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Abstract
The dominant paradigm for relation prediction in
knowledge graphs involves learning and operat-
ing on latent representations (i.e., embeddings) of
entities and relations. However, these embedding-
based methods do not explicitly capture the com-
positional logical rules underlying the knowledge
graph, and they are limited to the transductive
setting, where the full set of entities must be
known during training. Here, we propose a graph
neural network based relation prediction frame-
work, GraIL, that reasons over local subgraph
structures and has a strong inductive bias to learn
entity-independent relational semantics. Unlike
embedding-based models, GraIL is naturally in-
ductive and can generalize to unseen entities and
graphs after training. We provide theoretical proof
and strong empirical evidence that GraIL can rep-
resent a useful subset of first-order logic and show
that GraIL outperforms existing rule-induction
baselines in the inductive setting. We also demon-
strate significant gains obtained by ensembling
GraIL with various knowledge graph embedding
methods in the transductive setting, highlighting
the complementary inductive bias of our method.

1. Introduction
Knowledge graphs (KGs) are a collection of facts which
specify relations (as edges) among a set of entities (as nodes).
Predicting missing facts in KGs—usually framed as relation
prediction between two entities—is a widely studied prob-
lem in statistical relational learning (Nickel et al., 2016).

The most dominant paradigm, in recent times, has been to
learn and operate on latent representations (i.e., embeddings)
of entities and relations. These methods condense each
entity’s neighborhood connectivity pattern into an entity-
specific low-dimensional embedding, which can then be
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Figure 1. Illustration of transductive and inductive settings for re-
lation prediction in knowledge graphs.

used to predict missing edges (Bordes et al., 2013; Trouillon
et al., 2017; Dettmers et al., 2018; Sun et al., 2019). For
example, in Figure 1a, the embeddings of LeBron and
A.Davis will contain the information that they are both
part of the Lakers organization, which could later be re-
trieved to predict that they are teammates. Embedding-based
methods have enjoyed great success by exploiting such lo-
cal connectivity patterns. However, it is not clear if they
effectively capture the relational semantics of knowledge
graphs—i.e., the logical rules that hold among the relations
underlying the knowledge graph.

Indeed, the relation prediction task can also be viewed as
a logical induction problem, where one seeks to derive
probabilistic logical rules (horn clauses) underlying a given
KG. For example, from the KG shown in Figure 1a one can
derive the simple rule

∃Y.(X,spouse of, Y ) ∧ (Y,lives in, Z)

→ (X,lives in, Z). (1)

Using the example from Figure 1b, this rule can pre-
dict the relation (A.Davis, lives in, L.A). While the
embedding-based methods encode entity-specific neighbor-
hood information into an embedding, these logical rules
capture entity-independent relational semantics.

One of the key advantages of learning entity-independent
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relational semantics is the inductive ability to generalise to
unseen entities. For example, the rule in Equation (1) can
naturally generalize to the unseen KG in Fig 1c and predict
the relation (S.Curry, lives in, California).

Whereas embedding-based approaches inherently assume
a fixed set of entities in the graph—an assumption that is
generally referred to as the transductive setting (Figure 1)
(Yang et al., 2016)—in many cases, we seek algorithms
with the inductive capabilities afforded by inducing entity-
independent logical rules. Many real-world KGs are ever-
evolving, with new nodes or entities being added over time—
e.g., new users and products on e-commerce platforms or
new molecules in biomedical knowledge graphs— the abil-
ity to make predictions on such new entities without expen-
sive re-training is essential for production-ready machine
learning models. Despite this crucial advantage of rule in-
duction methods, they suffer from scalability issues and lack
the expressive power of embedding-based approaches.

Present work. We present a Graph Neural Network (GNN)
(Scarselli et al., 2008; Bronstein et al., 2017) framework
(GraIL: Graph Inductive Learning) that has a strong induc-
tive bias to learn entity-independent relational semantics. In
our approach, instead of learning entity-specific embeddings
we learn to predict relations from the subgraph structure
around a candidate relation. We provide theoretical proof
and strong empirical evidence that GraIL can represent log-
ical rules of the kind presented above (e.g., Equation (1)).
Our approach naturally generalizes to unseen nodes, as the
model learns to reason over subgraph structures independent
of any particular node identities.

In addition to the GraIL framework, we also introduce a
series of benchmark tasks for the inductive relation predic-
tion problem. Existing benchmark datasets for knowledge
graph completion are set up for transductive reasoning, i.e.,
they ensure that all entities in the test set are present in
the training data. Thus, in order to test models with induc-
tive capabilities, we construct several new inductive bench-
mark datasets by carefully sampling subgraphs from diverse
knowledge graph datasets. Extensive empirical comparisons
on these novel benchmarks demonstrate that GraIL is able to
substantially outperform state-of-the-art inductive baselines,
with an average relative performance increase of 5.25% and
6.75% in AUC-PR and Hits@10, respectively, compared to
the strongest inductive baseline.

Finally, we compare GraIL against existing embedding-
based models in the transductive setting. In particular, we
hypothesize that our approach has an inductive bias that is
complementary to the embedding-based approaches, and we
investigate the power of ensembling GraIL with embedding-
based methods. We find that ensembling with GraIL leads
to significant performance improvements in this setting.

2. Related Work
Embedding-based models. As noted earlier, most existing
KG completion methods fall under the embedding-based
paradigm. RotatE (Sun et al., 2019), ComplEx (Trouillon
et al., 2017), ConvE (Dettmers et al., 2018) and TransE (Bor-
des et al., 2013) are some of the representative methods that
train shallow embeddings (Hamilton et al., 2017a) for each
node in the training set, such that these low-dimensional
embeddings can retrieve the relational information of the
graph. Our approach embodies an alternative inductive bias
to explicitly encode structural rules. Moreover, while our
framework is naturally inductive, adapting the embedding
methods to make predictions in the inductive setting requires
expensive re-training of embeddings for the new nodes.

