Appendix

A. κ-PI-DQN and κ-VI-DQN Algorithms

A.1. Detailed Pseudo-codes

In this section, we report the detailed pseudo-codes of κ-PI-DQN and κ-VI-DQN algorithms, described in Section 4.3, side-by-side.

Algorithm 5 κ-PI-DQN

1: Initialize replay buffer D: Q-networks Q_θ and Q_ϕ with random weights θ and ϕ;
2: Initialize target networks Q'_θ and Q'_ϕ with weights $\theta' \leftarrow \theta$ and $\phi' \leftarrow \phi$;
3: for $i = 0, \ldots, N_\kappa - 1$ do
4: # Policy Improvement
5: for $t = 1, \ldots, T_\kappa$ do
6: Select a_t as an ϵ-greedy action w.r.t. $Q_\theta(s_t, a)$;
7: Execute a_t, observe r_t and s_{t+1}, and store the tuple (s_t, a_t, r_t, s_{t+1}) in D;
8: Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^N$ from D;
9: Update θ by minimizing the following loss function:
10: $L_{Q_\theta} = \frac{1}{N} \sum_{j=1}^N \left[Q_\theta(s_j, a_j) - (r_j + \gamma \max_a Q'_\theta(s_{j+1}, a)) \right]^2$, where
11: $V_\phi(s_{j+1}) = Q_\phi(s_{j+1}, \pi_{t-1}(s_{j+1}))$ and $\pi_{t-1}(s_{j+1}) \in \arg \max_a Q'_\phi(s_{j+1}, a)$;
12: Copy θ to θ' occasionally $(\theta' \leftarrow \theta)$;
13: end for
14: # Policy Evaluation
15: for $t' = 1, \ldots, T(\kappa)$ do
16: Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^N$ from D;
17: Update ϕ by minimizing the following loss function:
18: $L_{Q_\phi} = \frac{1}{N} \sum_{j=1}^N \left[Q_\phi(s_j, a_j) - (r_j + \gamma Q'_\phi(s_{j+1}, \pi_{t}(s_{j+1}))) \right]^2$;
19: Copy ϕ to ϕ' occasionally $(\phi' \leftarrow \phi)$;
20: end for
21: end for

Algorithm 6 κ-VI-DQN

1: Initialize replay buffer D: Q-networks Q_θ and Q_ϕ with random weights θ and ϕ;
2: Initialize target network Q'_θ with weights $\theta' \leftarrow \theta$;
3: for $i = 0, \ldots, N_\kappa - 1$ do
4: # Evaluate $T_\kappa V_\phi$ and the κ-greedy policy w.r.t. V_ϕ
5: for $t = 1, \ldots, T_\kappa$ do
6: Select a_t as an ϵ-greedy action w.r.t. $Q_\theta(s_t, a)$;
7: Execute a_t, observe r_t and s_{t+1}, and store the tuple (s_t, a_t, r_t, s_{t+1}) in D;
8: Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^N$ from D;
9: Update θ by minimizing the following loss function:
10: $L_{Q_\theta} = \frac{1}{N} \sum_{j=1}^N \left[Q_\theta(s_j, a_j) - (r_j + \kappa \max_a Q'_\theta(s_{j+1}, a)) \right]^2$, where
11: $V_\phi(s_{j+1}) = Q_\phi(s_{j+1}, \pi(s_{j+1}))$ and $\pi(s_{j+1}) \in \arg \max_a Q_\phi(s_{j+1}, a)$;
12: Copy θ to θ' occasionally $(\theta' \leftarrow \theta)$;
13: end for
14: Copy θ to ϕ $(\phi \leftarrow \theta)$
15: end for
Multi-step Greedy Reinforcement Learning Algorithms

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon (T)</td>
<td>1000</td>
</tr>
<tr>
<td>Adam stepsize</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Target network update frequency</td>
<td>1000</td>
</tr>
<tr>
<td>Replay memory size</td>
<td>100000</td>
</tr>
<tr>
<td>Discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>Total training time steps</td>
<td>10000000</td>
</tr>
<tr>
<td>Minibatch size</td>
<td>32</td>
</tr>
<tr>
<td>Initial exploration</td>
<td>1</td>
</tr>
<tr>
<td>Final exploration</td>
<td>0.1</td>
</tr>
<tr>
<td>Final exploration frame</td>
<td>1000000</td>
</tr>
<tr>
<td>#Runs used for plot averages</td>
<td>10</td>
</tr>
<tr>
<td>Confidence interval for plot runs</td>
<td>(\sim 95%)</td>
</tr>
</tbody>
</table>

Table 3: Hyperparameters for \(\kappa \)-PI-DQN and \(\kappa \)-VI-DQN.

A.2. Ablation Test for \(C_{FA} \)

![Figure 4: Performance of \(\kappa \)-PI-DQN and \(\kappa \)-VI-DQN on Breakout for different values of \(C_{FA} \).](image)

A.3. \(\kappa \)-PI-DQN and \(\kappa \)-VI-DQN Plots

In this section, we report additional results of the application of \(\kappa \)-PI-DQN and \(\kappa \)-VI-DQN on the Atari domains. A summary of these results has been reported in Table 1 in the main paper.

