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Abstract 
It is increasingly common to encounter data 
from dynamic processes captured by static cross-
sectional measurements over time, particularly in 
biomedical settings. Recent attempts to model 
individual trajectories from this data use opti-
mal transport to create pairwise matchings be-
tween time points. However, these methods can-
not model continuous dynamics and non-linear 
paths that entities can take in these systems. To 
address this issue, we establish a link between 
continuous normalizing flows and dynamic opti-
mal transport, that allows us to model the expected 
paths of points over time. Continuous normalizing 
flows are generally under constrained, as they are 
allowed to take an arbitrary path from the source 
to the target distribution. We present Trajecto-
ryNet, which controls the continuous paths taken 
between distributions to produce dynamic optimal 
transport. We show how this is particularly appli-
cable for studying cellular dynamics in data from 
single-cell RNA sequencing (scRNA-seq) tech-
nologies, and that TrajectoryNet improves upon 
recently proposed static optimal transport-based 
models that can be used for interpolating cellular 
distributions. 

1. Introduction 
In data science we are often confronted with cross-sectional 
samples of time-varying phenomena, especially in biomedi-
cal data. Examples include health measurements of different 
age cohorts (Oeppen & Vaupel, 2002), or disease measure-
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ments at different stages of disease progression (Wadding-
ton, 1942). In these measurements we consider data that is 
sampled at multiple timepoints, but at each timepoint we 
have access only to a distribution (cross-section) of the pop-
ulation at that time. Extracting the longitudinal dynamics of 
development or disease from static snapshot measurements 
can be challenging as there are few methods of interpolation 
between distributions. Further exacerbating this problem 
is the fact that the same entities are often not measured at 
each time, resulting in a lack of point-to-point correspon-
dences. Here, we propose to formulate this problem as one 
of unbalanced dynamic transport, where the goal is to trans-
port entities from one cross sectional measurement to the 
next using efficient and smooth paths. Our main contribu-
tion is to establish a link between continuous normalizing 
flows (CNF) (Grathwohl et al., 2019) and dynamic optimal 
transport (Benamou & Brenier, 2000), allowing us to ef-
ficiently solve the transport problem using a Neural ODE 
framework (Chen et al., 2018a). To our knowledge, Trajec-
toryNet1 is the first method to consider the specific paths 
taken by a CNF between distributions. 

The continuous normalizing flow formulation allows us to 
generalize optimal transport to a series of distributions as 
in recent work (Chen et al., 2018b; Benamou et al., 2019). 
These works focus on the theoretical aspects of the problem, 
here focus on the computational aspects. This link allows us 
to smooth flows over multiple and possibly unevenly spaced 
distributions in high dimensions. This matches the setting 
of time series data from single-cell RNA sequencing. 

Single-cell RNA sequencing (Macosko et al., 2015) is a 
relatively new technology that has made it possible for sci-
entists to randomly sample the entire transcriptome, i.e., 
20-30 thousand species of mRNA molecules representing 
transcribed genes of the cell. This technology can reveal 
detailed information about the identity of individual cells 
based on transcription factors, surface marker expression, 
cell cycle and many other facets of cellular behavior. In 
particular, this technology can be used to learn how cells dif-
ferentiate from one state to another: for example, from em-
bryonic stem cells to specified lineages such as neuronal or 
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cardiac. However, hampering this understanding is the fact 
that scRNA-seq only offers static snapshots of data, since 
all cells are destroyed upon measurement. Thus it is impos-
sible to monitor how an individual cell changes over time. 
Moreover, due to the expensive nature of this technology, 
generally only a handful of discrete timepoints are collected 
in measuring any transition process. TrajectoryNet is espe-
cially well suited to this data modality. Existing methods 
attempt to infer a trajectory within one timepoint (Haghverdi 
et al., 2016; Saelens et al., 2019; La Manno et al., 2018), or 
interpolate linearly between two timepoints (Yang & Uh-
ler, 2019; Schiebinger et al., 2019), but TrajectoryNet can 
interpolate non-linearly using information from more than 
two timepoints. TrajectoryNet has advantages over existing 
methods in that it: 

1. can interpolate by following the manifold of observed 
entities between measured timepoints, thereby solving 
the static-snapshot problem, 

2. can create continuous-time trajectories of individual en-
tities, giving researchers the ability to follow an entity 
in time, 

3. forms a deep representational model of system dynam-
ics, which can then be used to understand drivers of 
dynamics (gene logic in the cellular context), via per-
turbation of this deep model. 

While our experiments apply this work specifically to cel-
lular dynamics, these penalties can be used in many other 
situations where we would like to model dynamics based 
on cross-sectional population level data. 

2. Background and Related Work 
Optimal Transport. Introduced originally by (Monge, 
1781) and in modern form by (Kantorovich, 1942), the lin-
ear program formulation of static optimal transport (OT) 
has the relatively high cost of O(n3) for discrete measures. 
Recently, there have been a number of fast approximations 
using entropic regularization. Cuturi (2013) presented a 
parallel algorithm for the discrete case as an application 
of Sinkhorn’s algorithm (Sinkhorn, 1964). Recent effort 
approximates OT on subspaces (Muzellec & Cuturi, 2019) 
or even a single dimension (Kolouri et al., 2019). These 
efforts emphasis the importance to the field of obtaining 
fast OT algorithms. Another direction that has recently re-
ceived increased attention is in unbalanced optimal transport 
where the goal is to relax the problem to add and remove 
mass (Benamou, 2003; Chizat et al., 2018; Liero et al., 
2018; Schiebinger et al., 2019). While many efficient static 
optimal transport algorithms exist, and recently for the un-
balanced case (Yang & Uhler, 2019), much less attention 

has focused on dynamic optimal transport, the focus of this 
work. 

Dynamic Optimal Transport. Another formulation of 
optimal transport is known as dynamic optimal transport. 
Benamou & Brenier (2000) showed how the addition of a 
natural time interpolation variable gives an alternative in-
terpretation with links to fluid dynamics that surprisingly 
leads to a convex optimization problem. However, while 
solvers for the discretized dynamic OT problem are effective 
in low dimensions and for small problems they require a dis-
cretization of space into grids giving cost exponential in the 
dimension (See Peyré & Cuturi (2019) Chap. 7 for a good 
overview of this problem). One of our main contributions 
is to provide an approximate solver for high dimensional 
smooth problems using a neural network. 