Similar to our approach, the R-GCN model uses a GNN to
perform relation prediction (Schlichtkrull et al., 2017). Al-
though this approach, as originally proposed, is transductive
in nature, it has the potential for inductive capabilities if
given some node features (Hamilton et al., 2017b). Unlike
our approach though, R-GCN still requires learning node-
specific embeddings, whereas we treat relation prediction
as a subgraph reasoning problem.

Inductive embeddings. There have been promising works
for generating embeddings for unseen nodes, though they
are limited in some ways. Hamilton et al. (2017b) and
Bojchevski & Günnemann (2018) rely on the presence of
node features which are not present in many KGs. (Wang
et al., 2019) and (Hamaguchi et al., 2017) learn to generate
embeddings for unseen nodes by aggregating neighboring
node embeddings using GNNs. However, both of these
approaches need the new nodes to be surrounded by known
nodes and can not handle entirely new graphs.

Rule-induction methods. Unlike embedding-based meth-
ods, statistical rule-mining approaches induce probabilistic
logical-rules by enumerating statistical regularities and pat-
terns present in the knowledge graph (Meilicke et al., 2018;
Galárraga et al., 2013). These methods are inherently in-
ductive since the rules are independent of node identities,
but these approaches suffer from scalability issues and lack
expressive power due to their rule-based nature. Motivated
by these statistical rule-induction approaches, the NeuralLP
model learns logical rules from KGs in an end-to-end dif-
ferentiable manner (Yang et al., 2017) using TensorLog
(Cohen, 2016) operators. Building on NeuralLP, Sadeghian
et al. (2019) recently proposed DRUM, which learns more
accurate rules. This set of methods constitute our baselines
in the inductive setting.

Link prediction using GNNs. Finally, outside of the KG
literature, Zhang & Chen (2018) have theoretically proven
that GNNs can learn common graph heuristics for link pre-
diction in simple graphs. Concurrent to us, Zhang & Chen
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Figure 2. Visual illustration of GraIL for inductive relation prediction.

(2020) have proposed an approach very similar to ours and
demonstrated competitive results on inductive matrix com-
pletion and transfer learning. While there are methodologi-
cal similarities, our focus is on multi-relational knowledge
graphs and our model’s ability to induce logical rules.

Logical reasoning and GNNs. Many recent works have
concurrently explored the connections of logical reason-
ing and graph neural networks. Barceló et al. (2020) pre-
sented a strong connection between the expressive powers
of GNNs and a subset of first order predicate logic—FOC2—
leveraging their connections to the WL isomorphism test
(Cai et al., 1992). However, their findings are centered
around simple graphs and unary logical formulas. Our re-
sults augment their findings by demonstrating similar con-
nections in the context of multi-relational graphs and binary
logical formulas. Another line of concurrent work combines
graph neural networks with powerful probabilistic deduc-
tion engines–Markov Logic Networks (Qu & Tang, 2019;
Zhang et al., 2020). These approaches focus on the perform-
ing deduction and inference on KGs using a given set of
pre-defined rules. In fact, Zhang et al. (2020) uses Neural-
LP (one of our inductive baselines) in their pre-processing
step to derive logical rules. Our approach is complimentary
to theirs in that we implicitly perform rule induction along
with deduction and inference.

3. Proposed Approach
The key idea behind our approach is to predict relation be-
tween two nodes from the subgraph structure around those
two nodes. Our method is built around the Graph Neural
Network (GNN) (Hamilton et al., 2017a) (or Neural Mes-
sage Passing (Gilmer et al., 2017)) formalism. We do not
use any node attributes in order to test GraIL’s ability to
learn and generalize solely from structure. Since it only
ever receives structural information (i.e., the subgraph struc-

ture and structural node features) as input, the only way
GraIL can complete the relation prediction task is to learn
the structural semantics that underlie the knowledge graph.
The overall task is to score a triplet (u, rt, v), i.e., to predict
the likelihood of a possible relation rt between a head node
u and tail node v in a KG, where we refer to nodes u and
v as target nodes and to rt as the target relation. Our ap-
proach to scoring such triplets can be roughly divided into
three sub-tasks (which we detail below): (i) extracting the
enclosing subgraph around the target nodes, (ii) labeling the
nodes in the extracted subgraph, and (iii) scoring the labeled
subgraph using a GNN (Figure 2).

3.1. Model Details

Step 1: subgraph extraction. We assume that local graph
neighborhood of a particular triplet in the KG will contain
the logical evidence needed to deduce the relation between
the target nodes. In particular, we assume that the paths
connecting the two target nodes contain the information
that could imply the target relation. Hence, as a first step,
we extract the enclosing subgraph around the target nodes.
We define the enclosing subgraph between nodes u and v
as the graph induced by all the nodes that occur on a path
between u and v. It is given by the intersection of neighbors
of the two target nodes followed by a pruning procedure.
More precisely, let Nk(u) and Nk(v) be set of nodes in the
k-hop (undirected) neighborhood of the two target nodes in
the KG. We compute the enclosing subgraph by taking the
intersection, Nk(u) ∩Nk(v), of these k-hop neighborhood
sets and then prune nodes that are isolated or at a distance
greater than k from either of the target nodes. Following the
Observation 1, this would give us all the nodes that occur
on a path of length at most k + 1 between nodes u and v.

Observation 1. In any given graph, let the nodes on a path
of length λ between two different nodes x and y constitute
the set Pxy(λ). The maximum distance of any node on such
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a path, v ∈ Pxy(λ), from either x or y is λ− 1.

Note that while extracting the enclosing subgraph we ignore
the direction of the edges. However, the direction is pre-
served while passing messages with Graph Neural Network,
a point re-visited later. Also, the target tuple/edge (u, rt, v)
is added to the extracted subgraph to enable message passing
between the two target nodes.

