/3, due to the bias introduced by offsetting the costs in the optimistic model. Finally,
it is straightforward to combine the two aforementioned variants and derive UC-SSP-LJ,η which can handle both D = +∞
(under Asm. 4) and cmin = 0.

Assumptions Regret bound

cmin > 0 (Asm. 1) and D <∞ (Asm. 2) Õ(D3/2
√
K)

cmin > 0 (Asm. 1) and V ?(s0) ≤ J w/ RESET (Asm. 4) Õ(J3/2
√
K)

cmin = 0 and D <∞ (Asm. 2) Õ(D3/2K2/3)

cmin = 0 and V ?(s0) ≤ J w/ RESET (Asm. 4) Õ(J3/2K2/3)

Table 1. Regret guarantees of UC-SSP depending on the assumptions made.

J. Experiments
In this section, we empirically validate our theoretical findings and perform an ablation study of the algorithms. We consider
3 scenarios: 1) uniform-cost SSP; 2) SSP with cmin > 0 and 3) SSP with cmin = 0. In all the experiments, we consider the
same (3× 4) gridworld but we modify the cost function. The agent can move using the cardinal actions (Right, Down, Left,
Up). An action fails with probability pf = 0.05. In this case (failure), the agent uniformly follows one of the other directions.
Walls are absorbing, i.e., if the action leads against the wall, the agent stays in the current position with probability 1. For
example, p((0, 0)|(0, 0), right) =

2pf
3 , p((1, 0)|(0, 0), right) =

pf
3 and p((0, 1)|(0, 0), right) = 1 − pf . If we consider

Up, we have p((0, 0)|(0, 0), Up) = 1. For the experiments we used the theoretical confidence intervals without constants,
i.e., βk,j(s, a) =

√
SL

N+
k,j(s,a)

with L = log(SAN+
k,j(s, a)/0.1).The remaining parameters are set as prescribed by the

theory. All the results are averaged over 200 runs.

1) The first experiment aims to compare UCRL2 (Jaksch et al., 2010) and UC-SSP in the case of uniform-cost SSP studied
in Sect. 3 (see Fig. 4). Thus we set c(s, a) = 1 for any (s, a) ∈ S × A, and c(s, a) = 0 for all a ∈ A. We evaluate the
algorithms at K = 3000 episodes. Fig. 4(top left) shows that the regret of both algorithms is sublinear, as stated by the
theoretical analysis. Interestingly, the regret of UCRL is higher than the one incurred by UC-SSP. This is possibly due to
algorithmic structure of UCRL, which behaves in epochs (or algorithmic episodes) and each epoch ends when the number of
visits to some state-action pair is doubled. UCRL computes the policy only at the beginning of an epoch. As shown by the
vertical lines in Fig. 4(top left), between each planning step, the agent may reach the goal multiple times. While this can be
computationally efficient, the drawback is that UCRL may execute sub-optimal policies for long time. On the other hand, we
believe that by planning more often, UC-SSP is able to execute better policies than UCRL. In fact, Fig. 4(bottom left) shows
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Figure 4. Comparison of UC-SSP and UCRL in the case of uniform-cost SSP. The plots are averaged over 200 repetitions. We report
the mean and the maximum and minimum value for top line and figure bottom right. For the bottom-left figure, we report the standard
deviation of the mean at 96% to simplify the visualization.

that the time required by UCRL to reach the goal s is often higher than the one of UC-SSP. It also shows that the length
of phase  in UC-SSP quickly goes to zero, meaning that policy executed by UC-SSP is able to quickly reach the goal.
Fig. 4(top right) shows that UCRL requires more time (i.e., steps) than UC-SSP to successfully complete 2000 episodes.
This test sheds light on the relationship between UCRL and UC-SSP and shows that, despite the good regret guarantees,
UCRL may not exploit the specific structure of the SSP problem and poorly performs compared to UC-SSP. Finally, we also
plot the estimate of the hitting time computed by UC-SSP (see Fig. 4(bottom right)). As expected, it is a “tight” upper-bound
to the expected hitting time of the optimal SSP policy (E[τπ?(s0)] = 5.3), except in the initial episodes where the optimistic
model is far away from the true one. In the latter case, the imagined SSP problem has high probability of reaching s from
any other state due to the high uncertainty.

S

G

0 1 2 3

0

1

2

2) The second experiment focuses on non-uniform cost. At each step, the agent incurs a cost of β > 0 except when in
s̃ = (1, 1) = P where the cost is 1. The state s̃ is considered to be a sand pit and has the effect of slowing down the agent
(i.e., higher cost). Formally, c(s, a) = β for all (s, a) ∈ (S \ {s̃})×A, c(s̃, a) = 1 for all a ∈ A, and c(s, a) = 0 for all
a ∈ A. Clearly, cmin = β > 0. Note that the optimal SSP policy is the same for all the selected values of β. As before,
we evaluate the algorithms at K = 3000 episodes. In Fig. 5(right) we show the impact of cmin on the regret of UC-SSP.
First of all, we show how cmin affects the true solution of the SSP problem. To do so, we run VI on the true model with
ε = 1.e− 10 and obtain

V ?(s0|β = 0.5) = 2.66, V ?(s0|β = 0.1) = 0.55, V ?(s0|β = 0.01) = 0.07, V ?(s0|β = 0.001) = 0.02.

To remove the impact of the different magnitude of the cost, we consider the normalized regret ∆(A,K) := ∆(A,K)
V ?(s0) .