Single-cell Trajectories from a Static Snapshot. Tem-
poral interpolation in single-cell data started with solutions 
that attempt to infer an axis within one single time point of 
data cell “pseudotime” – used as a proxy for developmental 
progression – using known markers of development and the 
asynchronous nature of cell development (Trapnell et al., 
2014; Bendall et al., 2014). An extensive comparison of 45 
methods for this type of analysis gives method recommenda-
tions based on prior assumptions on the general structure of 
the data (Saelens et al., 2019). However, these methods can 
be biased and fail in a number of circumstances (Weinreb 
et al., 2018; Lederer & La Manno, 2020) and do not take 
into account experimental time. 

Matching Populations from Multiple Time Points. Re-
cent methods get around some of these challenges using 
multiple timepoints (Hashimoto et al., 2016; Schiebinger 
et al., 2019; Yang & Uhler, 2019). However, these methods 
generally resort to matching populations between coarse-
grained timepoints, but do not give much insight into how 
they move between measured timepoints. Often paths are 
assumed to minimize total Euclidean cost, which is not 
realistic in this setting. In contrast, the methods that esti-
mate dynamics from single timepoints (La Manno et al., 
2018; Bergen et al., 2019; Erhard et al., 2019; Hendriks 
et al., 2019) have the potential to give relatively accurate 
estimation of local direction, but cannot give accurate global 
estimation of distributional shift. A recent line of work on 
generalizing splines to distributions (Chen et al., 2018b; 
Benamou et al., 2019) investigates this problem from a theo-
retical perspective, but provides no efficient implementation. 

With TrajectoryNet, we aim to unite these approaches into a 
single model combining in inferring continuous time trajec-
tories from multiple timepoints, globally, while respecting 
local dynamics within a single timepoint. 
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Figure 1. TrajectoryNet learns trajectories of particles from distributions sampled over time. We use a Neural ODE to learn the derivative 
of the dynamics function. To find the output at time t1 for a given input at time t0 we integrate T times letting the ODE solver choose the 
integration timepoints. 

3. Preliminaries 
We provide an overview of static optimal transport, dynamic 
optimal transport (Benamou & Brenier, 2000), and continu-
ous normalizing flows. 

3.1. The Monge-Kantorovich Problem 

We adopt notation from the standard text (Villani, 2008). 
For two probability measures µ, ν defined on X ⊂ Rn , 
let Π(µ, ν) denote the set of all joint probability mea-
sures on X × X whose marginals are µ and ν. Then the 
p-Kantorovich distance (or Wasserstein distance of order 
p)between µ and ν is � Z �1/p 

W (µ, ν)p := inf d(x, y)pdπ(x, y) , 
π∈Π(µ,ν) X ×Y 

(1) 

where p ∈ [1, ∞). This formulation has led to many use-
ful interpretations both in GANs and biological networks. 
For the entropy regularized problem, the Sinkhorn algo-
rithm (Sinkhorn, 1964) provides a fast and parallelizable 
numerical solution in the discrete case. Recent work tack-
les computationally efficient solutions to the exact prob-
lem (Jambulapati et al., 2019) for the discrete case. However, 
for the continuous case solutions to the discrete problem in 
high dimensional spaces do not scale well. As the rate of 
convergence of the empirical Wasserstein metric between 
empirical measures µ̂ and ν̂ with bounded support is shown 
in (Dudley, 1969) to be 

− 1E[|Wp(µ̂n, ν̂n) − Wp(µ, ν)|] = O(n d ) (2) 

where d is the ambient dimension. However, recent work 
shows that in high dimensions a more careful treatment that 
the rate depends on the intrinsic dimension not the ambient 

dimension (Weed & Bach, 2019). As long as data lies in a 
low dimensional manifold in ambient space, then we can 
reasonably approximate the Wasserstein distance. In this 
work we approximate the support of this manifold using a 
neural network. 

3.2. Dynamic Optimal Transport 

Benamou & Brenier (2000) defined and explored a dynamic 
version of Kantorovich distance. Their work linked optimal 
transport distances with dynamics and partial differential 
equations (PDEs). For a fixed time interval [t0, t1] with 
smooth enough, time dependent density and velocity fields, 
P (x, t) ≥ 0, f(x, t) ∈ Rd , subject to the continuity equa-
tion 

∂tP + r · (Pf) = 0 (3) 

for t0 < t < t1 and x ∈ Rd, and the conditions 

P (·, t0) = µ, P (·, t1) = ν (4) 

we can relate the squared L2 Wasserstein distance to (P, f) 
in the following way Z Z t1 

W (µ, ν)2 = inf (t1 − t0) P (x, t)|f(x, t)|2dtdx2 
(P,f ) Rd t0 

(5) 
In other words, a velocity field f(x, t) with minimum L2 

norm that transports mass at µ to mass at ν when integrated 
over the time interval is the optimal plan for an L2 Wasser-
stein distance. The continuity equation is applied over all 
points of the field and asserts that no point is a source or sink 
for mass. The solution to this flow can be shown to follow 
a pressureless flow on a time-dependent potential function. 
Mass moves with constant velocity that linearly interpolates 
between the initial and final measures. For problems where 
interpolation of the density between two known densities 
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is of interest, this formulation is very attractive. Existing 
computational methods for solving the dynamic formula-
tion for continuous measures approximate the flow using a 
discretization of space-time (Papadakis et al., 2014). This 
works well in low dimensions, but scales poorly to high 
dimensions as the complexity is exponential in the input 
dimension d. We next give background on continuous nor-
malizing flows, which we show can provide a solution with 
computational complexity polynomial in d. 

3.3. Continuous Normalizing Flows 

A normalizing flow (Rezende & Mohamed, 2015) trans-
forms a parametric (usually simple) distribution to a more 
complicated one. Using an invertible transformation f ap-
plied to an initial latent random variable y with density Py , 
We define x = f(y) as the output of the flow. Then by the 
change of variables formula, we can compute the density of 
the output x: 

∂f 
log Px(·) = log Py(·) − log det (6)

∂y 

A large effort has gone into creating architectures where 
the log determinant of the Jacobian is efficient to com-
pute (Rezende & Mohamed, 2015; Kingma et al., 2016; 
Papamakarios et al., 2017). 