Step 2: Node labeling. GNNs require a node feature ma-
trix, X ∈ R|V|×di , as input, which is used to initialize
the neural message passing algorithm (Gilmer et al., 2017).
Since we do not assume any node attributes in our input
KGs, we follow Zhang & Chen (2018) and extend their dou-
ble radius vertex labeling scheme to our setting. Each node,
i, in the subgraph around nodes u and v is labeled with the
tuple (d(i, u), d(i, v)), where d(i, u) denotes the shortest
distance between nodes i and u without counting any path
through v (likewise for d(i, v)). This captures the topolog-
ical position of each node with respect to the target nodes
and reflects its structural role in the subgraph. The two
target nodes, u and v, are uniquely labeled (0, 1) and (1, 0)
so as to be identifiable by the model. The node features are
thus [one-hot(d(i, u))⊕one-hot(d(i, v))], where⊕ denotes
concatenation of two vectors. Note that as a consequence of
Observation 1, the dimension of node features constructed
this way is bounded by the number of hops considered while
extracting the enclosing subgraph.

Step 3: GNN scoring. The final step in our framework is to
use a GNN to score the likelihood of tuple (u, rt, v) given
G(u,v,rt)—the extracted and labeled subgraph around the
target nodes. We adopt the general message-passing scheme
described in Xu et al. (2019) where a node representation is
iteratively updated by combining it with aggregation of it’s
neighbors’ representation. In particular, the kth layer of our
GNN is given by,

akt = AGGREGATEk
({

hk−1s : s ∈ N (t)
}
,hk−1t

)
, (2)

hkt = COMBINEk
(
hk−1t ,akt

)
, (3)

where akt is the aggregated message from the neighbors, hkt
denotes the latent representation of node t in the k-th layer,
and N (t) denotes the set of immediate neighbors of node
t. The initial latent node representation of any node i, h0

i ,
is initialized to the node features, Xi, built according to the
labeling scheme described in Step 2. This framework gives
the flexibility to plug in different AGGREGATE and COM-
BINE functions resulting in various GNN architectures.

Inspired by the multi-relational R-GCN (Schlichtkrull et al.,
2017) and edge attention, we define our AGGREGATE
function as

akt =

R∑
r=1

∑
s∈Nr(t)

αkrrtstW
k
rh

k−1
s ,

whereR is the total number of relations present in the knowl-
edge graph; Nr(t) denotes the immediate outgoing neigh-
bors of node t under relation r; Wk

r is the transformation
matrix used to propagate messages in the k-th layer over
relation r; αkrrtst is the edge attention weight at the k-th
layer corresponding to the edge connecting nodes s and t
via relation r. This attention weight, a function of the source
node t, neighbor node s, edge type r and the target relation
to be predicted rt, is given by

s = ReLU
(
Ak

1 [hk−1s ⊕ hk−1t ⊕ ear ⊕ eart ] + bk1
)

αkrrtst = σ
(
Ak

2s + bk2
)
.

Here hks and hkt denote the latent node representation of re-
spective nodes at k-th layer of the GNN, ear and eart denote
learned attention embeddings of respective relations. Note
that the attention weights are not normalized and instead
come out of a sigmoid gate which regulates the information
aggregated from each neighbor. As a regularization mea-
sure, we adopt the basis sharing mechanism, introduced by
(Schlichtkrull et al., 2017), among the transformation matri-
ces of each layer, Wk

r . We also implement a form of edge
dropout, where edges are randomly dropped from the graph
while aggregating information from the neighborhood.

The COMBINE function that yielded the best results is also
derived from the R-GCN architecture. It is given by

hkt = ReLU
(
Wk

selfh
k−1
t + akt

)
. (4)

With the GNN architecture as described above, we obtain the
node representations after L layers of message passing. A
subgraph representation of G(u,v,rt) is obtained by average-
pooling of all the latent node representations:

hLG(u,v,rt)
=

1

|V|
∑
i∈V

hLi , (5)

where V denotes the set of vertices in graph G(u,v,rt).

Finally, to obtain the score for the likelihood of a triplet
(u, rt, v), we concatenate four vectors—the subgraph repre-
sentation (hLG(u,v,rt)

), the target nodes’ latent representations
(hLu and hLv ), and a learned embedding of the target relation
(ert )—and pass these concatenated representations through
a linear layer:

score(u, rt, v) = WT [hLG(u,v,rt)
⊕ hLu ⊕ hLv ⊕ ert ]. (6)

In our best performing model, in addition to using the node
representations from the last layer, we also make use of rep-
resentations from intermittent layers. This is inspired by the
JK-connection mechanism introduced by Xu et al. (2018),
which allows for flexible neighborhood ranges for each node.
Addition of such JK-connections made our model’s perfor-
mance robust to the number of layers of the GNN. Precise
implementation details of basis sharing, JK-connections and
other model variants that were experimented with can be
found in the Appendix A and B.
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3.2. Training Regime

Following the standard and successful practice, we train
the model to score positive triplets higher than the negative
triplets using a noise-contrastive hinge loss (Bordes et al.,
2013). More precisely, for each triplet present in the training
graph, we sample a negative triplet by replacing the head (or
tail) of the triplet with a uniformly sampled random entity.
We then use the following loss function to train our model
via stochastic gradient descent:

L =

|E|∑
i=1

max(0, score(ni)− score(pi) + γ), (7)

where E is the set of all edges/triplets in the training graph;
pi and ni denote the positive and negative triplets respec-
tively; γ is the margin hyperparameter.

3.3. Theoretical Analysis

We can show that the GraIL architecture is capable of encod-
ing the same class of path-based logical rules that are used
in popular rule induction models, such as RuleN (Meilicke
et al., 2018) and NeuralLP (Yang et al., 2017) and studied
in recent work on logical reasoning using neural networks
(Sinha et al., 2019). For the sake of exposition, we equate
edges (u, r, v) in the knowledge graph with binary logical
predicates r(u, v) where an edge (u, r, v) exists in the graph
iff r(u, v) = true.

Theorem 1. Let R be any logical rule (i.e., clause) on
binary predicates of the form:

rt(X,Y )← r1(X,Z1) ∧ r2(Z1, Z2) ∧ ... ∧ rk(Zk−1, Y ),

where rt, r1, ..., rk are (not necessarily unique) relations
in the knowledge graph, X,Z1, ..., Zk, Y are free variables
that can be bound by arbitrary unique entities. For any such
R there exists a parameter setting Θ for a GraIL model
with k GNN layers and where the dimension of all latent
embeddings are d = 1 such that

score(u, rt, v) 6= 0

if and only if ∃Z1, ..., Zk where the body of R is satisfied
with X = u and Y = v.

