
Sequential Transfer in Reinforcement Learning with a Generative Model

A. Notation

Symbol Expression Meaning

Θ - Set of parameters
k |Θ| Number of possible parameters/tasks
n - Sample budget for querying the generative model (Section 3)
m - Maximum number of tasks in the sequential setting (Section 4)
S - Set of S states
A - Set of A actions
U - Set of reward values (finite with cardinality U for Section 4 only)
T - Task-transition matrix
pθ(s

′|s, a) - Transition probabilities of MDPMθ

qθ(u|s, a) - Reward distribution of MDPMθ

rθ(s, a) - Mean reward of MDPMθ

γ - Discount factor
V πθ (s) Eπθ [

∑∞
t=0 γ

tUt|S0 = s] Value function of policy π in MDPMθ

V ∗θ (s) maxπ V
π
θ (s) Optimal value function for MDPMθ

σrθ(s, a)2 Varqθ(·|s,a)[U] Reward variance in taskMθ

σpθ (s, a; θ′)2 Varpθ(·|s,a)[V
∗
θ′(S

′)] Transition/value-function variance in taskMθ

∆r
s,a(θ, θ′) |rθ(s, a)− rθ′(s, a)| Reward-gaps between tasks θ and θ′

∆p
s,a(θ, θ′) |(pθ(s, a)− pθ′(s, a))TV ∗θ | Transition-gaps between tasks θ and θ′

∆ - Estimation error of the approximate models (Assumption 1)
ε, δ - Accuracy and confidence level for Algorithm 1
r̂t, p̂t, σ̂

r
t , σ̂

p
t See Algorithm 1 Empirical models after t steps

Cxt,δ(s, a) See Lemma 3 Bernstein confidence intervals for x ∈ {r, p, σr, σp}
Θ̄t See Algorithm 1 Confidence set a t time t
Irs,a(θ, θ′) See Definition 1 Reward information for discriminating θ, θ′

Ips,a(θ, θ′) See Definition 1 Transition information for discriminating θ, θ′

It(s, a) max {Irt (s, a), Ipt (s, a)} Index of s, a at time t (see Algorithm 1)
O - Mean-observation matrix containing the flattened MDP models
Ôh, T̂h - Estimated observation and task-transition matrices after h tasks
r̃h,θ, p̃h,θ, σ̃

r
h,θ, σ̃

p
h,θ - Estimated models after h tasks

Θ̃h - Initial set of models for running PTUM on the h-th task
ρx or ρx(Θ, T) See Appendix D Constants in the analysis of the spectral learning algorithm

Table 1. The notation adopted in this paper.

Sequential Transfer in Reinforcement Learning with a Generative Model

B. Analysis of the PTUM Algorithm
B.1. Definitions and Assumptions

The analysis is carried out under the following two assumptions.

Assumption 3. Algorithm 1 always enters the transfer mode. That is, the model uncertainty is such that ∆ < ε(1−γ)
4(1+γ) .

Assumption 4. The sample budget n is large enough to allow Algorithm 1 to identify an ε-optimal policy.

These two assumptions allow us to analyze only the core part of PTUM (i.e., the transfer mode), thus excluding trivial
cases in which the chosen (ε, δ)-PAC algorithm is called. In fact, if Assumption 3 does not hold, the sample complexity for
computing an ε-optimal policy is equivalent to the one of the chosen algorithm. Similarly, if Assumption 4 does not hold, the
sample complexity is n (the samples collected by the generative model) plus the sample complexity of the chosen algorithm.

We define the event E := {∀t = 1, ..., n : θ∗ ∈ Θ̄t} under which the true model is never eliminated from the active model
set. This event will be used extensively throughout the whole analysis.

B.2. Concentration Inequalities

Lemma 1 (Bernstein’s inequality (Boucheron et al., 2003)). Let X be a random variable such that |X| ≤ c almost surely,
X1, . . . , Xn n i.i.d. samples of X , and δ > 0. Then, with probability at least 1− δ,∣∣∣∣∣E [X]− 1

n

n∑
i=1

Xi

∣∣∣∣∣ ≤
√

2Var[X] log 2
δ

n
+
c log 2

δ

3n
.

Lemma 2 (Empirical Bernstein’s inequality (Maurer & Pontil, 2009)). Let X be a random variable such that |X| ≤ c
almost surely, X1, . . . , Xn n i.i.d. samples of X , and δ > 0. Then, with probability at least 1− δ,∣∣∣∣∣E [X]− 1

n

n∑
i=1

Xi

∣∣∣∣∣ ≤
√

2V̂ar[X] log 4
δ

n
+

7c log 4
δ

3(n− 1)
,

where V̂ar[X] denotes the empirical variance of X using n samples.

B.3. Lemmas

We begin by showing that the true model is never eliminated from the confidence sets of Algorithm 1 with high probability.

Lemma 3 (Valid confidence sets). Let δ > 0 and, for Nt(s, a) > 1,

Crt,δ(s, a) =

√
2σ̂rt (s, a)2 log 8SAn(|Θ|+1)

δ

Nt(s, a)
+

7 log 8SAn(|Θ|+1)
δ

3(Nt(s, a)− 1)
+ ∆r

max,

Cpt,δ(s, a; θ′) =

√
2σ̂pt (s, a; θ′)2 log 8SAn(|Θ|+1)

δ

Nt(s, a)
+

7 log 8SAn(|Θ|+1)
δ

3(Nt(s, a)− 1)(1− γ)
+ ∆p

max,

Cσ
r

t,δ(s, a) =

√
2 log 4SAn(|Θ|+1)

δ

Nt(s, a)− 1
+ ∆σr

max,

Cσ
p

t,δ (s, a) =
1

1− γ

√
2 log 4SAn(|Θ|+1)

δ

Nt(s, a)− 1
+ ∆σp

max.

Set these confidence intervals to infinity if Nt(x, a) ≤ 1. Then, the event E := {∀t = 1, ..., n : θ∗ ∈ Θ̄t} holds with
probability at least 1− δ.

Sequential Transfer in Reinforcement Learning with a Generative Model

Proof. Take any step t ≥ 1, any state-action pair (s, a) ∈ S × A, any model θ′ ∈ Θ, and let δ′ > 0. We need to show
that the conditions of (1)-(4) hold. First notice that these conditions trivially hold if Nt(s, a) ≤ 1. Thus, suppose that
Nt(s, a) > 1 so that the confidence intervals are well-defined. Using the triangle inequality we have that

|r̂t(s, a)− r̃θ∗(s, a)| ≤ |r̂t(s, a)− rθ∗(s, a)|+ ∆r
max

|(p̃θ∗(s, a)− p̂t(s, a))T Ṽ ∗θ′ | ≤ |(pθ∗(s, a)− p̂t(s, a))T Ṽ ∗θ′ |+ ∆p
max

|σ̂rt (s, a)− σ̃rθ∗(s, a)| ≤ |σ̂rt (s, a)− σrθ∗(s, a)|+ ∆σr
max,

|σ̂pt (s, a; θ′)− σ̂pθ∗(s, a; θ′)| ≤ |σ̂pt (s, a; θ′)− σpθ∗(s, a; θ′)|+ ∆σp
max.

Using Lemma 2, we have that, with probability at least 1− δ′,

|r̂t(s, a)− rθ∗(s, a)| ≤
√

2σ̂rt (s, a)2 log 4
δ′

Nt(s, a)
+

7 log 4
δ′

3(Nt(s, a)− 1)
.

Similarly, for any θ′ ∈ Θ, we have that, with probability at least 1− δ′,

|(pθ∗(s, a)− p̂t(s, a))T Ṽ ∗θ′ | ≤

√
2σ̂pt (s, a; Ṽ ∗θ′)

2 log 4
δ′

Nt(s, a)
+

7 log 4
δ′

3(Nt(s, a)− 1)(1− γ)
.

From Theorem 10 of (Maurer & Pontil, 2009),

|σ̂rt (s, a)− σrθ∗(s, a)| ≤
√

2 log 2
δ′

Nt(s, a)− 1

and

|σ̂pt (s, a; θ′)− σpθ∗(s, a; θ′)| ≤ 1

1− γ

√
2 log 2

δ′

Nt(s, a)− 1

hold with probability at least 1− δ′, respectively.

Taking union bounds over all state action pairs and over the maximum number of samples n, these four inequalities hold at
the same time with probability at least 1− 2SA(|Θ|+ 1)nδ′. The result follows after setting δ = 2SAn(|Θ|+ 1)δ′ and
rearranging.

Next we bound the number of samples required from some state-action pair in order to eliminate a model from the confidence
set.

Lemma 4 (Model elimination). Let θ ∈ Θ, (s, a) ∈ S ×A, ∆ := max{∆r
max,∆

p
max,∆

σr
max,∆

σp
max}, and define

n̄rθ(s, a) := min
θ′′∈Θ̄t

max

{
σ̃rθ′′(s, a)2

[∆̃r
s,a(θ∗, θ)− 4∆]2+

,
1

[∆̃r
s,a(θ∗, θ)− 4∆]+

}
,

n̄pθ(s, a) := min
θ′∈Θ,θ′′∈Θ̄t

max

{
σ̃pθ′′(s, a; θ′)2

[∆̃p
s,a(θ∗, θ)− 4∆]2+

,
1/(1− γ)

[∆̃p
s,a(θ∗, θ)− 4∆]+

}
.