Now consider a continuous-time transformation, where the 
derivative of the transformation is parameterized by θ, thus 

∂x(t)at any timepoint t, = fθ(x(t), t). At the initial time t0,∂t 
x(t0) is drawn from a distribution P (x, t0) which we also 
denote Pt0 (x) for clarity, and it’s continuously transformed 
to x(t1) by following the differential equation fθ(x(t), t): Z t1 

x(t1) = x(t0) + fθ(x(t), t)dt, x(t0) ∼ Pt0 (x), 
t0 

log Pt1 (x(t1)) = Z t1 
� � 
∂fθ(x(t), t)

log Pt0 (x(t0)) − T r dt, (7) 
t0 

∂x(t) 

where at any time t associated with every x through the flow 
can be found by following the inverse flow. This model 
is referred as continuous normalizing flows (CNFs) (Chen 
et al., 2018a). It can be likened to the dynamic version of 
optimal transport, where we model the measure over time 
rather than the mapping from Pt0 to Pt1 

Unsurprisingly, there is a deep connection between CNFs 
and dynamic optimal transport. In the next section we ex-
ploit this connection and show how CNFs can be used to 
provide a high dimensional solution to the dynamic optimal 
transport problem with TrajectoryNet. 

Figure 2. Transporting a Gaussian (a) to an S-curve (b) via (c) 
static optimal transport, (d) Base TrajectoryNet without regulariza-
tion follows density (e) TrajectoryNet with energy regularization 
demonstrates more straight paths similar to OT. 

4. TrajectoryNet: Efficient Dynamic Optimal 
Transport 

In this section, we first describe how to adapt continuous 
normalizing flows to approximate dynamic optimal trans-
port in (Section 4.1). We then describe further adaptations 
for analysis of single-cell data in (Section 4.2) and finally 
provide training details in (Section 4.3). 

4.1. Dynamic OT Approximation via Regularized CNF 

Continuous normalizing flows use a maximum likelihood 
objective which can be equivalently expressed as a KL di-
vergence. In TrajectoryNet we add an energy regularization 
to approximate dynamic OT. Dynamic OT is expressed with 
an optimization over flows with constraints at t0 and t1 

(see eq. (4)). By relaxing this constraint to minimizing a 
divergence at t1 CNFs can approximate dynamic OT. 

For sufficiently large λ under constraint (3) this converges 
to the optimal solution in (5). This is encapsulated in the 
following theorem. See Appendix A.1 for proof. 

Theorem 4.1. With time varying field f(x, t) : Rd × R → 
Rd and density P (x, t) : Rd × R → R+ such thatR 
P (x, t)dx = 1 for all t0 ≤ t ≤ t1 and subject to the 

continuity (3). There exists a sufficiently large λ such that �Z t1 
� 

W (µ, ν)2
2 = (t1 − t0) inf E kf(x(t), t)k dt 

(P,f) x0∼µ t0 

+ λKL(P (·, t1) k ν); s.t. P (·, t0) = µ 

Intuitively, a continuous normalizing flow with a correctly 
scaled penalty on the squared norm of f approximates the 
W2 transport between µ and ν. Dynamic optimal trans-
port can be thought of as finding a distribution over paths 
such that the beginnings of the paths match the source dis-
tribution, end of the path matches the target distribution, 

2 
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and the cost of the transport is measured by expected path 
length. Continuous normalizing flows relax the target dis-
tribution match with a KL-divergence penalty. When the 
KL-divergence is small then the constraint is satisfied. How-
ever, CNFs usually do not enforce the path length constraint, 
which we add using a penalty on the norm of f as defined 
by the Neural ODE. When we impose this penalty over 
uniformly sampled data, this is equivalent to penalizing the 
expected path length. 

We can approximate the first part of this 
continuous time equation using a Rie-hR t1 

i 
2 mann sum as Ex0∼µ kfθ(x, t)k dt = 

t0P Pt1 2
Δti kfθ(x, t)k . This requires a for-x∼Pt0 i=t0 

ward integration using a standard ODE solver to compute as 
shown in Chen et al. (2018a). If we consider the case where 
the divergence is small, then this can be combined with the 
standard backwards pass for even less added computation. 

2Instead of penalizing kfθ(x, t)k on a forward pass, we 
penalize the same quantity on a backwards pass. Using the 
maximum likelihood and KL divergence equivalence, we 
obtain a loss Z 

2
L(x) = − log p(x) + λe kf(x(t), t)k (8) 

t 

Where the integral above is computed using an ODE solver. 
In practice, both a penalty on the Jacobian or additional train-
ing noise helped to get straight paths with a lower energy 
regularization λe. We found that a value of λe large enough 
to encourage straight paths, unsurprisingly also shortens the 
paths undershooting the target distribution. To counteract 
this, we add a penalty on the norm of the Jacobian of f as 
used in Vincent et al. (2010); Rifai et al. (2011). Since f 
represents the derivative of the path, this discourages paths 
with high local curvature, and can be thought of as penal-
izing the second derivative (acceleration) of the flow. Our 
energy loss is then Z Z 

2
Lenergy(x) = λe kf(x̃, t)k + λj kJf (x̃)k2 

F , (9) 
t t 

where kJf (x)k2 is the Frobenius norm of the JacobianF 
of f . Comparing Figure 2(e) to (d) we demonstrate the 
effect of this regularization. Without energy regularization 
TrajectoryNet paths follow the data. However, with energy 
regularization we approach the paths of the optimal map. 
TrajectoryNet solution biases towards undershooting the 
target distribution. Our energy loss gives control over how 
much to penalize indirect, high energy paths. 

Optimal transport is traditionally performed between a 
source and target distribution. Extensions to a series of dis-
tributions is normally done by performing optimal transport 
between successive pairs of distributions as in Schiebinger 
et al. (2019). This creates flows that have discontinuities 

at the sampled times, which may be undesirable when the 
underlying system is smooth in time as in biological sys-
tems. The dynamic model approximates dynamic OT for 
two timepoints, but by using a single smooth function to 
model the whole series the flow becomes the minimal cost 
smooth flow over time. 