Theorem 1 states that any logical rule corresponding to a
path in the knowledge graph can be encoded by the model.
GraIL will output a non-zero value if and only if the body
of this logical rule evaluates to true when grounded on a
particular set of query entities X = u and Y = v. The full
proof of Theorem 1 is detailed in the Appendix I, but the
key idea is as follows: Using the edge attention weights
it is possible to set the model parameters so that the hid-
den embedding for a node is non-zero after one round of
message passing (i.e., his 6= 0) if and only if the node s

has at least one neighbor by a relation ri. In other words,
the edge attention mechanism allows the model to indicate
whether a particular relation is incident to a particular entity,
and—since we have uniquely labeled the targets nodes u
and v—we can use this relation indicating property to detect
the existence of a particular path between nodes u and v.

We can extend Theorem 1 in a straightforward manner to
also show the following:

Corollary 1. Let R1...,Rm be a set of logical rules with
the same structure as in Theorem 1 where each rule has the
same head rt(X,Y ). Let

β = |{Ri : ∃Z1, ..., Zk whereRi = true

with X = u and Y = v}|.

Then there exists a parameter setting for GraIL with the
same assumptions as Theorem 1 such that

score(u, rt, v) ∝ β.

This corollary shows that given a set of logical rules that
implicate the same target relation, GraIL can count how
many of these rules are satisfied for a particular set of query
entities u and v. In other words, similar to rule-induction
models such as RuleN, GraIL can combine evidence from
multiple rules to make a prediction.

Interestingly, Theorem 1 and Corollary 1 indicate that GraIL
can learn logical rules using only one-dimensional embed-
dings of entities and relations, which dovetails with our
experience that GraIL’s performance is reasonably stable for
dimensions in the range d = 1, ..., 64. However, the above
analysis only corresponds to a fixed class of logical rules,
and we expect that GraIL can benefit from a larger latent
dimensionality to learn different kinds of logical rules and
more complex compositions of these rules.

3.4. Inference Complexity

Unlike traditional embedding-based approaches, inference
in the GraIL model requires extracting and processing a
subgraph around a candidate edge (u, rt, v) and running a
GNN on this extracted subgraph. Given that our processing
requires evaluating shortest paths from the target nodes to
all other nodes in the extracted subgraph, we have that the
inference time complexity of GraIL to score a candidate
edge (u, rt, v) is

O(log(V)E +Rdk),

where V , R, and E are the number of nodes, relations and
edges, respectively, in the enclosing subgraph induced by u
and v. d is the dimension of the node/relation embeddings.

Thus, the inference cost of GraIL depends largely on the
size of the extracted subgraphs, and the runtime in practice
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Table 1. Inductive results (AUC-PR)

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 87.71 85.94
RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52
GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50

Table 2. Inductive results (Hits@10)

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88 40.78 78.73 82.71 80.58
DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88 19.42 78.55 82.71 80.58
RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60 53.50 81.75 77.26 61.35
GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29 59.50 93.25 91.41 73.19

is usually dominated by running Dijkstra’s algorithm on
these subgraphs.

4. Experiments
We perform experiments on three benchmark knowledge
completion datasets: WN18RR (Dettmers et al., 2018),
FB15k-237 (Toutanova et al., 2015), and NELL-995 (Xiong
et al., 2017) (and other variants derived from them). Our
empirical study is motivated by the following questions:

1. Inductive relation prediction. By Theorem 1, we know
that GraIL can encode inductive logical rules. How does
it perform in comparison to existing statistical and dif-
ferentiable methods which explicitly do rule induction
in the inductive setting?

2. Transductive relation prediction. Our approach has a
strong structural inductive bias which, we hypothesize,
is complementary to existing state-of-the-art knowledge
graph embedding methods. Can this complementary in-
ductive bias give any improvements over the existing
state-of-the-art KGE methods in the traditional transduc-
tive setting?

3. Ablation study. How important are the various compo-
nents of our proposed framework? For example, Theo-
rem 1 relies on the use of attention and the node-labeling
scheme, but how important are these model aspects in
practice?

The code and the data for all the following experiments
is available at: https://github.com/kkteru/
grail.

4.1. Inductive Relation Prediction

As illustrated in Figure 1c, an inductive setting evaluates a
models’ ability to generalize to unseen entities. In a fully
inductive setting the sets of entities seen during training
and testing are disjoint. More generally, the number of
unseen entities can be varied from only a few new entities
being introduced to a fully-inductive setting (Figure 1c).
The proposed framework, GraIL, is invariant to the node
identities so long as the underlying semantics of the relations
(i.e., the schema of the knowledge graph) remains the same.
We demonstrate our inductive results in the extreme case of
having an entirely new test graph with new set of entities.

Datasets. The WN18RR, FB15k-237, and NELL-995
benchmark datasets were originally developed for the trans-
ductive setting. In other words, the entities of the standard
test splits are a subset of the entities in the training splits
(Figure1b). In order to facilitate inductive testing, we create
new fully-inductive benchmark datasets by sampling dis-
joint subgraphs from the KGs in these datasets. In particular,
each of our datasets consist of a pair of graphs: train-graph
and ind-test-graph. These two graphs (i) have disjoint set of
entities and (ii) train-graph contains all the relations present
in ind-test-graph. The procedure followed to generate such
pairs is detailed in the Appendix G. For robust evaluation,
we sample four different pairs of train-graph and ind-test-
graph with increasing number of nodes and edges for each
benchmark knowledge graph. The statistics of these induc-
tive benchmarks is given in Table 16 in the Appendix. In
the inductive setting, a model is trained on train-graph and
tested on ind-test-graph. We randomly select 10% of the
edges/tuples in ind-test-graph as test edges.