Then, under event E, if Nt(s, a) > n̄θ(s, a) := 32 log 8SAn(1+|Θ|)
δ min{n̄rθ(s, a), n̄pθ(s, a)}, we have that θ /∈ Θ̄t.

Proof. We split the proof into two parts, dealing with rewards and transitions separately. We then combine these results to
obtain the final statement.

Sequential Transfer in Reinforcement Learning with a Generative Model

Elimination by rewards Assuming θ ∈ Θ̄t, we must have, for all state-action pairs and all θ′′ ∈ Θ̄t,

∆̃r
s,a(θ∗, θ) ≤ |r̃θ(s, a)− r̂t(s, a)|+ |r̃θ∗(s, a)− r̂t(s, a)| ≤ 2Crt,δ(s, a)

≤ 2

√
2σ̂rt (s, a)2 log 8SAn(|Θ|+1)

δ

Nt(s, a)
+

14 log 8SAn(|Θ|+1)
δ

3(Nt(s, a)− 1)
+ 2∆r

max

≤ 2

√
2σ̃rθ′′(s, a)2 log 8SAn(|Θ|+1)

δ

Nt(s, a)
+

4 log 8SAn(|Θ|+1)
δ

(Nt(s, a)− 1)
+

14 log 8SAn(|Θ|+1)
δ

3(Nt(s, a)− 1)
+ 2∆r

max + 2∆σr
max

≤ 2

√
2σ̃rθ′′(s, a)2 log 8SAn(|Θ|+1)

δ

Nt(s, a)
+

26 log 8SAn(|Θ|+1)
δ

3(Nt(s, a)− 1)
+ 4∆

where we applied the triangle inequality and used Lemma 3 to upper bound the empirical variance by the variance of a
model θ′′ in the confidence set. We note that, if the model uncertainty is too high and the denominators of n̄θ(s, a) are zero,
it is not possible to eliminate θ from the rewards of this state-action pair. If this is not the case, for Nt(s, a) ≥ n̄θ(s, a) we
have that

2

√
2σ̃rθ′′(s, a)2 log 8SAn(|Θ|+1)

δ

Nt(s, a)
<

∆̃r
s,a(θ∗, θ)− 4∆

2

and

26 log 8SAn(|Θ|+1)
δ

3(Nt(s, a)− 1)
<

∆̃r
s,a(θ∗, θ)− 4∆

2
.

Plugging these two inequalities in the first upper bound leads to the contradiction ∆̃r
s,a(θ∗, θ) < ∆̃r

s,a(θ∗, θ), hence it must
be that θ /∈ Θ̄t.

Elimination by transition The proof proceeds analogously to the previous case. Let θ′ ∈ Θ and θ′′ ∈ Θ̄t, then

∆̃p
s,a(θ∗, θ) ≤ |(p̂t(s, a)− p̃θ∗(s, a))T Ṽ ∗θ′ |+ |(p̂t(s, a)− p̃θ(s, a))T Ṽ ∗θ′ | ≤ 2Cpt,δ(s, a; θ′)

≤ 2

√
2σ̂pt (s, a; θ′) log 8SAn(|Θ|+1)

δ

Nt(s, a)
+

14 log 8SAn(|Θ|+1)
δ

3(Nt(s, a)− 1)(1− γ)
+ 2∆p

max

≤ 2

√
2σ̃pθ′′(s, a; θ′) log 8SAn(|Θ|+1)

δ

Nt(s, a)
+

26 log 8SAn(|Θ|+1)
δ

3(Nt(s, a)− 1)(1− γ)
+ 4∆,

where once again we applied the triangle inequality and Lemma 3 to upper bound the empirical variance. Hence, applying
the same reasoning as before we obtain a contradiction, which in turns implies that θ /∈ Θ̄t.

We finally note that if n̄θ(s, a) = +∞, i.e., the approximate models are too inaccurate, it is not possible to eliminate θ using
this state-action pair.

The following is a known result which bounds the deviation in value function between different MDPs.

Lemma 5 (Simulation lemma). Let θ, θ′ ∈ Θ, s ∈ S, and π be any policy. Denote by νπθ (s′, a′; s) the discounted
state-action visitation frequencies (Sutton et al., 2000) of π in MDP θ starting from s. Then, the following hold:

|V πθ (s)− V πθ′ (s)| ≤
∑
s′,a′

νπθ′(s
′, a′; s) [|rθ(s′, a′)− rθ′(s′, a′)|+ γ|(pθ(s′, a′)− pθ′(s′, a′))TV πθ |] .

|V ∗θ′(s)− V ∗θ (s)| ≤ max
π∈{π∗θ ,π∗θ′}

∑
s′,a′

νπθ′(s
′, a′; s) [|rθ(s′, a′)− rθ′(s′, a′)|+ γ|(pθ(s′, a′)− pθ′(s′, a′))TV ∗θ |] .

Sequential Transfer in Reinforcement Learning with a Generative Model

Proof. See, e.g., Lemma 3 of (Zanette et al., 2019) for the first inequality and Lemma 2 of (Azar et al., 2013b) or Lemma 2
of (Zanette et al., 2019) for the second one.5

Corollary 2 (Value-function error decomposition). Let θ, θ′ ∈ Θ and s ∈ S. Then,

|V ∗θ′(s)− V
π∗θ
θ′ (s)| ≤ 2 max

π∈{π∗θ ,π∗θ′}

∑
s′,a′

νπθ′(s
′, a′; s)

[
|rθ(s′, a′)− rθ′(s′, a′)|+ γ|(pθ(s′, a′)− pθ′(s′, a′))TV ∗θ |

]
.

Proof. Using the triangle inequality,

|V ∗θ′(s)− V
π∗θ
θ′ (s)| ≤ |V ∗θ′(s)− V ∗θ (s)|︸ ︷︷ ︸

(a)

+ |V ∗θ (s)− V π
∗
θ

θ′ (s)|︸ ︷︷ ︸
(b)

.

We can bound (a) using the second inequality in Lemma 5 as

|V ∗θ′(s)− V ∗θ (s)| ≤ max
π∈{π∗θ ,π∗θ′}

∑
s′,a′

νπθ′(s
′, a′; s)

[
|rθ(s′, a′)− rθ′(s′, a′)|+ γ|(pθ(s′, a′)− pθ′(s′, a′))TV ∗θ |

]
.

Similarly, we can use the first inequality in Lemma 5 to bound (b) by noticing that V ∗θ = V
π∗θ
θ . We have

|V ∗θ (s)− V π
∗
θ

θ′ (s)| ≤
∑
s′,a′

ν
π∗θ
θ′ (s′, a′; s)

[
|rθ(s′, a′)− rθ′(s′, a′)|+ γ|(pθ(s′, a′)− pθ′(s′, a′))TV ∗θ |

]
]

≤ max
π∈{π∗θ ,π∗θ′}

∑
s′,a′

νπθ′(s
′, a′; s)

[
|rθ(s′, a′)− rθ′(s′, a′)|+ γ|(pθ(s′, a′)− pθ′(s′, a′))TV ∗θ |

]
.

Combining the two displays above concludes the proof.

The following lemma ensures that, if the algorithm did not stop at a certain time t, certain models belong to the confidence
set.

Lemma 6 (Stopping condition). Let τ be the random stopping time of Algorithm 1 and

Θε :=

{
θ ∈ Θ

∣∣∣ ‖r̃θ − r̃θ∗‖ > κε ∨ ‖(p̃θ − p̃θ∗)T Ṽ ∗θ∗‖ >
κε
γ

}
,

where κε := (1−γ)ε
4 − ∆(1+γ)

2 . Then, under event E, for all t < τ , there exists at least one model θ ∈ Θε such that θ ∈ Θ̄t.

Proof. We note that, for all t < τ , under event E, it must be that

∃θ ∈ Θ̄t, s ∈ S : Ṽ
π̃∗θ∗
θ (s) < Ṽ ∗θ (s)− ε+ 2∆

(1 + γ)

1− γ ,

otherwise the algorithm would stop before τ . This implies that |Ṽ ∗θ (s)− Ṽ π̃
∗
θ∗

θ (s)| > ε− 2∆ (1+γ)
1−γ holds as well and, using

Corollary 2,

2 max
π∈{π̃∗

θ∗ ,π̃
∗
θ}

∑
s′,a′

νπθ (s′, a′; s)
[
|r̃θ(s′, a′)− r̃θ∗(s′, a′)|+ γ|(p̃θ(s′, a′)− p̃θ∗(s′, a′))T Ṽ ∗θ∗ |

]
> ε− 2∆

(1 + γ)

1− γ (5)

holds for some θ ∈ Θ̄t and s ∈ S. Assume that all models in Θε have been eliminated. Then, using that ν sums up to
1/(1− γ) and that all models must be sufficiently close to θ∗, the left-hand side of this inequality can be upper bounded by
ε− 2∆ (1+γ)

1−γ . Hence, we obtain a contradiction and it must be that θ ∈ Θ̃t for some θ ∈ Θε.

Lemma 7 (Positive index). Let τ be the random stopping time of Algorithm 1, then, under event E,

∀t < τ : It(St, At) > 0

5Note that, although the inequalities of, e.g., Azar et al. (2013b) and Zanette et al. (2019) relate the value functions of a fixed MDP
with those of its empirical counterpart, they actually hold for any two MDPs.