4.2. Further Adaptation for Single-Cell Trajectories 

Up to this point we have shown how to perform dynamic op-
timal transport in high dimensions with a regularized CNF. 
We now introduce priors needed to mimic cellular systems 
that are characterized by growth/death rather than just trans-
port, endowed with a manifold structure, and knowledge of 
local velocity arrows. Similar priors may also be applicable 
to other data types. For example in studying the dynamics 
of a disease, people may be newly infected or cured, we may 
have knowledge on acceptable transition states, indicating 
a density penalty, or visits may be clustered such as in a 
hospital stay so we may have estimates of near term patient 
trends, indicating the use of velocity priors. To enforce these 
priors we add corresponding regularizations listed below: 

1. A growth rate regularization that accommodates un-
balanced transport, described in Section 4.2.1. 

2. A density-based penalty which encourages interpola-
tions that lie on dense regions of the data. Often data 
lies on a low-dimensional manifold, and it is desirable 
for paths to follow this manifold at the cost of higher 
energy (See Section 4.2.2 for details). 

3. A velocity regularization where we enforce local es-
timates of velocity at measured datapoints to match 
the first time derivative of cell state change. (See Sec-
tion 4.2.3 for details). 

These regularizations are summarized in a single loss func-
tion defined as 

Normalizing Flow z }| { 
kX 

LT = − log Pti (xti ) + Lenergy 

i=1| {z } (10) 
Dynamic OT 

+ Ldensity + Lvelocity + Lgrowth | {z } 
Biological priors 

4.2.1. ALLOWING UNBALANCED OPTIMAL TRANSPORT 

We use a simple and computationally efficient method that 
adapts discrete static unbalanced optimal transport to our 
framework in the continuous setting. This is a necessary 
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extension but is by no means a focus of our work. While 
we could also apply an adversarial framework, we choose to 
avoid the instabilities of adversarial training and use a simple 
network trained from the solution to the discrete problem. 
We train a network G(x, t) : Rd × [0, 1] → R+, which takes 
as input a cell state and time pair and produces a growth 
rate of a cell at that time. This is trained to match the result 
from discrete optimal transport. For further specification 
see Appendix B. We then fix weights of this network and 
modify the way we integrate mass over time to Z � �ti ∂fθ(x(t), t)
log Mti (x) = log Mti−1 (x) − Tr dt 

ti−1 
∂x(t) 

+ log G(xti−1 , ti−1) (11) 

We note that adding growth rate regularization in this way 
does not guarantee conservation of mass. We could normal-
ize M(x) to be a probability distribution during training,P 
e.g., as P (x) = M (x)/ x∈Rd M(x). However, this now 
requires an integration over Rd, which is too computation-
ally costly. Instead, we use the equivalence of the maximum 
likelihood formulation over a fixed growth function g and 
normalize it after the network is trained. 

4.2.2. ENFORCING TRANSPORT ON A MANIFOLD 

Methods that display or perform computations on the 
cellular manifold often include an implicit or explicit 
way of normalizing for density and model data geometry. 
PHATE (Moon et al., 2019) uses scatter plots and adap-
tive kernels to display the geometry. SUGAR (Lindenbaum 
et al., 2018) explicitly models the data geometry. We would 
like to constrain our flows to the manifold geometry but not 
to its density. We penalize the flow such that it is always 
close to at least a few measured points across all timepoints. 

Ldensity(x, td) = X � � 
max(0, min-k {kx(td) − zk : z ∈ X} − h) (12) 

k 

This can be thought of as a loss that penalizes points until 
they are within h Euclidean distance of their k nearest neigh-
bors. We use h = 0.1 and k = 5 in all of our experiments. 
We evaluate Ldensity on an interpolated time td ∈ (t0, tk) 
every batch. 

4.2.3. CONFORMING TO KNOWN VELOCITY 

Often it is the case where it is easy to measure direction of 
change in a short time horizon, but not have good predictive 
power at the scale of measured timesteps. In health data, 
we can often collect data from a few visits over a short time 
horizon estimating the direction of a single patient in the 
near future. In single-cell data, RNA-velocity (La Manno 
et al., 2018; Bergen et al., 2019) provides an estimates \dx/dt 

at every measured cell. We use these measurements to 
regularize the direction of flow at every measured point. 
Our regularization requires evaluating f(x, t) periodically 
at every measured cell adding the regularization: 

dx/dt) = cosine-similarity(f(x, t), dx/dt)Lvelocity(x, t, \ \ 

\f(x, t) · dx/dt 
= (13)

\kf(x, t)k dx/dt 

This encourages the direction of the flow at a measured 
point to be similar to the direction of local velocity. This 
ignores the magnitude of the estimate, and only heeds the 
direction. While RNA-velocity provides some estimate of 
relative speed, the vector length is considered not as infor-
mative, as it is unclear how to normalize these vectors in a 
system specific way (La Manno et al., 2018; Bergen et al., 
2019). We note that while current estimates of velocity can 
only estimate direction, this does not preclude future meth-
ods that can give accurate magnitude estimates. Lvelocity 

can easily be adapted to take magnitudes into account by 
considering L2 similarity for instance. 

4.3. Training 

For simplicity, the neural network architecture of Trajecto-
ryNet consists of three fully connected layers of 64 nodes 
with leaky ReLU activations. It takes as input a cell state 
and time and outputs the derivative of state with respect 
to time at that point. To train a continuous normalizing 
flow we need access to the density function of the source 
distribution. Since this is not accessible for an empirical 
distribution we use an additional Gaussian at t0, defining 
Pt0 (·) = N (0, 1), the standard Gaussian distribution, where 
Pt(x) is the density function at time t. 

For a training step we draw samples xti ∼ Xti for i ∈ 
{1, . . . , k} and calculate the loss with a single backwards 
integration of the ODE. In the following sections we will 
explain how adding the individual penalty terms achieve 
regularized trajectories. While there are a number of ways 
to computationally approximate these quantities, we use a 
parallel method to iteratively calculate the log Pti based on 
log Pti−1 . To make a backward pass through all timepoints 
we start at the final timepoint, integrate the batch to the 
second to last timepoint, concatenate these points to the 
samples from the second to last timepoint, and continue 
till t0, where the density is known for each sample. We 
note that this can compound the error especially for later 
timepoints if k is large or if the learned system is stiff, but 
gives significant speedup during training. 