Baselines and implementation details. We compare
GraIL with two other end-to-end differentiable methods,

https://github.com/kkteru/grail
https://github.com/kkteru/grail
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Figure 3. Number of parameters of all differentiable methods.

NeuralLP (Yang et al., 2017) and DRUM (Sadeghian et al.,
2019). To the best of our knowledge, these are the only
differentiable methods capable of inductive relation predic-
tion. We use the implementations publicly provided by the
authors with their best configurations. We also compare
against a state-of-the-art statistical rule induction method,
RuleN (Meilicke et al., 2018), which performs competitively
with embedding-based methods in the transductive setting.
RuleN represents the current state-of-the-art in inductive
relation prediction on KGs. It explicitly extracts path-based
rules of the kind as shown in Equation (1). Using the origi-
nal terminology of RuleN, we train it to learn rules of length
up to 4. By Observation 1 this corresponds to 3-hop neigh-
borhoods around the target nodes. In order to maintain a fair
comparison, we sample 3-hop enclosing subgraphs around
the target links for our GNN approach. We employ a 3-layer
GNN with the dimension of all latent embeddings equal to
32. The basis dimension is set to 4 and the edge dropout
rate to 0.5. In our experiments, GraIL was relatively robust
to hyperparameters and had a stable performance across a
wide range of settings. Further hyperparameter choices are
detailed in the Appendix C.

Results. We evaluate the models on both classification
and ranking metrics, i.e., area under precision-recall curve
(AUC-PR) and Hits@10 respectively. To calculate the AUC-
PR, along with the triplets present in the test set, we score an
equal number of negative triplets sampled using the standard
practice of replacing head (or tail) with a random entity. Due
to the inference complexity as described in Section 3.4, we
approximate the Hits@10 by ranking each test triplet among
50 other randomly sampled negative triplets. In Table 1
and Table 2 we report the mean AUC-PR and Hits@10,
respectively, averaged over 5 runs. (The variance was very
low in all the settings, so the standard errors are omitted in
these tables.)

As we can see, GraIL significantly outperforms the induc-
tive baselines across all datasets in both metrics. At a closer
inspection, the previous differentiable methods (Neural-LP
and DRUM) perform significantly worse than GraIL. More-

over, as can be seen in Figure 3, the strong structural in-
ductive bias of GraIL enables it to be extremely parameter
efficient with orders of magnitude less number of parame-
ters. GraIL also consistently outperforms the the statistical
rule-induction method, RuleN, indicating that GraIL is not
only able to learn path-based logical rules but that GraIL is
able to also exploit more complex structural patterns and
effectively compose multiple rules (Corollary 1). For com-
pleteness, we also report the transductive performance on
these generated datasets in the Appendix D. Note that the
inductive performance (across all datasets and models) is
relatively lower than the transductive performance, high-
lighting the difficulty of the inductive relation prediction
task, compared to the transductive setting.

4.2. Transductive Relation Prediction

As demonstrated, GraIL has a strong inductive bias to en-
code the logical rules and complex structural patterns un-
derlying the knowledge graph. This, we believe, is comple-
mentary to the current state-of-the-art transductive methods
for knowledge graph completion, which rely on embedding-
based approaches. Based on this observation, in this section
we explore (i) how GraIL performs in the transductive set-
ting and (ii) the utility of ensembling GraIL with existing
embedding-based approaches. Given GraIL’s complemen-
tary inductive bias compared to embedding-based methods,
we expect significant gains to be obtained by ensembling it
with existing embedding-based approaches.

Our primary ensembling strategy is late fusion i.e., ensem-
bling the output scores of the constituent methods. We score
each test triplet with the methods that are to be ensembled.
The scores output by each method form the feature vector
for each test point. This feature vector is input to a linear
classifier which is trained to score the true triplets higher
than the negative triplets. We train this linear classifier using
the validation set.

Datasets. We use the standard WN18RR, FB15k-237, and
NELL-995 benchmarks. For WN18RR and FB15k-237, we
use the splits as available in the literature. For NELL-995,
we split the whole dataset into train/valid/test set by the ratio
70/15/15, making sure all the entities and relations in the
valid and test splits occur at least once in the train set.

Baselines and implementation details. We ensemble
GraIL with each of TransE (Bordes et al., 2013), DistMult
(Yang et al., 2014), ComplEx (Trouillon et al., 2017), and
RotatE (Sun et al., 2019) which constitute a representative
set of KGE methods. For all the methods we use the im-
plementation and hyperparameters provided by Sun et al.
(2019) which gives state-of-the-art results on all methods.
For a fair comparison of all the methods, we disable the
self-adversarial negative sampling proposed by Sun et al.
(2019). For GraIL, we use 2-hop neighborhood subgraphs
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Table 3. Late fusion ensemble results on WN18RR (AUC-PR)

TransE DistMult ComplEx RotatE GraIL

T 93.73 93.12 92.45 93.70 94.30
D 93.08 93.12 93.16 95.04
C 92.45 92.46 94.78
R 93.55 94.28
G 90.91

Table 4. Late fusion ensemble results on NELL-995 (AUC-PR)

TransE DistMult ComplEx RotatE GraIL

T 98.73 98.77 98.83 98.71 98.87
D 97.73 97.86 98.60 98.79
C 97.66 98.66 98.85
R 98.54 98.75
G 97.79

for WN18RR and NELL-995, and 1-hop neighborhood sub-
graphs for FB15k-237. All the other hyperparameters for
GraIL remain the same as in the inductive setting.

Results. Tables 3, 4, and 5 show the AUC-PR performance
of pairwise ensembling of different KGE methods among
themselves and with GraIL. A specific entry in these tables
corresponds to the ensemble of pair of methods denoted by
the row and column labels, with the individual performance
of each method on the diagonal. As can be seen from the
last column of these tables, ensembling with GraIL resulted
in consistent performance gains across all transductive meth-
ods in two out of the three datasets. Moreover, ensembling
with GraIL resulted in more gains than ensembling any
other two methods. Precisely, we define the gain obtained
by ensembling two methods, G(M1,M2), as follows

G(M1,M2) =
P (M1,M2)−max(P (M1), P (M2))

max(P (M1), P (M2)
.