Sequential Transfer in Reinforcement Learning with a Generative Model

Proof. Recall that the algorithm enters the transfer mode if ∆ < ε(1−γ)
4(1+γ) . Take any time t < τ . Under event E, we have

θ∗ ∈ Θ̄t and Lemma 6 implies that θ ∈ Θ̄t for some θ ∈ Θε. The definition of Θε implies that either ‖r̃θ − r̃θ∗‖ > κε or
‖(p̃θ − p̃θ∗)T Ṽ ∗θ∗‖ > κε

γ and both these quantities are strictly greater than zero since κε >
ε(1−γ)

8 . Since the index contains
a maximum over models involving these two, the result follows straightforwardly.

The following lemma is the key result that allows us to bound the sample complexity of Algorithm 1. It shows that, at any
time t, the number of times the chosen state-action action pair (St, At) has been chosen before is bounded by a quantity
proportional to minimum number of samples required from any state-action pair to eliminate any of the active models.

Lemma 8 (Fundamental lemma). Let (St, At) be the state-action pair chosen at time t. Then, under event E, the number of
queries to such couple prior to time t can be upper bounded by

Nt(St, At) <
128 log(8SAn(|Θ|+ 1)/δ)

maxs,a maxθ∈Θ̄t Is,a(θ∗, θ)
.

Proof. Let Ft = 1 {∀s, a ∈ S ×A : Irt (St, At) ≥ It(s, a)} be the event under which, at time t, the maximizer of the index
is attained by the reward components. The proof is divided in two parts, based on whether Ft holds or not.

Event Ft holds We start by defining some quantities. Let Θt := argmaxθ,θ′∈Θ̄t Irt (s, a) be the set of active models that
attain the maximum in the reward index. Similarly, define

θ̄t := argmax
θ∈Θ̄t

∆̃r
St,At(θ

∗, θ), θt := argmin
θ∈Θ̄t

∆̃r
St,At(θ

∗, θ),

as the farthest and closest models from θ∗ among the active ones, respectively. Assume, without loss of generality, that the
maximums/minimums are attained by single models. If more than one model attains them, the proof follows equivalently by
choosing arbitrary ones. Furthermore, let θvt be the (random) model among those in Θt whose reward-variance is used to
attain the maximum in the index.

We now proceed as follows. First, we prove that an upper bound to the index of the chosen state-action pair directly relates
to the sample complexity for eliminating θ̄t. Then, we use this result to guarantee that (St, At) cannot be chosen more than
the stated quantity prior to time step t, otherwise θ̄t could not be an active model.

By assumption we have

It(St, At) = Irt (St, At) = min

{
(∆̃r

St,At
(θ̄t, θt)− 8∆)2

σ̃rθvt
(St, At)2

, ∆̃r
St,At(θ̄t, θt)− 8∆

}

(a)

≤ min

(

∆̃r
St,At

(θ̄t, θ
∗) + ∆̃r

St,At
(θ∗, θt)− 8∆

)2

σ̃rθvt
(St, At)2

, ∆̃r
St,At(θ̄t, θ

∗) + ∆̃r
St,At(θ

∗, θt)− 8∆

(b)

≤ min

{
(2∆̃r

St,At
(θ̄t, θ

∗)− 8∆)2

σ̃rθvt
(St, At)2

, 2∆̃r
St,At(θ̄t, θ

∗)− 8∆

}

≤ 4 min

{
(∆̃r

St,At
(θ̄t, θ

∗)− 4∆)2

σ̃rθvt
(St, At)2

, ∆̃r
St,At(θ̄t, θ

∗)− 4∆

}
,

where (a) follows from the triangle inequality and (b) from the definition of θ̄t (which was defined as the farthest from the
estimate of θ∗). Note that to prove this inequalities we also need that ∆̃r

St,At
(θ̄t, θt)− 8∆ ≥ 0, which is implied by Lemma

7. Since (St, At) is chosen at time t, it must be that It(St, At) ≥ It(s, a) for all s, a ∈ S × A. This implies that, for all
s, a ∈ S ×A and θ ∈ Θ̃t,

4 min

{
(∆̃r

St,At
(θ̄t, θ

∗)− 4∆)2

σ̃rθvt
(St, At)2

, ∆̃r
St,At(θ̄t, θ

∗)− 4∆

}
≥ It(s, a) ≥ Is,a(θ∗, θ), (6)

Sequential Transfer in Reinforcement Learning with a Generative Model

where the second inequality holds since the index of (s, a) is by definition larger than the one using the models θ∗ and θ.
Note that Lemma 4 and 7 ensure that a number of queries to (St, At) of

32 log
8SAn(|Θ|+ 1)

δ
max

{
σ̃rθvt (St, At)

2

(∆̃r
St,At

(θ̄t, θ∗)− 4∆)2
,

1

∆̃r
St,At

(θ̄t, θ∗)− 4∆

}

suffices for eliminating θ̄t. In particular, Lemma 7 implies that ∆̃r
St,At

(θ̄t, θt) > 8∆, which, in turn, implies that
∆̃r
St,At

(θ∗, θ̄t) > 4∆. Therefore, Equation 6 above implies that a number of queries of

128 log(8SAn(|Θ|+ 1)/δ)

maxs,a maxθ∈Θ̄t Is,a(θ∗, θ)
.

also suffices. We note that the maximums at the denominator can be introduced since (6) holds for all s, a and θ. Hence, it
must be that Nt(St, At) is strictly less than this quantity, otherwise the model θ̄t would be eliminated at time step t− 1 and
it could not be active at time t. This concludes the first part of the proof.

Event Ft does not hold In this case, the maximizer of the index must be attained using the transition components, thus
It(St, At) = Ipt (St, At). The proof follows exactly the same steps as before and is therefore not reported. Since the result
is the same, combining these two parts proves the main statement.

The following lemma ensures that Algorithm 1 returns ε-optimal policies with high probability.

Lemma 9 (Correctness). Let τ be the stopping time of Algorithm 1 and πτ be the returned policy. Then, under event E, πτ
is ε-optimal with respect to θ∗.

Proof. Recall that πτ is ε-optimal if, for all states, V πτθ∗ (s) ≥ V ∗θ∗(s) − ε. Furthermore, πτ is optimal for one of the
active models at time τ , i.e., πτ = π̃∗θ for some θ ∈ Θ̄τ . Since under E we have θ∗ ∈ Θ̄τ , a sufficient condition is that
‖V ∗θ′ − V

π̃∗θ
θ′ ‖ < ε holds for all θ′ ∈ Θ̄τ . Let us upper bound the left-hand side as

‖V ∗θ′ − V
π̃∗θ
θ′ ‖ ≤ ‖Ṽ

π̃∗θ
θ′ − V

π̃∗θ
θ′ ‖+ ‖V ∗θ′ − Ṽ ∗θ′‖+ ‖Ṽ π̃

∗
θ

θ′ − Ṽ ∗θ′‖

Using Lemma 5, we can bound the first term by

‖Ṽ π̃
∗
θ

θ′ − V
π̃∗θ
θ′ ‖ ≤

∑
s′,a′

ν
π̃∗θ
θ′ (s′, a′; s)(|rθ′(s, a)− r̃θ′(s, a)|+ γ|(pθ′(s, a)− p̃θ′(s, a))T Ṽ

π̃∗θ
θ′ |

≤
∑
s′,a′

ν
π̃∗θ
θ′ (s′, a′; s)(∆ + γ∆) ≤ ∆(1 + γ)

1− γ

and the second term by

‖V ∗θ′ − Ṽ ∗θ′‖ ≤ max
π∈{π∗

θ′ ,π̃
∗
θ′}

∑
s′,a′

νπθ′(s
′, a′; s)(|rθ′(s, a)− r̃θ′(s, a)|+ γ|(pθ′(s, a)− p̃θ′(s, a))T Ṽ ∗θ′ |

≤ max
π∈{π∗

θ′ ,π̃
∗
θ′}

∑
s′,a′

νπθ′(s
′, a′; s)(∆ + γ∆) ≤ ∆(1 + γ)

1− γ .

Therefore, the stopping condition,

‖Ṽ π̃
∗
θ

θ′ − Ṽ ∗θ′‖+ 2∆
(1 + γ)

1− γ ≤ ε

implies that ‖V ∗θ′ − V
π̃∗θ
θ′ ‖ ≤ ε, which in turn implies the ε-optimality of πτ .

Sequential Transfer in Reinforcement Learning with a Generative Model

B.4. Sample Complexity Bounds

We are now ready to prove the main theorem, which bounds the sample complexity of Algorithm 1.

Theorem 1. Assume ∆ is such that Algorithm 1 enters the transfer mode. Let τ be the random stopping time and πτ be the
returned policy. Then, with probability at least 1− δ, πτ is ε-optimal for θ∗ and the total number of queries to the generative
model can be bounded by

τ ≤ 128 min{SA, |Θ|} log(8SAn(|Θ|+ 1)/δ)

maxs,a minθ∈Θε Is,a(θ∗, θ)
,

where, for κε := (1−γ)ε
4 − ∆(1+γ)

2 , the set Θε ⊆ Θ is

Θε :=

{
θ
∣∣∣ ‖r̃θ − r̃θ∗‖ > κε ∨ ‖(p̃θ − p̃θ∗)T Ṽ ∗θ∗‖ >

κε
γ

}
.