![Figure 5: Training performance of the ‘naive’ baseline \(N_{\kappa} = T \) and \(\kappa \)-PI-DQN, \(\kappa \)-VI-DQN for \(C_{FA} = 0.05 \) on SpaceInvaders](image)
Figure 6: Training performance of the ‘naive’ baseline $N_r = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on Seaquest

Figure 7: Training performance of the ‘naive’ baseline $N_r = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on Enduro

Figure 8: Training performance of the ‘naive’ baseline $N_r = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on BeamRider

Figure 9: Training performance of the ‘naive’ baseline $N_r = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on Qbert
B. κ-PI-TRPO and κ-VI-TRPO Algorithms

B.1. Detailed Pseudo-codes

In this section, we report the detailed pseudo-codes of the κ-PI-TRPO and κ-VI-TRPO algorithms, described in Section 4.4, side-by-side.

Algorithm 7 κ-PI-TRPO

1: Initialize V-networks V_θ and V_φ with random weights θ and φ; policy network π_ψ with random weights ψ;
2: for $i = 0, \ldots, N_\kappa - 1$ do
3: for $t = 1, \ldots, T_\kappa$ do
4: Simulate the current policy π_ψ for M time-steps;
5: for $j = 1, \ldots, M$ do
6: Calculate $R_j(\kappa, V_\varphi) = \sum_{t=j}^{M}(\gamma \kappa)^{t-j}r_t(\kappa, V_\varphi)$ and $\rho_j = \sum_{t=j}^{M} \gamma^{t-j}r_t$;
7: end for
8: Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
9: Update θ by minimizing the loss function: $\mathcal{L}_{V_\theta} = \frac{1}{N} \sum_{j=1}^{N} (V_\theta(s_j) - R_j(\kappa, V_\varphi))^2$;
10: end for
11: Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
12: Update ψ using TRPO with advantage function computed by $\{(R_j(\kappa, V_\varphi), V_\theta(s_j))\}_{j=1}^{N}$;
13: end for
14: # Policy Evaluation
15: Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
16: Update ϕ by minimizing the loss function: $\mathcal{L}_{V_\phi} = \frac{1}{N} \sum_{j=1}^{N} (V_\phi(s_j) - \rho_j)^2$;
17: end for

Algorithm 8 κ-VI-TRPO

1: Initialize V-networks V_θ and V_φ with random weights θ and φ; policy network π_ψ with random weights ψ;
2: for $i = 0, \ldots, N_\kappa - 1$ do
3: for $t = 1, \ldots, T_\kappa$ do
4: Simulate the current policy π_ψ for M time-steps;
5: for $j = 1, \ldots, M$ do
6: Calculate $R_j(\kappa, V_\varphi) = \sum_{t=j}^{M}(\gamma \kappa)^{t-j}r_t(\kappa, V_\varphi)$;
7: end for
8: Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
9: Update θ by minimizing the loss function: $\mathcal{L}_{V_\theta} = \frac{1}{N} \sum_{j=1}^{N} (V_\theta(s_j) - R_j(\kappa, V_\varphi))^2$;
10: Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
11: Update ψ using TRPO with advantage function computed by $\{(R_j(\kappa, V_\varphi), V_\theta(s_j))\}_{j=1}^{N}$;
12: end for
13: Copy θ to ϕ ($\phi \leftarrow \theta$);
14: end for
Multi-step Greedy Reinforcement Learning Algorithms

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon (T)</td>
<td>1000</td>
</tr>
<tr>
<td>Adam stepsize</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>Number of samples per Iteration</td>
<td>1024</td>
</tr>
<tr>
<td>Entropy coefficient</td>
<td>0.01</td>
</tr>
<tr>
<td>Discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>Number of Iterations</td>
<td>2000</td>
</tr>
<tr>
<td>Minibatch size</td>
<td>128</td>
</tr>
<tr>
<td>#Runs used for plot averages</td>
<td>10</td>
</tr>
<tr>
<td>Confidence interval for plot runs</td>
<td>$\sim 95%$</td>
</tr>
</tbody>
</table>

Table 4: Hyper-parameters of κ-PI-TRPO and κ-VI-TRPO on the MuJoCo domains.

B.2. Ablation Test for C_{FA}

Figure 10: Performance of κ-PI-TRPO and κ-VI-TRPO on Walker2d-v2 for different values of C_{FA}.

B.3. κ-PI-TRPO and κ-VI-TRPO Plots

In this section, we report additional results of the application of κ-PI-TRPO and κ-VI-TRPO on the MuJoCo domains. A summary of these results has been reported in Table 2 in the main paper.

Figure 11: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on Ant-v2.
Figure 12: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on HalfCheetah-v2.

Figure 13: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on HumanoidStandup-v2.

Figure 14: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on Swimmer-v2.

Figure 15: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on Hopper-v2.