In other words, it is the percentage improvement achieved
relative to the best of the two methods. Thus, the average
gain obtained by ensembling with GraIL is given by

GGraIL
avg =

1

4

∑
|M1|∈KGE

G(M1,GraIL),

and the average gain obtained by pairwise ensembling
among the KGE methods is given by,

GKGE
avg =

1

12

∑
(|M1|,|M2|)∈KGE

G(M1,M2).

The average gain obtained by GraIL on WN18RR and
NELL-995 are 1.5% and 0.62%, respectively. This is orders

Table 5. Late fusion ensemble results on FB15k-237 (AUC-PR)

TransE DistMult ComplEx RotatE GraIL

T 98.54 98.41 98.45 98.55 97.95
D 97.63 97.87 98.40 97.45
C 97.99 98.43 97.72
R 98.53 98.04
G 92.06

Table 6. Early fusion ensemble with TrasnE results (AUC-PR)

WN18RR FB15k-237 NELL-995

GraIL 90.91 92.06 97.79
GraIL++ 96.20 93.91 98.11

of magnitude better than the average gains obtained by KGE
ensembling: 0.007% and 0.08%. Surprisingly, none of the
ensemblings resulted in significant gains on FB15k-237.
Thus, while GraIL on its own is optimized for the inductive
setting and not state-of-the-art for transductive prediction, it
does give a meaningful improvement over state-of-the-art
transductive methods via ensembling.

On a tangential note, Table 6 shows the performance of
GraIL when the node features, as computed by our orig-
inal node-labeling scheme, are concatenated with node-
embeddings learnt by a TransE model. The addition of these
pre-trained embeddings results in a significant performance
boost. Thus, while late fusion demonstrates the comple-
mentary inductive bias that GraIL embodies, this kind of
early fusion demonstrates the natural ability of GraIL to
leverage any node embeddings/features available. All the
Hits@10 results which display similar trends are reported
in the Appendix F.

4.3. Ablation Study

In this section, we emphasize the importance of the three
key components of GraIL: i) enclosing subgraph extraction
ii) double radius node labeling scheme, and iii) attention in
the GNN. The results are summarized in Table 7.

Enclosing subgraph extraction. As mentioned earlier, we
assume that the logical evidence for a particular link can be
found in the subgraph surrounding the two target nodes of
the link. Thus we proposed to extract the subgraph induced
by all the nodes occurring on a path between the two target
nodes. Here, we want to emphasize the importance of ex-
tracting only the paths as opposed to a more naive choice of
extracting the subgraph induced by all the k-hop neighbors
of the target nodes. The performance drastically drops in
such a configuration. In fact, the model catastrophically
overfits to the training data with training AUC of over 99%.
This pattern holds across all the datasets.
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Table 7. Ablation study of the proposed framework (AUC-PR)

FB (v3) NELL (v3)

GraIL 91.68 93.34
GraIL w/o enclosing subgraph 84.25 85.89
GraIL w/o node labeling scheme 82.07 84.46
GraIL w/o attention in GNN 90.27 87.30

Double radius node labeling. Proof of Theorem 1 assumes
having uniquely labeled target nodes, u and v. We highlight
the importance of this by evaluating GraIL with constant
node labels of (1, 1) instead of the originally proposed node
labeling scheme. The drop in performance emphasizes the
importance of our node-labeling scheme.

Attention in the GNN. As noted in the proof of Theorem 1,
the attention mechanism is a vital component of our model
in encoding the path rules. We evaluate GraIL without the
attention mechanism and note significant performance drop,
which echos with our theoretical findings.

5. Conclusion
We proposed a GNN-based framework, GraIL, for inductive
knowledge graph reasoning. Unlike embedding-based ap-
proaches, GraIL model is able to predict relations between
nodes that were unseen during training and achieves state-
of-the-art results in this inductive setting. Moreover, we
showed that GraIL brings an inductive bias complementary
to the current state-of-the-art knowledge graph completion
methods. In particular, we demonstrated, with a thorough set
of experiments, performance boosts to various knowledge
graph embedding methods when ensembled with GraIL. In
addition to these empirical results, we provide theoretical
insights into the expressive power of GNNs in encoding a
useful subset of logical rules.

This work—with its comprehensive study of existing meth-
ods for inductive relation prediction and a set of new bench-
mark datasets—opens a new direction for exploration on
inductive reasoning in the context of knowledge graphs. For
example, obvious directions for further exploration include
extracting interpretable rules and structural patterns from
GraIL, analyzing how shifts in relation distributions impact
inductive performance, and combining GraIL with meta
learning strategies to handle the few-shot learning setting.
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A. JK Connections
As mentioned earlier, our best performing model uses JK-
Connection in the scoring function, as given by,

score(u, rt, v) = WT
L⊕
i=1

[hiG(u,v,rt)
⊕hiu⊕hiv⊕ert ]. (8)

This is inspired by (Xu et al., 2018) which lets the model
adapt the effective neighborhood size for each node as
needed. Empirically, this made our model’s performance
more robust to other number of GNN layers.

B. Other Model Variants
As mentioned in Section 3.1, the formulation of our GNN
scoring model allows for flexibility to plug in different
AGGREGATE and COMBINE functions. We experi-
mented with pooling AGGRAGATE function Hamilton et al.
(2017b) and two other COMBINE function (similar to CON-
CAT operation from Hamilton et al. (2017b) and using a
GRU as in Li et al. (2016)). None of these variants gave
significant improvements in the performance.

C. Hyperparameter Settings
The model was implemented in PyTorch. Experiments were
run for 50 epochs on a GTX 1080 Ti with 12 GB RAM.
The Adam optimizer was used with a learning rate of 0.01,
L2 penalty of 5e-4, and default values for other parameters.
The margin in the loss was set to 10. Gradient were clipped
at a norm of 1000. The model was evaluated on the valida-
tion and saved every three epochs with the best performing
checkpoint used for testing.