To sample from Pti we first sample x̂t0 ∼ Pt0 then use 
the adjoint method to perform the integration x̂ti = x̂t0 +R ti 

t0 
fθ(x(t), t)dt; x(0) = x̂t0 . 
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5. Experiments 
All experiments were performed with the TrajectoryNet 
framework with a network of consisting of three layers with 
LeakyReLU activations. Optimization was performed on 
10,000 iterations of batches of size 1,000 using the dopri5 
solver (Dormand & Prince, 1980) with both absolute and 
relative tolerances set to 1 × 10−5 and the ADAM opti-
mizer (Kingma & Ba, 2015) with learning rate 0.001, and 
weight decay 5 × 10−5 as in (Grathwohl et al., 2019). We 
evaluate using three TrajectoryNet models with different 
regularization terms. The Base model refers to a standard 
normalizing flow. +E adds Lenergy, +D adds Ldensity,+V 
adds Lvelocity, and +G adds Lgrowth. 

Comparison to Existing Methods. Since there are no 
ground truth methods to calculate the trajectory of a single 
cell we evaluate our model using interpolation of held-out 
timepoints. We leave out an intermediary timepoint and 
measure the Kantorovich-distance also known as the earth 
mover’s distance (EMD) between the predicted and held-
out distributions. For EMD lower is more accurate. We 
compare the distribution interpolated by TrajectoryNet with 
four other distributions. The previous timepoint, the next 
timepoint, a random timepoint and the McCann interpolant 
in the discrete OT solution as used in (Schiebinger et al., 
2019). 

Figure 3. Density regularization or velocity regularization can be 
used to follow a 1D manifold in 2D. 

EMD MSE 
Arch Cycle Tree Arch Cycle Tree 

Base 0.691 0.037 0.490 0.300 0.190 0.218 
Base + D 0.607 0.049 0.373 0.236 0.191 0.145 
Base + V 0.243 0.033 0.143 0.107 0.068 0.098 
Base + D + V 0.415 0.034 0.252 0.156 0.081 0.132 

OT 0.644 0.032 0.492 0.252 0.192 0.196 
prev 1.086 0.035 1.092 0.652 0.192 0.666 
next 1.090 0.035 1.068 0.659 0.192 0.689 
rand 0.622 0.406 0.420 0.243 0.346 0.161 

Table 1. Shows the Wasserstein distance EMD and MSE for ar-
tificial datasets between the left out timepoint and the predicted 
points for our two generated datasets. Mean over 3 seeds. 

Figure 4. A 1D distribution of data over time embedded in two 
dimensions along a smooth manifold. On a single branch (left), 
with a tree structure (center), and circle (right). 

Figure 5. Cell growth model learned on Embryoid Body 
Data (Moon et al., 2019) 

5.1. Artificial Data 

For artificial data where we have known paths, we can mea-
sure the mean squared error (MSE) predicted by the model 
based on the first timepoint. Here we leave out the middle 
timepoint t1/2 for training then calculate the MSE between 
the predicted point at time t1/2 and the true point at t1/2 

for 5000 sampled trajectories. This gives a measure of how 
accurately we can model simple dynamical systems. 

We first test TrajectoryNet on two datasets where points lie 
on a 1D manifold in 2D with Gaussian noise (See Figure 4). 
First two half Gaussians are sampled with means zero and 
one in one dimension. These progressions are then lifted 
onto curved manifolds in two dimensions either an arch or a 
tree mimicking a differentiating system where we have two 
sampled timepoints that have some overlap. Table 1 shows 
the Wasserstein distance (EMD) and the mean squared error 
for different interpolation methods between the interpolated 
distribution at t1/2 and the true interpolated distribution at 
t1/2. Because optimal transport considers the shortest Eu-
clidean distance, the base model and OT methods follow 
the lowest energy path, which is straight across. With den-
sity regularization or velocity regularization TrajectoryNet 
learns paths that follow the density manifold. Figure 3 and 
Figure S2 demonstrate how TrajectoryNet with density or 
velocity regularization learns to follow the manifold. 
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A third artificial dataset shows the necessity of using veloc-
ity estimates for some data. Here we have an unchanging 
distribution of points distributed uniformly over the unit 
circle, but are traveling counterclockwise at π/5 radians per 
unit time. This is similar to the cell-cycle process in adult 
systems. Without velocity estimates it is impossible to pick 
up this type of dynamical system. This is illustrated by the 
MSE of the cycle dataset using velocity regularization in 
Table 1. 

5.2. Single-Cell Data 

We run our model on 5D PCA due to computational con-
straints, but note that computation time scales roughly lin-
early with dimension for our test cases (See Appendix C), 
which is consistent to what was found in Grathwohl et al. 
(2019). Since there are no ground truth trajectories in real 
data, we can only evaluate using distributional distances. 
We do leave-one-out validation, training the model on all 
but one of the intermediate timepoints then evaluating the 
EMD between the validation data and the model’s predicted 
distribution. We evaluate and compare our method on two 
single-cell RNA sequencing datasets. 

Figure 6. Shows the first 2 PCs of the mouse cortex dataset. (a-c) 
show the distributions for the first three timepoints. (d) shows the 
distribution of cells over PC1. the interpolated points for E14.5 
using (e) static OT, and (f) TrajectoryNet with density regulariza-
tion. (g-i) shows expression of three markers of early (Pax6) mid 
(Eomes) and late (Tbr1) stage neurons. 