Proof. Lemma 3 ensures that event E holds with probability at least 1 − δ. Therefore, we shall carry out the proof
conditioned on E.
We split the proof into two parts. In the first one, we bound the number of times each state-action pair can be visited before
the algorithm stops. In the second part, we directly bound the number of steps in which each model can be active.

Bound over S × A Take any state-action pair (s, a) ∈ S × A. For any sequence {nt}t≥1, its number of visits can be
written as

Nτ (s, a) =

τ∑
t=1

1 {St = s ∧At = a|E}

=

τ∑
t=1

1 {St = s ∧At = a ∧Nt(s, a) < nt|E}︸ ︷︷ ︸
(a)

+

τ∑
t=1

1 {St = s ∧At = a ∧Nt(s, a) ≥ nt|E}︸ ︷︷ ︸
(b)

.

For

nt :=
128 log(8SAn(|Θ|+ 1)/δ)

maxs,a maxθ∈Θ̄t Is,a(θ∗, θ)
,

Lemma 8 ensures that, under event E, (b) = 0. Thus, we only need to bound (a). For all t < τ , Lemma 6 implies that
there exists a model θ ∈ Θε which also belongs to the confidence set at time t, θ ∈ Θ̄t. Therefore, for all t < τ and
(s′, a′) ∈ S × A, we have maxθ∈Θ̄t Is′,a′(θ∗, θ) ≥ minθ∈Θε Is′,a′(θ∗, θ). Since we removed all random quantities from
nt, we can now bound (a) as

(a) <
128 log(8SAn(|Θ|+ 1)/δ)

maxs,a minθ∈Θε Is,a(θ∗, θ)
. (7)

This immediately yields a bound on the stopping time,

τ =
∑
s,a

Nτ (s, a) <
128SA log(8SAn(|Θ|+ 1)/δ)

maxs,a minθ∈Θε Is,a(θ∗, θ)
.

Bound over Θ From the first part of the proof, we know that, for t < τ , the confidence set Θ̄t must contain a model that
is also in Θε, otherwise the algorithm would stop. Therefore, the stopping time can be bounded by

τ ≤
n∑
t=1

1
{
∃θ ∈ Θ̄t : θ ∈ Θε|E

}
.

By definition of the algorithm, the state-action pair chosen at each time step does not change until the set of active models
Θt (those that control the maximizer of the index as in the proof of Lemma 8) does not change. Furthermore, once a model

Sequential Transfer in Reinforcement Learning with a Generative Model

has been eliminated, it cannot become active again. Consider a sequence {τh}h≥1 with τ1 = 1. We can partition the time
line into different contiguous intervals (from now on called phases) Th := [τh, τh+1 − 1] such that the set of active models
does not change within Th and a change of phase occurs only when a model is eliminated. Let Θh be the set of active
models in phase h. We have τh+1 = inft≥1{t | ∃θ ∈ Θh : θ /∈ Θ̄t}. That is, the beginning of the new phase h+ 1 is the
step where one of the previously-active models is eliminated. Let θ̄h be any such model and h(t) be the (unique) phase
containing time t. Note that, for each θ ∈ Θ \ {θ∗}, there exists at most one phase h(θ) where θ̄h(θ) = θ. Then,

τ ≤
∑

θ∈Θ\{θ∗}

n∑
t=1

1
{
θ̄h(t) = θ ∧ ∃θ′ ∈ Θ̄t : θ′ ∈ Θε|E

}

≤
∑

θ∈Θ\{θ∗}

τh(θ)+1−1∑
t=τh(θ)

1
{
θ̄h(t) = θ ∧ ∃θ′ ∈ Θ̄t : θ′ ∈ Θε|E

}
≤ 128(|Θ| − 1) log(8SAn(|Θ|+ 1)/δ)

maxs,a minθ∈Θε Is,a(θ∗, θ)
,

where in the last inequality we applied Lemma 8 by noticing that, within the same phase, the chosen state-action pair does
not change and used the fact that a model in Θε still survives to upper bound the minimum over models in the confidence set.
The proof follows by taking the minimum of the two bounds.

Corollary 1. Let Γ be the minimum gap between θ∗ and any other model in Θ,

Γ := min
θ 6=θ∗

max
{
‖r̃θ − r̃θ∗‖, ‖(p̃θ − p̃θ∗)T Ṽ ∗θ∗‖

}
.

Then, with probability at least 1− δ,

τ ≤ Õ
(

min{SA, |Θ|} log(1/δ)

max{Γ2, ε2}(1− γ)4

)
.

Proof. We notice that each model θ ∈ Θε is, by definition, such that either ‖r̃θ−r̃θ∗‖ ≥ max{Γ, κε} or ‖(p̃θ−p̃θ∗)T Ṽ ∗θ∗‖ ≥
max{Γ, κε}. By the transfer condition, we also have that κε ≥ (1−γ)ε

8 . Then, it is easy to see that

max
s,a

min
θ∈Θε

Is,a(θ∗, θ) ≥ max{Γ2, κ2
ε}(1− γ)2 ≥ 1

8
max{Γ2, ε2}(1− γ)4,

where we use the previous lower bounds and upper bounded the value-function variance by 1/(1− γ)2. Then, the result
follows by rewriting in Õ notation.

C. Learning HMMs by Tensor Decomposition
After reducing our setting to a HMM learning problem, we can almost immediately plug the agent’s observations into
the tensor decomposition approach of Anandkumar et al. (2014) and obtain estimates Ô and T̂ of the desired matrices.
We now briefly describe how this method works as some of its features are needed for our analysis later. The detailed
steps are reported in Algorithm 3. The key intuition behind the method of Anandkumar et al. (2014) is that the second
and third moments of the HMM observations posses a low-rank tensor structure. More precisely, it is possible to find a
transformation of these observations such that the resulting third moment is a symmetric and orthogonal tensor whose
spectral decomposition directly yields (transformations of) the HMM parameters. To see this, we first formulate the problem
as an instance of a multi-view model (Sun, 2013). Take three consecutive observations (our ”views”), say o1, o2, o3, and
let Σi,j := E [oi ⊗ oj], for i, j ∈ {1, 2, 3}, be their covariance matrices, where ⊗ denotes the tensor product. Define
the transformed views as õ1 = Σ3,2Σ†1,2o1 and õ2 = Σ3,1Σ†2,1o2, and let the second and third cross-view moments be
M2 = E [õ1 ⊗ õ2] and M3 = E [õ1 ⊗ õ2 ⊗ o3], respectively. Then, Theorem 3.6 of Anandkumar et al. (2014) shows that
M2 =

∑k
j=1 ωjµ3,j ⊗ µ3,j and M3 =

∑k
j=1 ωjµ3,j ⊗ µ3,j ⊗ µ3,j , where µ3,j = E [o3|θ∗3 = θj] and ωj = ω(θj). Hence,

these moments posses a low-rank tensor structure, as they can be decomposed into tensor products of vectors, and it is

Sequential Transfer in Reinforcement Learning with a Generative Model

Algorithm 3 Learning HMMs by Tensor Decomposition
Require: Observations {ol}hl=1 with ol ∈ Rd, number of tasks k
Ensure: Estimated observation matrix Ô and transition matrix T̂

1: Split observations into m = bh/3c triples: {(o1,l, o2,l, o3,l)}ml=1

2: Estimate covariance matrices: Σ̂i,j = 1
m

∑m
l=1 oi,l ⊗ oj,l, for i, j ∈ {1, 2, 3}

3: Get transformed observations: õ1,l = Σ̂3,2Σ̂†1,2o1,l, õ2,l = Σ̂3,1Σ̂†2,1o2,l, l ∈ [m]

4: Estimate 2nd and 3nd moments: M̂2 = 1
m

∑m
l=1 õ1,l ⊗ õ2,l, M̂3 = 1

m

∑m
l=1 õ1,l ⊗ õ2,l ⊗ o3,l

5: Find the k largest eigenvectors D̂ ∈ Rd×k and eigenvalues Λ̂ ∈ Rk×k of M̂2

6: Compute the whitening matrix: Ŵ = D̂Λ̂−
1
2

7: Run Algorithm 1 of Anandkumar et al. (2014) on M̂3(Ŵ , Ŵ , Ŵ), obtain estimated eigenvalues {λ̂j}kj=1 and eigenvec-
tors {v̂j}kj=1

8: Estimate conditional means of the third view: µ̂3,j = λ̂j(Ŵ
T)†v̂j

9: Estimate mean observations: [Ô]:,j = Σ̂2,1Σ̂†3,1µ̂3,j

10: Estimate transition matrix: [T̂]:,j = Ô†µ̂3,j

possible to recover the conditional means µ3,j using the robust tensor power (RTP) method of Anandkumar et al. (2014).
Given these, from Proposition 4.2 of Anandkumar et al. (2012), we can recover the HMM parameters as follows:

[O]:,j = Σ2,1Σ†3,1µ3,j ,

[T]:,j = O†µ3,j .