D. GraIL Transductive Results
The transductive results, as mentioned in the discussion on
inductive results (Section 4.1), were obtained using the the

same methodology of the aforementioned evaluations. In
particular, GraIL was trained on the train-graph and tested
n the same. We randomly selected 10% of the links in train-
graph as test links. Tables 8 and 9 showcase the transductive
results. The AUC-PR and Hits@10 in the transductive set-
ting are significantly better than in the inductive setting,
establishing the difficulty of the inductive task. GraIL per-
forms significantly better than RuleN in most cases and is
competitive in others.

E. Comprehensive inductive results
Comprehensive ranking metrics across all datasets are given
In Tables 10, 11, and 12. Overall, GraIL consistently outper-
forms the differentiable methods—NeuralLP and DRUM.
RuleN takes over for one dataset—FB15k-237—on the
harder metrics like Hits@1. This reinforces the fact that
statistical rule-based methods are, by design, very strong in
Hits@1 and leaves room for improvements in our current
approach.

F. Ensembling results Hits@10
The Hits@10 results for the late fusion models in the trans-
ductive setting complementing the tables 3, 4 and 5 are given
shown in tables 13, 14 and 15. Similar trends, as discussed
in Section 4.2, hold here as well. Note that Hits@10 results
in these tables are higher than usually reported in the litera-
ture due to the approximation we adopted, i.e., we compute
Hits@10 by ranking each test triplet among 50 triplets ob-
tained by sampling 50 random candidate entities as opposed
to ranking among candidate set of all entities. As mentioned
earlier, we adopt this approximation due to the inference
complexity of our approach as described in Section 3.4. In
this regard, we note that GraIL can be adapted to efficiently
perform full ranking, e.g., by using an ensemble strategy
where-in GraIL re-scores a weaker-but-faster approach’s
top-100 predictions. On WordNet18RR, we note an overall

Table 8. Transductive results (AUC-PR)

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

RuleN 81.79 83.97 81.51 82.63 87.07 92.49 94.26 95.18 80.16 87.87 86.89 84.45
GraIL 89.00 90.66 88.61 90.11 88.97 93.78 95.04 95.68 83.95 92.73 92.30 89.29

Table 9. Transductive results (Hits@10)

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

RuleN 63.42 68.09 63.05 65.55 67.53 88.00 91.47 92.35 62.82 82.82 80.72 58.84
GraIL 65.59 69.36 64.63 67.28 71.93 86.30 88.95 91.55 64.08 86.88 84.19 82.33
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Table 10. Inductive results (MRR)

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 71.74 68.54 44.23 67.14 46.13 51.85 48.70 49.54 35.71 64.68 69.93 68.21
DRUM 72.46 68.82 44.96 67.27 47.55 52.78 49.64 50.43 18.89 66.44 72.28 70.42
RuleN 79.15 77.82 51.53 71.65 45.97 69.08 73.68 74.19 46.35 70.80 68.76 56.31
GraIL 80.45 78.13 54.11 73.84 48.56 62.54 70.35 70.60 52.04 72.92 74.37 62.98

Table 11. Inductive results (Hits@5)

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 74.37 68.93 45.92 67.13 52.08 58.06 52.46 54.81 39.32 76.45 81.83 79.40
DRUM 74.37 68.93 46.05 67.13 51.46 57.93 52.63 54.88 18.93 76.45 82.19 79.64
RuleN 81.91 78.23 53.22 71.59 49.51 76.78 83.12 82.27 49.50 80.49 76.76 60.53
GraIL 82.45 78.68 57.19 73.41 58.54 75.21 82.36 82.62 55.00 86.18 88.63 67.90

improvement in the overall MRR (with full ranking) from
20.26% (TransE baseline) to 33.52% using this approach.
We leave the comprehensive exploration of these strategies
for future work.

G. Inductive Graph Generation
The inductive train and test graphs examined in this paper do
not have overlapping entities. To generate the train graph we
sampled several entities uniformly to serve as roots then took
the union of the k-hop neighborhoods surrounding the roots.
We capped the number of new neighbors at each hop to
prevent exponential growth. We remove the samples training
graph from the whole graph and sample the test graph using
the same procedure. The parameters of the above process
are adjusted to obtain a series of graphs of increasing size.
The statistics of different datasets collected in this manner
are summarized in Table 16. Overall, we generate four
versions of inductive datasets from each knowledge graph
with increasing sizes.

H. Scalability
As described earlier, extracting the enclosing subgraphs and
labeling the nodes using Dijkstra’s algorithm dominates
our run-time. This potential bottleneck was overcome in
our implementation by parallelly extracting a large set of
labeled subgraphs. Thus the cost is only incurred once
and the processing time can be accelerated with additional
CPUs. Further, by passing messages solely on the pruned
subgraph enclosing a pair of nodes, GraIL avoids the chal-
lenges of memory and parallelizability associated with using
GNNs on large graphs. In particular, since subgraphs can
be batched, GraIL is naturally suited to multi-GPU training.

I. Proof of Theorem 1
We restate the main Theorem for completeness.
Theorem 2. Let R be any logical rule (i.e., clause) on
binary predicates of the form:

rt(X,Y )← r1(X,Z1) ∧ r2(Z1, Z2) ∧ ... ∧ rk(Zk−1, Y ), (9)

where rt, r1, ..., rk are (not necessarily unique) relations in the
knowledge graph, X,Z1, ..., Zk, Y are free variables that can be
bound by arbitrary unique entities. For any such R there exists
a parameter setting Θ for a GraIL model with k GNN layers and
where the dimension of all latent embeddings are d = 1 such that

score(u, r∗, v) 6= 0

if and only if rt(x, y) is the head of ruleR and ∃Z1, ..., Zk where
the body ofR is satisfied with X = u and Y = v.

We prove this Theorem by first proving the following two
lemmas.