Mouse Cortex Data.2 The first dataset has structure simi-
lar to the Arch toy dataset. It consists of cells collected from 

2For videos of the dynamics learned by Trajecto-
ryNet see http://github.com/krishnaswamylab/ 
TrajectoryNet 

rep1 rep2 mean 

Base 0.888 ± 0.07 0.905 ± 0.06 0.897 ± 0.06 
Base + D 0.882 ± 0.03 0.895 ± 0.03 0.888 ± 0.03 
Base + V 0.900 ± 0.09 0.898 ± 0.10 0.899 ± 0.10 
Base + D + V 0.851 ± 0.08 0.866 ± 0.07 0.859 ± 0.07 

OT 1.098 1.095 1.096 
prev 1.628 1.573 1.600 
next 1.324 1.391 1.357 
rand 1.333 1.288 1.311 

Table 2. Shows the Wasserstein distance between the left out time-
point and the predicted distribution for various methods on a 4 
timepoint mouse embryo cortex dataset. Mean and standard devia-
tion over 3 seeds. 

mouse embryos at days E12.5, E14.5, E16, and E17.5. In 
Figure 6(d) we can see at this time in development of the 
mouse cortex the distribution of cells moves from a mostly 
neural stem cell population at E12.5 to a fairly developed 
and differentiated neuronal population at E17.5 (Cotney 
et al., 2015; Katayama et al., 2016). The major axis of varia-
tion is neuron development. Over the 4 timepoints we have 
2 biological replicates that we can use to evaluate variation 
between animals. In Table 2, we can see that TrajectoryNet 
outperforms baseline models, especially when adding den-
sity and velocity information. The curved manifold structure 
of this data, and gene expression data in general means that 
methods that interpolate with straight paths cannot fully cap-
ture the structure of the data. Since TrajectoryNet models 
full paths between timepoints, adding density and velocity 
information can bend the cell paths to follow the manifold 
utilizing all available data rather than two timepoints as in 
standard optimal transport. 

Figure 7. Shows the Embryoid body dataset projected into 2D with 
PHATE (Moon et al., 2019) with paths and densities imputed using 
TrajectoryNet. 

Embryoid body Data. Next, we evaluate on a differentiat-
ing Embryoid body scRNA-seq time course. Figure 7 shows 
this data projected into two dimensions using a non-linear di-
mensionality reduction method called PHATE (Moon et al., 

http://github.com/krishnaswamylab/TrajectoryNet
http://github.com/krishnaswamylab/TrajectoryNet
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2019). This data consists of 5 timepoints of single cell data 
collected in a developing human embryo system (Day 0-Day 
24). See Figure 5 for a depiction of the growth rate. Initially, 
cells start as a single stem cell population, but differentiate 
into roughly 4 cell precursor types. This gives a branching 
structure similar to our artificial tree dataset. In Table 3 we 
show results when each of the three intermediate timepoints 
are left out. In this case velocity regularization does not 
seem to help, we hypothesis this has to do with the low 
unspliced RNA counts present in the data (See Figure S3). 
We find that energy regularization and growth rate regular-
ization help only on the first timepoint, and that density 
regularization helps the most overall. 

We can also project trajectories back to gene space. This 
gives insights into when populations might be distinguish-
able. In Figure 8, we demonstrate how TrajectoryNet can 
be projected back to the gene space. We sample cells from 
the end of the four main branches, then integrate Trajec-
toryNet backwards to get their paths through gene space. 
This recapitulates known biology in Moon et al. (2019). See 
appendix D for a more in-depth treatment. 

t=1 t=2 t=3 mean 

Base 
Base + D 
Base + V 
Base + D + V 
Base + E 
Base + G 

0.764 
0.759 
0.816 
0.930 

. 0.737 
0.700 

0.811 
0.783 
0.839 
0.806 
0.896 
0.913 

0.863 
0.811 
0.865 
0.810 
0.842 
0.829 

0.813 
0.784 
0.840 
0.848 
0.825 
0.814 

OT 
prev 
next 
rand 

0.791 
1.715 
1.400 
0.872 

0.831 
1.400 
0.814 
1.036 

0.841 
0.814 
1.694 
0.998 

0.821 
1.309 
1.302 
0.969 

Table 3. Shows the Wasserstein distance (EMD) between the left 
out timepoint and the predicted distribution for various methods 
on the 5 timepoint Embryoid body dataset. 

Figure 8. For curated endpoints, shows location on PHATE di-
mensions, TrajectoryNet paths projected into PCA space, and 
trajectories for 4 genes. 

6. Conclusion 
TrajectoryNet computes dynamic optimal transport between 
distributions of samples at discrete times to model realistic 
paths of samples continuously in time. In the single-cell 
case, TrajectoryNet ”reanimates,” cells which are destroyed 
by measurement to recreate a continuous-time trajectory. 
This is also relevant when modeling any underlying system 
that is high-dimensional, dynamic, and non-linear. In this 
case, existing static OT methods are under-powered and 
do not interpolate well to intermediate timepoints between 
measured ones. Existing dynamic OT methods (non-neural 
network based) are computationally infeasible for this task. 

In this work we integrate multiple priors and assumptions 
into one model to bias TrajectoryNet towards more realistic 
dynamic optimal transport solutions. We demonstrated how 
this gives more power to discover hidden and time specific 
relationships between features. In future work, we would 
like to consider stochastic dynamics (Li et al., 2020) and 
learning the growth term together with the dynamics. 
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Supplement 

A. Technical details 
A.1. Proof of Theorem 4.1 

First, we apply the Lagrange multiplier method by intro-
ducing the variable λ to the minimization problem of (5) 
subject to constraints (4). As we always begin with the base 
distribution and at any time t, x is defined by f(x, t) and the 
initial value x(t0) = x0, which has KL(P (t0, ·) k µ) = 0. 

Z t1 
2

inf sup (t1 − t0) E P (x, t) |f(x, t)| dt 
(P,f) λ x0∼µ (14)t0 

+ λKL(P (t1, ·) k ν) 

The expectation part is equivalent toR R t1 2
P (x, t) |f(x, t)| dtdx, and we use interchangeably Rd t0 

in the the remaining of the proof. Since the KL divergences 
are non-negative, λ ≥ 0. The optimal solution of the 
min-max problem is the optimal solution to the original 
problem. Consider the true minimal loss given by the 
optimal solution to be c, we know that L(λ) ≤ c, where 

Z t1 

L(λ) = sup inf (t1 − t0) E P (x, t) |f(x, t)|2 
dt 

λ≥0 t0(P,f) x0∼µ 

+ λKL(P (t1, ·) k ν) 
(15) 

In order to show that the solution of the max-min prob-
lem converges to c, we first show that it is monotonic in λ.R R t1 2For easier reading, set E = P (x, t) |f(x, t)| dtdx,Rd t0 

M = KL(P (t1, ·) k ν). Both E and M are functions of 
f . For any pair of E, M values, if λ1 > λ2, E + λ1M > 
E +λ2M . Thus the maximum and minimum of the function 
L = E + λM is also monotonic in λ, and it will converge 
to the supremum. 