In practice, all the required moments can be estimated from samples. Suppose the agent has observed 3m tasks and split these
inm triples of contiguous tasks. Then, we can estimate the covariance matrices between views as Σ̂i,j = 1

m

∑m
h=1 oi,h⊗oj,h,

and similarly for the second and third cross moments of the transformed observations.

D. Analysis of the Sequential Transfer Algorithm
D.1. Definitions and Assumptions

In this section, we analyze the approximate models computed by the sequential transfer algorithm (Algorithm 2) using the
RTP method (Algorithm 3). To simplify notation, we drop the task index h whenever clear from the context.

We introduce some additional vector/matrix notation. We use ‖ · ‖2 to denote the spectral norm and ‖ · ‖F to denote
the Frobenius norm. For a matrix A, we denote by λmin(A) and λmax(A) its minimum and maximum singular value,
respectively.

We make use of the following assumption in order to bound the estimation error of the reward and transition variances.

Assumption 5. There exists a positive constant σ > 0 which lower-bounds both the true reward and value variances,
σrθ(s, a) and σpθ (s, a; θ′), and their estimates σ̃rh,θ(s, a) and σ̃ph,θ(s, a; θ′) at any h.

We believe this assumption could be removed, at least for the approximate models, but at the cost of more complicated
proofs.

D.2. Supporting Lemmas

Lemma 10 (Lemma 5 of Azizzadenesheli et al. (2016)). Let {µ̂3,j}kj=1 be the columns of the third-view matrix estimated by
the RTP method (Algorithm 3 in Appendix C) after observing h tasks. Then, there exists two constants ρ1(Θ, T), ρ2(Θ, T)
such that, for any δ′ ∈ (0, 1), if

h > ρ1(Θ, T) log
2SA(S + U)

δ′
,

Sequential Transfer in Reinforcement Learning with a Generative Model

then, under Assumption 2, with probability at least 1− δ′ and up to some permutation of the columns of the third view,

‖µ̂3,j − µ3,j‖2 ≤ ρ2(Θ, T)

√
log (2SA(S + U)/δ′)

h
.

In Lemma 10, compared to the original result, we collapsed all terms of minor relevance for our purpose into two constants
ρ1, ρ2. These are functions of the given family of tasks (through maximum/minimum eigenvalues of the covariance matrices
introduced before) and of the underlying Markov chain. We refer the reader to Appendix C of Azizzadenesheli et al. (2016)
for their full expression.

We now bound the estimation error of the observation matrix O, which will be directly used to bound the errors of the
approximate MDP models.

Lemma 11 (Estimation Error of O). Let Ô be the observation matrix estimated by Algorithm 3 using h tasks, δ′ ∈ (0, 1),
and

ρ3(Θ, T) := max

{
ρ1(Θ, T),

1

λmax(Σ2,1)2
,

4

λmin(Σ3,1)2

}
.

Then, if h ≥ ρ3(Θ, T) log(6SA(S + U)/δ′), we have that, with probability at least 1− δ′,∥∥∥[O]:,j − [Ô]:,j

∥∥∥
2
≤ ρ4(Θ, T)

√
log (6SA(S + U)/δ′)

h
,

where

ρ4(Θ, T) :=
4λmax(Σ2,1)ρ2(Θ, T) + 4SA+ 8SAλmax(Σ2,1)

λmin(Σ3,1)
.

Proof. Recall that [O]:,j = Σ2,1Σ†3,1µ3,j and similarly for its estimate [Ô]:,j = Σ̂2,1Σ̂†3,1µ̂3,j . Let us decompose the total
error into the deviations of each single component,∥∥∥[O]:,j − [Ô]:,j

∥∥∥
2

=
∥∥∥Σ2,1Σ†3,1µ3,j − Σ̂2,1Σ̂†3,1µ̂3,j ± Σ̂2,1Σ̂†3,1µ3,j

∥∥∥
2

≤
∥∥∥Σ̂2,1

∥∥∥
2

∥∥∥Σ̂†3,1

∥∥∥
2
‖µ3,j − µ̂3,j‖2 +

∥∥∥Σ2,1Σ†3,1µ3,j − Σ̂2,1Σ̂†3,1µ3,j ± Σ̂2,1Σ†3,1µ3,j

∥∥∥
2

≤
∥∥∥Σ̂2,1

∥∥∥
2

∥∥∥Σ̂†3,1

∥∥∥
2
‖µ3,j − µ̂3,j‖2 +

∥∥∥Σ†3,1

∥∥∥
2
‖µ3,j‖2

∥∥∥Σ2,1 − Σ̂2,1

∥∥∥
2

+
∥∥∥Σ̂2,1

∥∥∥
2
‖µ3,j‖2

∥∥∥Σ†3,1 − Σ̂†3,1

∥∥∥
2
.

We now bound all these components separately. We first notice that, from Proposition 6 of Azizzadenesheli et al. (2016),∥∥∥Σ2,1 − Σ̂2,1

∥∥∥
2
≤
√

log 1/δ′

h
,
∥∥∥Σ3,1 − Σ̂3,1

∥∥∥
2
≤
√

log 1/δ′

h
, (8)

Using this result, ∥∥∥Σ̂2,1

∥∥∥
2
≤ ‖Σ2,1‖2 +

∥∥∥Σ2,1 − Σ̂2,1

∥∥∥
2
≤ λmax(Σ2,1) +

∥∥∥Σ2,1 − Σ̂2,1

∥∥∥
2

≤ λmax(Σ2,1) +

√
log 1/δ′

h
≤ 2λmax(Σ2,1),

which holds for

h ≥ log 1/δ′

λmax(Σ2,1)2
. (9)

Using Lemma E.1 of Anandkumar et al. (2012),∥∥∥Σ̂†3,1

∥∥∥
2
≤ 1

λmin(Σ̂3,1)
≤ 2

λmin(Σ3,1)
,

Sequential Transfer in Reinforcement Learning with a Generative Model

which holds when

‖Σ3,1 − Σ̂3,1‖
λmin(Σ3,1)

≤ 1

2
.

From (8), a sufficient condition for this to hold is

h ≥ 4 log 1/δ′

λmin(Σ3,1)2
. (10)

Under this same condition, we can apply Proposition 7 of Azizzadenesheli et al. (2016) to bound∥∥∥Σ†3,1 − Σ̂†3,1

∥∥∥
2
≤ 2

λmin(Σ3,1)

√
log 1/δ′

h
.

Since the columns µ3,j of the third-view sum up to one every S components (for the transition model) and every U
components (for the reward model), we have ‖µ3,j‖2 ≤ ‖µ3,j‖1 ≤ 2SA. Finally, we can bound the error in estimating such
columns using Lemma 10,

‖µ̂3,j − µ3,j‖2 ≤ ρ2(Θ, T)

√
log (2SA(S + U)/δ′)

h
.

Plugging everything into the initial error decomposition and rearranging,∥∥∥[O]:,j − [Ô]:,j

∥∥∥
2
≤ 4λmax(Σ2,1)ρ2(Θ, T) + 2SA+ 4SAλmax(Σ2,1)

λmin(Σ3,1)

√
log (2SA(S + U)/δ′)

h
,

which holds for when h satisfies the conditions of Lemma 10, Equation 9, and Equation 10. The two bounds of (8) and
that of Lemma 10 hold each with probability at least 1− δ′, hence the final bound holds with probability at least 1− 3δ′.
Renaming δ′ into 3δ′ concludes the proof.

Similarly to O, we also bound the estimation error of T . The proof follows Theorem 3 of Azizzadenesheli et al. (2016).

Lemma 12 (Estimation error of T). Let T̂ be the task-transition matrix estimated by Algorithm 3 using h samples and

ρ5(Θ, T) := max

{
ρ3(Θ, T),

4kρ4(Θ, T)2

λk(O)2

}
.

Then, for any δ′ ∈ (0, 1), if h ≥ ρ5(Θ, T) log(6SA(S + U)/δ′), we have that, with probability at least 1− δ′,∥∥∥[T]:,j − [T̂]:,j

∥∥∥
2
≤ ρ6(Θ, T)

√
log (6SA(S + U)/δ′)

h
,

where

ρ6(Θ, T) := 8SA
√
k

1 +
√

5

λk(O)2
ρ4(Θ, T).

Proof. Recall that [T]:,j = O†µ3,j and [T̂]:,j = Ô†µ̂3,j . Similarly to Lemma 11, we decompose the error into∥∥∥[T]:,j − [T̂]:,j

∥∥∥
2

=
∥∥∥O†µ3,j − Ô†µ̂3,j

∥∥∥
2
≤ ‖µ3,j‖2

∥∥∥O† − Ô†∥∥∥
2

+
∥∥∥Ô†∥∥∥

2
‖µ3,j − µ̂3,j‖2 .

In the proof of Lemma 11 we already bounded ‖µ3,j‖2 ≤ 2SA, while the term ‖µ3,j − µ̂3,j‖2 was bounded in Lemma 10.
Let us bound the remaining two terms. Take λk(Ô) as the k-th singular value of Ô. Then, following Azizzadenesheli et al.
(2016), ∥∥∥Ô†∥∥∥

2
≤ 1

σk(Ô)
≤ 2

σk(O)
,

Sequential Transfer in Reinforcement Learning with a Generative Model

where the second inequality follows from Lemma E.1 of Anandkumar et al. (2012) under the assumption that

‖O − Ô‖2
σk(O)

≤ 1

2
. (11)

Lemma 11 already bounds the l2 error in the columns of O. Therefore,

‖O − Ô‖2 ≤ ‖O − Ô‖F ≤
√
kmax
j∈[k]
‖Oj − Ôj‖2 ≤ ρ4(Θ, T)

√
k log (6SA(S + U)/δ′)

h
.