Lemma 1. Given a logical rule R as in 9, we have rt in
the head and ri is any relation in the body at a distance i
from the head. Then the attention weight between any node
nodes, s and t, connected via relation r, αlrrtst, at layer l
can be learnt such that

αlrrtst > 0

if and only if r = rl.

Proof. For simplicity, let us assume a simpler version of
αlrrtst as follows

αlrrtst = MLP(r, rt).

When r and rt are 1-dimensional scalars (as we assume
in Theorem 1), to prove the stated lemma we need the
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Table 12. Inductive results (Hits@1)

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 68.34 66.89 41.16 65.84 40.21 45.68 44.09 44.12 29.13 55.45 60.46 59.27
DRUM 69.60 67.46 42.17 66.11 42.71 47.49 45.84 45.53 14.08 58.55 64.29 63.09
RuleN 76.06 76.53 48.60 70.57 41.46 62.13 65.95 67.21 39.00 63.08 61.99 51.44
GraIL 78.19 76.30 50.33 72.39 40.00 52.20 60.25 60.99 46.50 63.08 64.22 57.27

Table 13. Late fusion ensemble results on WN18RR (Hits@10)

TransE DistMult ComplEx RotatE GraIL

T 88.74 85.31 83.84 88.61 89.71
D 85.35 86.07 85.64 87.70
C 83.98 84.30 86.73
R 88.85 89.84
G 73.12

Table 14. Late fusion ensemble results on NELL-995 (Hits@10)

TransE DistMult ComplEx RotatE GraIL

T 98.50 98.32 98.43 98.54 98.45
D 95.68 95.92 97.77 97.79
C 95.43 97.88 97.86
R 98.09 98.24
G 94.54

MLP to learn a decision boundary between the true pair
Sl : {(rl, rt)} and the induced set of false pairs S̄l :
{(ri, rj) ∀(ri, rj) /∈ Sl}. We also have the flexibility
of learning appropriate embeddings of the relations in 1-
dimensional space.

This is possible to an arbitrary degree of precision given that
MLP with non-linear activation, as is our case, is a universal
function approximator (Hornik, 1991).
Lemma 2. For a given ruleR as in 9 which holds true for
a pair of nodes, X = u and Y = v, it is possible to learn a
set of parameters for a GraIL model such that

hlt > 0

if and only if node t is connected to node u by a path,

r1(u, Z1) ∧ r2(Z1, Z2) ∧ ... ∧ rk(Zl−1, t),

of length l.

Proof. The overall message passing scheme of best per-
forming GraIL model is given by

hlt = ReLU

Wl
selfh

l−1
t +

R∑
r=1

∑
s∈Nr(t)

αlrrtstW
l
rh

l−1
s


(10)

Table 15. Late fusion ensemble results on FB15k-237 (Hits@10)

TransE DistMult ComplEx RotatE GraIL

T 98.87 98.96 99.05 98.87 98.71
D 98.67 98.84 98.86 98.41
C 98.88 98.94 98.64
R 98.81 98.66
G 75.87

Without loss of generality, we assume all the nodes are
labeled with 0, except the node, u, which is labeled 1. Under
this node label assignment, for any node t, at a distance d
from the node u, hlt = 0 ∀l < d.

With no loss of generality, also assume W k
r = 1,W k

self =
1 ∀k, r. With these assumptions, Equation (10) simplifies
to

hlt = ReLU

 R∑
r=1

∑
s∈Nr(t)

αlrrtsth
l−1
s

 . (11)

We will now prove our Lemma using induction.

Base case. We will first prove the base case for l = 1, i.e.,
h1
t > 0 if and only if t is connected to u via path r1(u, t)

From Equation 11, we have that

h1
t = ReLU

 R∑
r=1

∑
s∈Nr(t)

α1
rrth

0
s

 .

According to our simplified node labeling scheme h0
s 6= 0

only if s = u. And by Lemma 1, α1
rrtst > 0 only if r = r1.

Hence, t must be connected to u via relation r1 for h1
t to be

non-zero.

Induction step. Assume the induction hypothesis is true
for some λ, i.e., hλt > 0 if and only if t is connected to
source u by a path r1(u, Z1) ∧ ... ∧ rλ(Zλ−1, t).

From Equation 11 we have that hλ+1
t > 0 when the follow-

ing two conditions are simultaneously satisfied.

1. hλs > 0 for some s

2. αλ+1
rrtst > 0 for some r
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Table 16. Statistics of inductive benchmark datasets
WN18RR FB15k-237 NELL-995

#relations #nodes #links #relations #nodes #links #relations #nodes #links

v1 train 9 2746 6678 183 2000 5226 14 10915 5540
ind-test 9 922 1991 146 1500 2404 14 225 1034

v2 train 10 6954 18968 203 3000 12085 88 2564 10109
ind-test 10 2923 4863 176 2000 5092 79 4937 5521

v3 train 11 12078 32150 218 4000 22394 142 4647 20117
ind-test 11 5084 7470 187 3000 9137 122 4921 9668

v4 train 9 3861 9842 222 5000 33916 77 2092 9289
ind-test 9 7208 15157 204 3500 14554 61 3294 8520

As a consequence of our induction hypothesis, Condition 1
directly implies that node s should be connected to source
node u by a path r1(u, Z1) ∧ ... ∧ rλ(Zλ−1, s).

By Lemma 1, Condition 2 implies that r = rλ+1. This
means that node t is connected to node s via relation rλ+1.

The above two arguments directly imply that hλ+1
t > 0 if

and only if node t is connected to source node by a path
r1(u, Z1) ∧ ... ∧ rλ(Zλ−1, s) ∧ rλ+1(s, t).

Hence, assuming the lemma holds true for λ, we proved
that holds it true for λ + 1. Thus, Lemma 1 is proved by
induction.

Proof of Theorem 1. This is a direct consequence of
Lemma 2. In particular, without any loss of generality
we simplify the final scoring of GraIL to directly be the
embedding of the target node v at the last layer k, i.e,

score(u, rt, v) = hkv

According to Lemma 2, hkv is non-zero only when v is
connected to u by the body of rule R, hence proving the
above stated theorem.