Next, we show that the divergence term M(f) decreases 
monotonically as λ increases, and it converges to 0 as λ goes 
to infinity. For a given λ, let f∗ = arg inf E(f) + λM(f).λ 
By definition, E(f∗ )+λ1M(f

∗ ) ≤ E(f∗ )+λ1M(f
∗ ),λ1 λ1 λ2 λ2 

and E(f∗ ) + λ2M(f∗ ) ≥ E(f∗ ) + λ2M(f∗ ). Thusλ1 λ1 λ2 λ2 

(λ1 − λ2)(M(f∗ ) − M(f∗ )) ≤ 0. If λ1 > λ2,thenλ1 λ2 

M(f∗ ) − M(f∗ ) ≤ 0. The sequence M(f) decreasesλ1 λ2 

monotonically as λ increases. Because L(λ) is upper 
bounded by c and M(f) ≥ 0, M(f) converges to zero 
as λ goes to infinity. 

Now we have shown that L(λ) is a monotone sequence and 
is upper bounded by c, and that the divergence term M 
converges to zero, we next show that L converges to c, and 

that the optimal solution of the max-min problem in (15) 
is the optimal solution of the original problem. Since the 
divergence term is non-negative, we have a lower bound for 
L(λ) as 

∀λ, L(λ) ≥ inf E(f) 
(16)

s.t. M(f) ≤ M(fλ 
∗ ) 

Because L(λ) is monotonically increasing, and M(f) is 
monotonically decreasing, H(λ) = inf E(f) increases as λ 
increases. 

Lemma A.1. 

∀� > 0, ∀f, s.t. M(f) ≤ �, 

∃f ,̂ s.t. M(f̂) = 0, and 

D2 √
4 √

4
E(f̂) − E(f) ≤√ �(1 + �)

2T 

where D is the diameter of the probability space and T is 
the transformation completion time. 

Proof. For a certain λ, starting from the base distribution µ, 
at time T the distribution is transformed, by following f , to 
ν0, and KL(ν0 k ν) = �. Now consider a different transfor-
mation f̂ , which is composed of two part: the first part is 
an accelerated f , so that ν0 is achieved by time T/(1 + ξ), 
and the second part is transforming ν0 to ν in the remaining 

ξT time of . Thus at time T , by following f̂ , we achieve (1+ξ) 

zero divergence, M(f̂) = 0. The new transformation f̂  has 
an increased E, from the acceleration and the additional 
transformation. 

T 
1+ξ 

Z Z 
E(f̂) = 

T
P (x, (1 + ξ) t)

1 + ξ Rd 0 

|(1 + ξ)f(x, (1 + ξ)t)|2dtdx (17)Z Z Z T |z − y|2 

+ M(y, z) dtdydz 
ξ

T ( T )2Z Y 1+ξ 1+ξ 

where Z has distribution ν, Y has distribution ν0 , and 
M(y, z) is a mapping from Y to Z. The first part of 
E(f̂) is just E(f). The second part is upper bounded by 
TV (Y,Z)D2 

, where TV (Y, Z) is the total variation between ξ T1+ξ p
Y and Z, which is in turn upper bounded by �/2. We √

4choose ξ = �. 

By definition, E(f̂) ≥ c, as c is the infimum at zero 
divergence. Assuming L(λ) converges to c − α, and 
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α > 0, c − α ≥ E(f). Then by Lemma A.1, ∀�, α < √ √D2 4 4√ �(1 + �), and we have a contradiction. Now we 
2T 

complete the proof that L(λ) converges to c and that for a 
large enough λ, the solution of the max-min problem (15) 
is the solution of (5) when subject to conditions (4). 

B. Growth Rate Model Training 
Our growth network G(x, t) is trained to match the dis-
crete unbalanced optimal transport problem with entropic 
regularization: �X � 

γ = argminγ < γ,M >F +λ γi,j log(γi,j ) 
i,j 

+ αKL(γ1, µ) + βKL(γT 1, ν) (18) 
s.t. γ ≥ 0 

Where < ·, · >F is the Frobenius norm of elementwise ma-
trix multiplication of the transportation matrix γ and the cost 
matrix M , and where λ, α, β are regularization constants 
> 0 on the source and target unbalanced distributions µ, ν. 
Then the growth rate of each cell i in µ to ν is then 

gi = γ(i,·)1 (19) 

In our experiments we set λ = 0.1, β = 10000 and tune 
α for reasonable growth rates. This gives a growth rate at 
every observed cell; however, our model needs a growth rate 
defined continuously at every measured timepoint. For this, 
we learn a neural network that is trained to match the growth 
rate at measured cells and equal to one at negative sampled 
points. We use a simple form of negative sampling, for 
each batch of real points we sample an equal sized batch of 
points from a uniform distribution over the [-1,1] hypercube, 
where these negative points are given a growth rate value of 
1. The network is trained with mean squared error loss to 
match these growth rates at all measured times. 

C. Scaling with Dimension 
Runtime Considerations. Existing numerical methods 
for solving dynamic OT rely on proximal splitting meth-
ods over a discretized staggered grid (Benamou & Brenier, 
2000; Papadakis et al., 2014; Peyré & Cuturi, 2019). This re-
sults in a non-smooth but convex optimization problem over 
these grid points. However, the number of grid points scales 
exponentially with the dimension, so these methods are only 
applicable in low dimensions. TrajectoryNet scales poly-
nomially with the dimension. See Figure S1 for empirical 
measurements. 