Therefore, a sufficient condition for (11) is

m ≥ 4kρ4(Θ, T)2 log (6SA(S + U)/δ′)
λk(O)2

.

In order to bound the deviation of the pseudo-inverse of O, we apply Theorem 1.1 of Meng & Zheng (2010),∥∥∥O† − Ô†∥∥∥
2
≤ 1 +

√
5

2
max

{∥∥O†∥∥2

2
,
∥∥∥Ô†∥∥∥2

2

}
‖O − Ô‖2 ≤

2 + 2
√

5

λk(O)2
ρ4(Θ, T)

√
k log (6SA(S + U)/δ′)

h
.

Finally, plugging everything back into the first error decomposition,∥∥∥[T]:,j − [T̂]:,j

∥∥∥
2
≤ 8SA

1 +
√

5

λk(O)2
ρ4(Θ, T)

√
k log (6SA(S + U)/δ′)

h
.

We also need the following technical lemma which bounds the difference in standard deviations between random variables
under different distributions.
Lemma 13. Let f be a function which takes values in [0, b], for some b > 0, and p, q ∈ X two probability distributions on
a finite set X . Denote by Varp[f] and Varq[f] the variance of f under p and q, respectively, and assume both to be larger
than some constant c > 0. Then, ∣∣∣∣√Varp[f]−

√
Varq[f]

∣∣∣∣ ≤ b(b

2
√
c

+ 1

)
‖p− q‖1,

Proof. Let µp := Ep[f] and µq := Eq[f]. For clarity, rewrite the standard deviations as√
Varp[f] =

√∑
x∈X

p(x)(f(x)− µp)2 = ‖f − µp‖2,p,

and similarly for q. Here ‖ · ‖2,p denotes the l2-norm weighted by p. Then,

|‖f − µp‖2,p − ‖f − µq‖2,q| ≤ |‖f − µp‖2,p − ‖f − µp‖2,q|+ |‖f − µp‖2,q − ‖f − µq‖2,q| . (12)

Let us bound these two terms separately. For the second one, a direct application of Minskowsky’s inequality yields,

‖f − µp‖2,q ≤ ‖µp − µq‖2,q + ‖f − µq‖2,q = |µp − µq|+ ‖f − µq‖2,q.
Therefore, applying the same reasoning to the other side, we obtain

|‖f − µp‖2,q − ‖f − µq‖2,q| ≤ |µp − µq| ≤ b‖p− q‖1.
We now take care of the first term. Since we have a term of the form |√x−√y| and the concavity of the square root implies
|√x−√y| ≤ 1

2 max{ 1√
x
, 1√

y}|x− y|, we can reduce the problem to bounding the difference of variances,∣∣‖f − µp‖22,p − ‖f − µp‖22,q∣∣ ≤ b2‖p− q‖1,
where we have used the fact that the term (f(x) − µp)

2 is bounded by b2. By assumption, ‖f − µp‖2,p ≥
√
c and

‖f − µp‖2,q ≥ ‖f − µq‖2,q ≥
√
c. Therefore, plugging these two bounds back into (12),

|‖f − µp‖2,p − ‖f − µq‖2,q| ≤ b
(

b

2
√
c

+ 1

)
‖p− q‖1,

which concludes the proof.

Sequential Transfer in Reinforcement Learning with a Generative Model

D.3. Main Results

We are now ready to bound the estimation error of the different MDP components. The following Lemma does exactly this
for a fixed number of tasks. Theorem 2 extends this to the sequential setting.

Lemma 14. Let p̃θ(s′|s, a) and q̃θ(u|s, a) be the transition and reward distributions estimated by Algorithm 3 after h tasks,
Ṽ ∗θ be the optimal value functions of these models, and σ̃rθ(s, a), σ̃pθ (s, a; θ′) be the corresponding variances. Assume that
the latter are both bounded below by some positive constant σ̄ > 0 for all s, a, θ, θ′. Then, with probability at least 1− δ′,
the following hold simultaneously:

|rθ(s, a)− r̃θ(s, a)| ≤ ρ4(Θ, T)U

√
log (6SA(S + U)/δ′)

h
,

|(pθ(s, a)− p̃θ(s, a))T Ṽ ∗θ′ | ≤
ρ4(Θ, T)S

1− γ

√
log (6SA(S + U)/δ′)

h
,

|σrθ(s, a)− σ̃θ(s, a)| ≤
(

1

2σ̄
+ 1

)
ρ4(Θ, T)U

√
log (6SA(S + U)/δ′)

h
,

|σrθ(s, a; Ṽ ∗θ′)− σ̃θ(s, a; Ṽ ∗θ′)| ≤
(

1

2σ̄(1− γ)
+ 1

)
ρ4(Θ, T)S

1− γ

√
log (6SA(S + U)/δ′)

h
.

Proof. Recall that the estimated transition and reward probabilities are extracted from the columns of the observation matrix
Ô. Therefore, we can directly use Lemma 11 to bound their error. For each state s, action a, next state s′, and reward u, we
have

|qθ(u|s, a)− q̃θ(u|s, a)| ≤ ρ4(Θ, T)

√
log (6SA(S + U)/δ′)

h
,

|pθ(s′|s, a)− p̃θ(s|s, a)| ≤ ρ4(Θ, T)

√
log (6SA(S + U)/δ′)

h
.

These inequalities hold simultaneously with probability at least 1− δ′. Therefore, since rewards are bounded in [0, 1],

|rθ(s, a)− r̃θ(s, a)| ≤ ‖qθ(·|s, a)− q̃θ(·|s, a)‖1 ≤ ρ4(Θ, T)U

√
log (6SA(S + U)/δ′)

h
.

Similarly, for any function taking values in [0, 1/(1− γ)],

|(pθ(s, a)− p̃θ(s, a))TV | ≤ 1

1− γ ‖pθ(·|s, a)− p̃θ(·|s, a)‖1 ≤
ρ4(Θ, T)S

1− γ

√
log (6SA(S + U)/δ′)

h
.

Finally, a direct application of Lemma 13 yields the desired bounds on the variances,

|σrθ(s, a)− σ̃rθ(s, a)| ≤
(

1

2σ̄
+ 1

)
ρ4(Θ, T)U

√
log (6SA(S + U)/δ′)

h
,

|σrθ(s, a; θ′)− σ̃pθ (s, a; θ′)| ≤
(

1

2σ̄(1− γ)
+ 1

)
ρ4(Θ, T)S

1− γ

√
log (6SA(S + U)/δ′)

h
.

Theorem 2. Let {M̃h
θ}θ∈Θ,h≥1 be the sequence of MDP models estimated by Algorithm 2, with p̃h,θ(s′|s, a) and q̃h,θ(u|s, a)

the transition and reward distributions, Ṽ ∗h,θ the optimal value functions, and σ̃rh,θ(s, a), σ̃ph,θ(s, a; θ′) the corresponding
variances. There exist constants ρ, ρr, ρp, ρσr , ρσp such that, for δ′ ∈ (0, 1), if

h > ρ log
2h2SA(S + U)

δ′
,

Sequential Transfer in Reinforcement Learning with a Generative Model

then, with probability at least 1− δ′, the following hold simultaneously for all h ≥ 1, s ∈ S, a ∈ A, and θ, θ′ ∈ Θ:

|rθ(s, a)− r̃h,θ(s, a)| ≤ ρr
√

log ch,δ′

h
,

|(pθ(s, a)− p̃h,θ(s, a))T Ṽ ∗h,θ′ | ≤ ρp
√

log ch,δ′

h
,

|σrθ(s, a)− σ̃rh,θ(s, a)| ≤ ρσr
√

log ch,δ′

h
,

|σrθ(s, a; θ′)− σ̃ph,θ(s, a; θ′)| ≤ ρσp
√

log ch,δ′

h
,

where ch,δ′ := π2h2SA(S + U)/δ′.

Proof. Let Eh be the event under which the bounds of Lemma 14 all hold after observing h tasks. We need to prove that,
with high probability, there is no h in which the event does not hold. We know that Eh hold with probability at least 1− δ′′
from Lemma 14, where δ′′ = 6δ′

π2h2 . Too see this, notice that we introduced an extra π2h2/6 term in the confidence level
ch,δ′ . Then,

P {∃h ≥ 1 : Eh = 0} ≤
∞∑
h=1

P {Em = 0} ≤ 6δ′

π2

∞∑
h=1

1

h2
= δ′,

where the first inequality is the union bound, the second is from Lemma 14, and the last equality is from the value of the
p-series for p = 2. Then, the main theorem follows after renaming the constants in Lemma 14.