Fig. 5(right) shows that the complexity of the learning problem scales inversely with cmin, in the sense that the smaller cmin

the higher the regret (i.e., the higher the learning complexity). This supports our theoretical result.

3) The final experiment deals with the case cmin = 0. We consider the states (0, 0), (0, 1), (1, 1) and (1, 0) to have zero
cost, see Fig. 6(left). All the other states have cost defined as in experiment 2) with β = 0.4. Note that there exists loops
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Figure 5. Evaluation of the effect of cmin > 0 on the regret of UC-SSP. Results are averaged over 200 runs. We report mean value and
maximum and minimum observed values.

with zero costs, which means that there exist improper policies with finite V -values. As mentioned in App. I.3, in this case
we compete against the optimal proper policy (see Fig. 6(top left)). To compute the optimal proper policy and its value V ,
we use VI with perturbation of 1e− 10 (Bertsekas & Yu, 2013). We evaluate the algorithms at K = 3000 episodes. We
notice that UC-SSP has sublinear regret as expected. The perturbation of the costs has a large impact on the initial phase of
UC-SSP when both uncertainty and perturbation are high. In this case, UC-SSP highly overestimates the hitting time of
the optimal policy, leading to the execution of suboptimal policies for a long time (due to Phase ¬). Once the perturbation
and/or the uncertainty decreases, we notice that the estimated hitting time drops rapidly and approaches the true value. It is
also interesting to notice that the estimated hitting time of phase  is never too high. This is due to the fact that phase 
aims to find the policy reaching the goal state in the smallest time.

J.1. Bernstein Inequalities

In this section, we provide an evaluation of the proposed algorithm with Bernstein inequalities and perform empirical
comparison with later work (Cohen et al., 2020). Similarly to (e.g., Azar et al., 2017; Fruit et al., 2020), we consider the
following concentration inequality of the transition probabilities: ∀(s, a, s′) ∈ S ×A× S ′,

|p̃(s′|s, a)− p̂k,j(s′|s, a)| ≤ βk,j(s, a, s′) ≈

√
σ2
p(s, a, s′)L

N+
k,j(s, a)

+
L

N+
k,j(s, a)

(23)

where L = log(SAN+
k,j(s, a)/0.1) and σ2

p(s, a, s′) = p̂k,j(s
′|s, a)(1 − p̂k,j(s′|s, a)). Optimistic SSP planning can be

performed using extended value iteration (as in Alg. 2). We thus use the optimistic Bellman operator defined in Eq. (4) with
Bk,j(s, a) := {p̃ ∈ C | p̃(· | s, a) = 1s, |p̃(s′ | s, a)− p̂k,j(s′ | s, a)| ≤ βk,j(s, a, s′)}.

We compare with UCRL-SSP (Cohen et al., 2020). UCRL-SSP is a variant of UCRL2B (Fruit et al., 2020) where the average
reward planning is replaced with the SSP planning. When cmin = 0, UCRL-SSP leverages the same perturbation idea used
by UC-SSP. The cost is then defined as c(s, a) = max{c(s, a), ε} with ε = S2A

K .

The main goal of this section is to empirically show that, despite the K2/3 regret bound when cmin = 0, UC-SSP is
competitive with UCRL-SSP whose regret bound scales as

√
K. We also show the role of the pivot horizon used by UC-SSP.

As done in the previous section, we start considering the uniform cost case. Fig. 7 shows that UC-SSP outperforms
UCRL-SSP. From Fig. 7 we can see that the lower regret of UC-SSP comes from the use of the pivot horizon. Indeed, when
we integrate the pivot horizon idea in UCRL-SSP7 the algorithms behave similarly. In Fig. 7 we can see that UCRL-SSP

7UCRL-SSP uses the same condition of UCRL2B to terminate an algorithmic episode, i.e., when the number of visits to a state-action
pair is doubled, the algorithmic episode ends. When using the pivot horizon, we simply limit the number of steps in the algorithmic
episode to be at most the pivot horizon (as done for UC-SSP). We also integrated the condition of planning every time the goal state is
reached but we didn’t observe any significant change in this domain.
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Figure 6. Evaluation of UC-SSP for cmin = 0. See Fig. 4 for details.

behaves as UCRL2B. This is due to the fact that SSP planning is equivalent to average reward planning in this setting (i.e.,
uniform cost). Furthermore, it shows that, in this domain, UCRL-SSP is not able to leverage the structure of the SSP problem.
In contrast, UC-SSP adapts to the SSP problem thanks to the pivot horizon.

The second experiment focuses on the case when cmin = 0. As shown in Fig. 8(left), UC-SSP has a low regret even in this
case. UCRL-SSP achieves the same performance of UC-SSP only when using the pivot horizon as a stopping condition of
the algorithmic episode. This shows again that the stopping condition based on pivot horizon allows the algorithms to better
adapt to the the SSP structure of this problem. Finally, Fig. 8(right) shows that phase  happens only at the early stages of
the learning process. As a consequence, UC-SSP does not suffer additional regret due to phase  in this domain.
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Figure 7. Evaluation of the algorithms with Bernstein inequalities and uniform cost. See Fig. 4 for details. We average the results over 200
runs and report the standard deviation of the mean at 96%.
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Figure 8. Evaluation of the algorithms with Bernstein inequalities and cmin = 0. See Fig. 6 for details. Right figure shows the average
length of Phase ¬ and  for UC-SSP with Bernstein inequalities.