To test the computation time with dimension we run Tra-
jectoryNet for 100 batches of 1000 points on the mouse 
cortex dataset over different dimensionalities. For hardware 

we use a single machine with An AMD Ryzen Threadrip-
per 2990WX 32-core Processor, 128GB of memory, and 
three Nvidia TITAN RTX GPUs. Our model is coded in 
the Pytorch framework (Paszke et al., 2019). We count the 
total number of function evaluations (both forward and back-
ward) divide the total time by this. In Figure S1, you can see 
the seconds per evaluation is roughly linear with the dimen-
sionality of the data. This does not imply convergence of 
the model is linear in dimension, only that computation per 
iteration is linear. As suggested in Grathwohl et al. (2019), 
number of iterations until convergence is a function of how 
complicated the distributions are, and less dependent on 
the ambient dimension itself. By learning flows along a 
manifold with Ldensity , our method may scale closer to the 
intrinsic dimensionality of the data rather than the ambient. 

Figure S1. The computation per evaluation is roughly linear in 
terms of dimension. 

D. Biological Considerations 
Quality control and normalization is important when es-
timating RNA-velocity from existing single cell measure-
ments. We suspect that the RNA-velocity measurements 
from the Embryoid body data may be suspect given the low 
number of unspliced RNA counts present. In Figure S3 we 
can see that each timepoint consists of around 10%-20% of 
unspliced RNA. This is relatively low relative to numbers 
in other recent works (La Manno et al., 2018; Bergen et al., 
2019; Kanton et al., 2019). Low unspliced RNA counts 
leads to more noise in the estimates of RNA velocity and 
lower quality. 

In Figure 8 we showed how TrajectoryNet can be projected 
back to the gene space. These projections can be used to 
infer the differences much earlier in time than they can be 
identified in the gene space. Here we have four populations 
that are easily identified by marker genes or clustering at the 
final timepoint. Since all four populations emerge from a 
single relatively uniform stem cell population, the question 
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Figure S2. Density regularization or velocity regularization can be used to follow a 1D manifold in 2D. 

Figure S3. Shows the ratio of spliced, ambiguous, and unspliced 
RNA counts over the 5 timepoints in the Embryoid body dataset. 
Mean unspliced here is around 10%-20% of total counts, in other 
systems this is near 30% (La Manno et al., 2018). 

becomes how early can we identify the features of progeni-
tor cells, the cells leading to these differentiated populations. 
Since TrajectoryNet models cells as probabilities continu-
ously over time, we can find the path for each differentiated 
cell in earlier timepoints. This allows inferences such as the 
fact that HAND1, a gene that is generally high in cardiac 
cells, is high at earlier timepoints, and may even start to 
distinguish the population as early as day 6. A gene like 
ONECUT2 is only starts to distinguish neuronal populations 
at later timepoints. For further information on this particular 

system see (Moon et al., 2019) Figure 6. 

E. Reproducibility 
To foster reproducibility, we provide as many details as 
possible on the experiments in the main paper. Code is avail-
able at http://github.com/krishnaswamylab/ 
TrajectoryNet. 

E.1. 2D Examples 

In Figure 2 we transport a Gaussian to an s-curve. The 
Gaussian consists of 10000 points sampled from a standard 
normal distribution. The s-curve is generated using the 
sklearn function sklearn.datasets.make s curve 
with noise of 0.05, and 10000 samples. We then take the 
first and third dimension, and multiply by 1.5 for the proper 
scaling. To generate the OT subplot we used the Mccann 
interpolant from 200 points sampled from the Gaussian. To 
generate panel (d), we used the procedure detailed in the 
beginning of Section 5 to train TrajectoryNet, then sam-
pled 200 points from a Gaussian distribution and used the 
adjoint with these points as the initial state at time t0 to 
generate points at time t1. For panel (e) we added an en-
ergy regularization with λe = 0.1 and λj = 1. These were 
found by experimentation, although parameters in the range 
of λe = [0.01, 1] and λj = [0.1, 1] were largely visually 
similar. 

To generate the arch and tree datasets we started with two 
1half Gaussians N (·, ) at mean zero and one (as pictured 2π 

in Figure 4) with 5000 points each, then found the Mccann 
interpolant at t1/2 as the test distribution. We then lift these 

http://github.com/krishnaswamylab/TrajectoryNet
http://github.com/krishnaswamylab/TrajectoryNet
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into 2d by embedding on the half circle of radius 1 and 
adding noise N (0, 0.1) to the radius. To generate velocity, 
we add a velocity tangent to the circle for each point. For 
the tree dataset we additionally flip (randomly) half of the 
points with x > 1 over the line y = 1. 

For the Cycle dataset, we start with 5000 uniformly sampled 
points around the circle, with radius as N (1, 0.1) We then 
add an arrow tangent to the circle with magnitude π/5, Thus 
in one time unit the points should move 1/10 of the way 
around the circle. 

E.2. Single Cell Datasets 

Both single cell datasets were sequenced using 10X se-
quencing. The Embryoid body data can be found here3 and 
consists of roughly 30,000 cells unfiltered, and 16,000 cells 
after filtering. The mouse cortex dataset is not currently 
publicly available, but consists of roughly 20,000 cells after 
filtering. For both datasets no batch correction was used. 
Raw sequences were processed with CellRanger. We then 
used velocyto (La Manno et al., 2018) to produce the un-
spliced and spliced count matrices. We then used the default 
parameters in ScVelo (Bergen et al., 2019) to generate ve-
locity arrows on a PCA embedding. These include count 
normalization across rows, selection of the 3000 most vari-
able genes, filtering of low quality genes, and smoothing 
counts between cells. 

For parameters we did a grid search over λdensity ∈ 
{0, 0.1, 0.01}, λvelocity ∈ {0, 0.001, 0.0001}. For Base+E 
we did a search of λenergy ∈ {1.0, 0.1, 0.01}, A more ex-
tensive search could lead to better results. We intended to 
show how these regularizations can be used and demon-
strate the viability of this approach rather than fully explore 
parameter space. 

E.3. Software Versioning 

The following software versions were used. 
scvelo==0.1.24, torch==1.3.1, 
torchdiffeq==0.0.1, velocyto==0.17.17, 
scprep==1.0.3, scipy==1.4.1, 
scikit-learn==0.22, scanpy==1.4.5 

3https://doi.org/10.17632/v6n743h5ng.1 

https://doi.org/10.17632/v6n743h5ng.1
https://scikit-learn==0.22
https://velocyto==0.17.17
https://scvelo==0.1.24