Lemma 15. Let Θ̄h be a set that contains θ∗h with probability at least 1 − δ. Then, for any δ′ ∈ (0, 1) and θ ∈ Θ, with
probability at least 1− δ′,

P
{
θ∗h+1 = θ

}
≤
∑
θ′∈Θ̄h

T̂ (θ, θ′) + δk + ρT (Θ, T)k

√
log 6SA(S + U)/δ′

h
. (13)

Proof. We start by bounding the probability that the next task is θ as

P
{
θ∗h+1 = θ

}
=
∑
θ′∈Θ

P
{
θ∗h+1 = θ|θ∗h = θ′

}
P {θ∗h = θ′} ≤

∑
θ′∈Θ̄h

P
{
θ∗h+1 = θ|θ∗h = θ′

}
P {θ∗h = θ′}+ δk

≤
∑
θ′∈Θ̄h

P
{
θ∗h+1 = θ|θ∗h = θ′

}
+ δk =

∑
θ′∈Θ̄h

T (θ, θ′) + δk,

where the first inequality follows from the condition on Θ̄h, the second by bounding the probability by one, and the last
equality by definition of T . The result follows by applying Lemma 12 and renaming the constants.

Theorem 3. Let δ′ ∈ (0, 1) and δ ≤ δ′

3m2 be the confidence value for Algorithm 1. Suppose that, before each task h, a
model θ is eliminated from the initial active set if:

∑
θ′∈Θ̄h

T̂h(θ, θ′) + δk + ρT k

√
log(9kdm2/δ′)

h
≤ η.

Then, for η = δ′

3km2 , with probability at least 1− δ′, at any time the true model is never eliminated from the initial set.

Proof. We have

P
{
θ∗h /∈ Θ̃h

}
≤ P

{
θ∗h /∈ Θ̃h ∧ θ∗h−1 ∈ Θ̃h−1

}
+ P

{
θ∗h−1 /∈ Θ̃h−1

}
≤

h∑
l=2

P
{
θ∗l /∈ Θ̃l ∧ θ∗l−1 ∈ Θ̃l−1

}
,

Sequential Transfer in Reinforcement Learning with a Generative Model

where we applied the first inequality recursively to obtain the second one. We can bound each term in the second sum by

P
{
θ∗l /∈ Θ̃l ∧ θ∗l−1 ∈ Θ̃l−1

}
≤ P

{
θ∗l /∈ Θ̃l ∧ θ∗l−1 ∈ Θ̃l−1 ∧ θ∗l−1 ∈ Θ̄l−1

}
+ P

{
θ∗l−1 /∈ Θ̄l−1

}
≤ P

{
θ∗l /∈ Θ̃l ∧ θ∗l−1 ∈ Θ̃l−1 ∧ θ∗l−1 ∈ Θ̄l−1

}
+ δ,

where Θ̄l−1 is the set of active models after the application of Algorithm 1 to Θ̃l−1 and the second inequality follows from
the fact this algorithm discards θ∗l−1 with probability at most 1− δ. In order to bound the first term,

P
{
θ∗l /∈ Θ̃l ∧ θ∗l−1 ∈ Θ̃l−1 ∧ θ∗l−1 ∈ Θ̄l−1

}
≤
∑
θ∈Θ

P
{
θ∗l = θ ∧ θ /∈ Θ̃l ∧ θ∗l−1 ∈ Θ̃l−1 ∧ θ∗l−1 ∈ Θ̄l−1

}
.

Let us split this probability based on whether the concentration event on T of Lemma 12 holds or not. Using δ′

3km2 as
confidence value, this probability is trivially bounded by k δ′

3km2 when the event of Lemma 12 does not hold. Assume this
event holds. Then, Lemma 15 implies that the probability of the next task being θ is bounded by δ′

3km2 , and the overall sum
is bounded by k δ′

3km2 . Notice that we divided δ′ by 3km2 w.r.t. the value used in Lemma 12 and Lemma 15. Putting these
together,

P
{
θ∗l /∈ Θ̃l ∧ θ∗l−1 ∈ Θ̃l−1

}
≤ δ +

2δ′

3m2
.

Using the union bound,

P
{
∃h ∈ [m] : θ∗h /∈ Θ̃h

}
≤

m∑
h=2

P
{
θ∗h /∈ Θ̃h

}
≤

m∑
h=2

h∑
l=2

P
{
θ∗l /∈ Θ̃l ∧ θ∗l−1 ∈ Θ̃l−1

}
≤
(
δ +

2δ′

3m2

)
m2.

Therefore, the result holds with probability at least 1− δ′ by taking δ ≤ δ′

3m2 .

Sequential Transfer in Reinforcement Learning with a Generative Model

0 1 2 3 4

·10−2

2

4

6

8

·104

ε

S
am

p
le

C
om

p
le
x
it
y

10 15 20 25 30 35 40 45

125

130

135

Grid Size

S
am

p
le

C
om

p
le
x
it
y

0.003 0.00295 0.0029 0.0025 0.001 0

0

500

1,000

1,500

2,000

∆

S
am

p
le

C
om

p
le

x
it

y
E

x
ce

ss

Figure 3. Ablation studies for the main parameters of PTUM. (left) The sample complexity is a piece-wise constant and bounded function
of ε. (middle) The sample complexity grows logarithmically with the grid size (i.e., the number of states). (right) The excess in sample
complexity (w.r.t. the one with perfect models) decreases with the approximation error ∆.

E. Additional Details on the Experiments
In this section, we provide all the necessary details to allow reproducibility of our experiments. We also provide further
results and ablation studies to better understand how the proposed algorithms behave in different settings and with different
parameters.

E.1. Experiments with PTUM

For these experiments we used a variant of the 4-rooms domain of Sutton et al. (1999). Here the agent navigates a grid
with two rooms divided by a vertical wall in the middle and connected by a door. There are four actions (up, down, right,
left) and there is a probability of 0.1 that the action chosen by the agent fails and a random one is taken instead. The agent
always starts in the bottom-left corner and must reach certain goal states. The reward function (e.g., the goal locations) and
the size of the grid vary in each experiment and will be specified later.

Experiments of Figure 1 left The agent acts in a 12x12 grid and it receives reward of 1 when reaching a goal state, and 0
otherwise. There are twelve possible tasks with goals and doors in different positions and whose models are fully known to
the agent. The parameters for running PTUM are: γ = 0.99, δ = 0.01, ε = 0.1, and n = 100000. Both Rmax and MaxQInit
switch state-action pairs from unknown to known after 10 samples. Online algorithms without a generative model are run
for 100 episodes of 100 steps each. Since goal states are modelled as absorbing states with reward 1, these algorithms are
able to retrieve significant information in each episode to make the comparison with PTUM (which uses a generative model)
fair. In fact, it suffices to reach a goal to get information about it. For this reason, each sample retrieved by PTUM from the
generative model is considered as a single step in an episode.

Experiments of Figure 1 right Here the agent acts in a 12x12 grid without any wall, and has to discriminate among 7
possible tasks. Each task has 7 goals whose position is shared. However, given a goal state, reward values can differ between
tasks. To be more precise, goals are placed in the corners or nearby them. The true task has the optimal goal giving a reward
of 0.8, while all the other tasks have a different best-goal with a reward of 0.81. We set ε = 1, γ = 0.9999, δ = 0.01, and
n = 100000. Both RMax and MaxQInit switch state-action pairs from unknown to known after 240 samples. The online
algorithms without a generative model are run for 1000 episodes of 100 steps each. Due to the fact that goal states are
modeled as absorbing state with reward 0 and, since all tasks have goals in the same position, online algorithms are able to
get at most one informative sample in each episode (i.e., one with non-zero reward). For this reason, each sample retrieved
by PTUM from the generative model is reported as an entire episode in the plots, which makes comparison fair.

It is important to note that in both these experiments the parameter needed by Rmax to switch between unknown and known
state-action pairs (which directly affects the learning speed) is set way below the one recommended by the theory (see
Brafman & Tennenholtz (2002)).

Additional results In order to verify the main theoretical results from the sample-complexity analysis of PTUM, we
report ablation studies for its main parameters.

Sequential Transfer in Reinforcement Learning with a Generative Model

Sample complexity vs accuracy The setting in this case is a grid of dimension 12x12 where a reward of 1 is given when
reaching a goal state and 0 otherwise. The agent has knowledge of 12 possible perfect models, each of which has a single
goal state located in the opposite corner from the starting one. The door position is different in each task. We set γ to 0.99, δ
to 0.01, n to 1000000, and test our algorithm for different values of ε.

Figure 3(left) shows how the sample complexity changes as a function of ε. First, we notice that the function is piece-wise
constant, which is a direct consequence of the finite set of models. In fact, varying ε changes the set of models Θε that must
be discarded by the algorithm before stopping. Second, we notice that the function is bounded in ε, i.e., we are allowed to
set ε = 0 and the algorithm returns an optimal policy after discarding all the models different from the true one.

Sample complexity vs number of states In this experiment, the agent faces grids of increasing sizes. The agent obtains
reward 1 when ending up in a goal state and 0 otherwise. We consider three known models, each with the goal state in a
corner different from the starting one and a different door position. We set ε to 0.0001, γ to 0.99, δ to 0.01, and n to 100000.

Figure 3(middle) shows how the sample complexity changes when the grid size (i.e., the number of states) increases. As
expected, we obtain a logarithmic growth due to the union bounds used to form the confidence sets. As before, the function
is piece-wise due to the finite number of models.

Sample complexity vs model error A grid of fixed size 6x6 is considered. The agent has knowledge of 6 models, each
of which has the goal state placed in the opposite corner w.r.t. the starting one. All models have reward 1 when reaching the
goal state and 0 otherwise. Each task differs from the others in the door position. We set ε to 0.13, γ to 0.9, δ to 0.1, and
n to 1000000. Here we study the sample complexity of PTUM with the exact set of models when varying the maximum
uncertainty ∆.

Figure 3(right) shows the excess in sample complexity w.r.t. the case with perfect models when the bound ∆ on the
approximation error decreases. Once again, we obtain a piece-wise constant function since, similarly to ε, a higher error
bound ∆ changes the set of models that must be discarded by the algorithm and hence its sample complexity. Notably, we
do not require ∆ = 0 to recover the ”oracle” sample complexity.

E.2. Sequential Transfer Experiments

For these experiments we consider a grid-world similar to the objectworld domain of Levine et al. (2011). Here we have an
agent navigating a 5× 5 grid where each cell is either empty or contains one item (among a set of possible items). Each item
is associated to a different reward value and can be picked up by the agent when performing a specific action (among up,
down, left, right) in the state containing the item. To keep the problem simple and Markovian, we suppose items immediately
re-spawn after being picked up. That is, the agent can pick up the same item indefinitely as far as it manages to return to the
state containing it. The transition dynamics include a certain probability of failing the action as in the previous experiments.
To be more precise, in this setting failing actions regards exclusively the transition to other states, while the intended item is
picked up with another fixed probability. The agent sequentially faces 8 different tasks as follows. Suppose the tasks are
ordered in a list. Then, given the current task, with high probability the next task to be faced is the successor in the list,
while there is a small probability of skipping one task and going two steps ahead or staying in the same task. The values of
these probabilities (rewards, transitions, and task-transitions) will be specified in each experiment. For what concerns the
estimation of the models, RTP is run with 100 restarts for 100 iterations. We use low-rank singular value decomposition to
pre-process the empirical moments estimated by Algorithm 3 as explained by Anandkumar et al. (2014). This, empirically,
seems to be somehow critical for the stability of the algorithm and for its computational efficiency. Regarding this last point,
we note that after SVD is applied, Algorithm 3 only needs to decompose a tensor of size k × k × k, where k is the number
of models (k = 8 in this case).

Experiments of Figure 2 As mentioned in the main paper, in this experiment only the reward changes between
tasks, while the transition dynamics are fixed and have a failure probability of 0.1. The failure probability of re-
wards is instead fixed to 0.012 between tasks. The possible objects that the agent can get have the following rewards:
{0, 0.02, 0.04, 0.2, 0.22, 0.24, 0.5, 0.52, 0.54, 0.96, 0.98, 1}. Tasks are generated in the following way: first, task with
indexes in {0, 2, 3, 5} are randomly generated using only objects with values {0, 0.2, 0.5, 0.96}. Then tasks with index 1
and 7 are generated starting from model 0, in order for them to be ε-optimal with it. The same is done for task with index
4 and 5 w.r.t. task with index 5. In particular, these modifications are carried out randomly, using objects with a slightly
higher reward w.h.p. in each state-action pair. A small probability of using objects with smaller rewards is also present. We

Sequential Transfer in Reinforcement Learning with a Generative Model

0 20 40 60 80

1

1.1

1.2

1.3

1.4

Tasks

N
or
m
al
iz
ed

S
am

p
le

C
om

p
le
x
it
y Static

Sequential

0 20 40 60 80

0.6

0.8

1

1.2

Tasks

N
or
m
a
li
ze
d
E
x
p
ec
te
d
R
et
u
rn

Static
Sequential
MaxQInit

Figure 4. Sequential transfer experiment when both rewards and transition probabilities change across tasks. (left) The sample complexity
normalized by the one of PTUM with known models. (right) The expected return normalized by the optimal one for each specific task.

used this task-generation process in order to guarantee that there exist tasks which are hard to distinguish by PTUM, which
makes the problem more challenging. If we simply generated tasks randomly as described before (without creating any
“similar” copies), the identification problem would become almost trivial even in the presence of estimated models.

The task-transitions succeed to the natural next task in the list with probability 0.97, and fail in favor of the two adjacent
tasks with probability 0.015 each. A no-transfer uniform-sampling strategy is blindly run for 300 tasks, querying 50 samples
per each state-action pair. This is done to make sure that the estimated models eventually become accurate enough to make
PTUM enter the transfer mode. Once this 300 tasks are over, the transfer begins and goes on for 100 tasks. Once the model
has been identified, a post-sample of 30 queries is run in each state-action pair in order to obtain a minimum accuracy level
in the empirical models. When the identification of PTUM fails (i.e., the algorithm exceeds the budget n), no-transfer
uniform sampling is run, and its complexity is reported in the plots.

For the computation of the model inaccuracy bounds (as prescribed by Theorem 2) we set ρ = 0.135 for all models. We
chose this value so that the inaccuracies after the start-up phase are small enough to make the algorithm enter the transfer
mode. Since we noticed that the estimated models become accurate rather quickly, we further decided to decay ρ for the first
100 tasks when PTUM enters the transfer mode from its initial value to 0.006. This allows us to plot a faster and more clear
transitory in the sample complexity, but in principle this step could be ignored as the model inaccuracies naturally decay by
Theorem 2. For what concerns the computation of the initial sets of models for PTUM from the estimated task-transition
matrix T̂ , we use the technique described in Theorem 3 with η = 0.087 and ρT = 0.001. These values were chosen so
that the algorithm is likely not to discard models whose predicted probability is above 0.005. To add further robustness,
we always keep the top-3 most probable next models (according to T̂), even if they would be eliminated by the previous
condition.

At each step, the agent is required to find a ε-optimal policy with ε = 0.5 and δ = 0.01. The discount factor γ is set to 0.9.
The expected returns of Figure 2 right are estimated by running the obtained policies for 30 episodes of 10 steps each and
averaging the results. Finally, the update constant for MaxQInit is fixed to 100.

Changing both rewards and transition probabilities Since in our original domain only the positions of the items (i.e.,
the rewards) change across tasks, here we consider a variant where the transition probabilities change as well. We now
generate tasks as follows. The failure probability of the actions changes as well (ranging from 0.1 up to 0.45), and we
randomize the rewards as explained before. Again, tasks are generated to be ε-optimal as described above, and all the other
parameters are set in the same way, except for the uniform sampling costant: no-transfer iterations query the generative
model for 150 samples in each state-action pair, while the post-sampling (after identification) takes 100 samples.

The results, shown in Figure 4, are coherent with the ones of Figure 2 for the case where only rewards change. This is an
interesting result since the number of parameters that must be estimated by the spectral learning algorithm doubled.

Increasing the MDP stochasticity In the experiments reported above, both the rewards and the transition probabilities
are almost deterministic. We now repeat these experiments by increasing the stochasticity in both components. For what
concerns the rewards, the possible objects are {0, 0.02, 0.2, 0.22, 0.5, 0.52, 0.96, 1}, and they are all used when generating
the tasks. Moreover, the fact of generating ε-optimal tasks is dropped here. The failure probability of the reward is set to 0.3.
The transition failure probability is instead the same of the previous experiment, ranging from 0.1 to 0.45, depending on the

Sequential Transfer in Reinforcement Learning with a Generative Model

0 20 40 60 80
0.97

0.98

0.99

1

1.01

1.02

Tasks

N
or
m
al
iz
ed

S
am

p
le

C
om

p
le
x
it
y Static

Sequential

0 500 1,000 1,500 2,000 2,500

0

0.2

0.4

0.6

0.8

1

Tasks

M
o
d
el

E
st
im

at
io
n
E
rr
or

0.001
0.05
0.1
0.15

Figure 5. (left) Sequential transfer experiment with higher reward and transition stochasticity. (right) Sequential transfer experiment with
higher stochasticy in the transition between tasks. Each curve corresponds to a different value of failure probability in the task-transition
matrix.

task. Due to the higher stochasticity, no-transfer uniform sampling requires 250 samples per each state-action pair, while
transfer post-sampling is set to 200. All the other parameters are kept the same.

Figure 5(left) shows the results. Once again, we have the sequential transfer algorithm outperforming its static counterpart.
Compared to the previous experiments, here we notice only a small improvement of the sample complexity as a function
of the number of tasks (i.e., rather flat curves). This is mostly due to the fact that now it is harder to have tasks that are
very close to each other. This implies that the set of models that need to be discarded by PTUM remains roughly the same
after the algorithm starts entering the transfer mode, and thus improvements in the model accuracy only lead to small
improvements in the sample complexity.

Increasing the task-transition stochasticity In the previous experiments the transitions between tasks are almost deter-
ministic. The stochasticity in these components seems to be the most critical parameter for what concerns the number of
tasks needed by RTP to guarantee accurate estimations. For this purpose, we now show the l∞ error of the estimated MDP
models (with respect to the true ones) for different levels of stochasticity in the task-transition probabilities. Here we fix 10
different tasks, generated by randomizing the items as explained before, and run the RTP algorithm sequentially to obtain
the error estimates.

Figure 5(right) shows the results. Here we clipped the maximum error to 1 for better visualization. This is anyway reasonable
since the algorithm estimates probabilities and we could alternatively normalize the estimates. We note that the estimation
error decays as expected for all values of stochasticity. The algorithm requires, however, many more tasks to get accurate
estimates when the stochasticity increases.

