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A. The Proof of Technical Results in Section 2: Mathematical Tools
This section provides the full proof of technical results in Section 2. Let us first recall the bound (10). The proof of this
bound can be found, e.g., in Nesterov (2007). However, for completeness, we prove it here.

The proof of (10). Since F ′ is LF -Lipschitz continuous with a Lipschitz constant LF , we have ‖F (y)−F (x)−F ′(x)(y−
x)‖ ≤ LF

2 ‖y − x‖2 for any x, y ∈ Rp. On the other hand, since φ is Mφ-Lipschitz continuous, we have φ(u) ≤
φ(v) +Mφ‖u− v‖ for any u, v ∈ Rq . Hence, we have

φ(F (y)) ≤ φ(F (x) + F ′(x)(y − x)) +Mφ‖F (y)− F (x)− F ′(x)(y − x)‖

≤ φ(F (x) + F ′(x)(y − x)) +
MφLF

2 ‖y − x‖2,

which proves (10).

A.1. The Proof of Lemma 2.1: Approximate Optimality Condition

Lemma. 2.1. Suppose that Assumption 1.1 holds. Let T̃M (x) be computed by (11) and G̃M (x) be defined by (13). Then,
E(T̃M (x), y) of (1) or (2) defined by (7) with y ∈ ∂φ(F (T̃M (x))) is bounded by

E(T̃M (x), y) := dist
(

0,−F (T̃M (x)) + ∂φ∗(y)
)

+ ‖F ′(T̃M (x))>y‖

≤
(

1 +
MφLF
M

)
‖G̃M (x)‖+ (1+LF )

2M2 ‖G̃M (x)‖2 + ‖F̃ (x)− F (x)‖+ 1
2‖J̃(x)− F ′(x)‖2.

(14)

Proof. First, the optimality condition of (11) becomes

0 ∈ J̃(x)>∂φ(F̃ (x) + J̃(x)(T̃M (x)− x)) +M(T̃M (x)− x). (37)

We can rewrite this optimality condition as

rF (x) = F ′(T̃M (x))>y and rD(x) ∈ −F (T̃M (x)) + ∂φ∗(y),

where {
rF (x) := M(x− T̃M (x)) + (F ′(T̃M (x))− J̃(x))>y,

rD(x) := F̃ (x) + J̃(x)(T̃M (x)− x)− F (T̃M (x)).

Next, since y ∈ ∂φ(F̃ (x) + J̃(x)(T̃M (x)− x)) and φ is Mφ-Lipschitz continuous, we can bound y as ‖y‖ ≤Mφ. Now,
we need to bound rF as follows:

‖rF (x)‖ = ‖M(x− T̃M (x)) + (F ′(T̃M (x))− J̃(x))>y‖

= ‖M(x− T̃M (x)) + (F ′(T̃M (x))− F ′(x))>y + (F ′(x)− J̃(x))>y‖

≤ M‖x− T̃M (x)‖+ ‖F ′(T̃M (x))− F ′(x)‖F ‖y‖+ ‖F ′(x)− J̃(x)‖F ‖y‖

≤ ‖G̃M (x)‖+Mφ‖F ′(T̃M (x))− F ′(x)‖F +Mφ‖F ′(x)− J̃(x)‖

≤
(

1 +
MφLF
M

)
‖G̃M (x)‖+Mφ‖F ′(x)− J̃(x)‖.
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Similarly, we can also bound rD as

‖rD(x)‖ = ‖F̃ (x) + J̃(x)(T̃M (x)− x)− F (T̃M (x))‖

= ‖F̃ (x)− F (x) + F (x) + F ′(x)(T̃M (x)− x)− F (T̃M (x)) + [J̃(x)− F ′(x)](T̃M (x)− x)‖

≤ ‖F̃ (x)− F (x)‖+ ‖F (x) + F ′(x)(T̃M (x)− x)− F (T̃M (x))‖+ ‖[J̃(x)− F ′(x)](T̃M (x)− x)‖

≤ ‖F̃ (x)− F (x)‖+ LF
2 ‖T̃M (x)− x‖2 + 1

2‖F
′(x)− J̃(x)‖2 + 1

2‖T̃M (x)− x‖2

= ‖F̃ (x)− F (x)‖+ 1
2‖F

′(x)− J̃(x)‖2 + (1+LF )
2M2 ‖G̃M (x)‖2.

Combining these bounds, we can show that

E(T̃M (x), y) := ‖F ′(T̃M (x))>y‖+ dist
(

0,−F (T̃M (x)) + ∂φ∗(y)
)

≤
(

1 +
MφLF
M

)
‖G̃M (x)‖+ (1+LF )

2M2 ‖G̃M (x)‖2 + ‖F̃ (x)− F (x)‖+ 1
2‖F

′(x)− J̃(x)‖2,

which is exactly (14).

B. The Proof of Technical Results in Section 3: Convergence of Inexact GN Framework
This appendix provides the full proof of technical results in Section 3 on convergence of the inexact Gauss-Newton
framework, Algorithm 1.

B.1. The Proof of Lemma 3.1: Descent Property

Lemma. 3.1. Let Assumption 1.1 hold, T̃M (x) be computed by (11), and G̃M (x) := M(x− T̃M (x)) be the prox-gradient
mapping of F . Then, for any z ∈ Rp, we have

φ(F̃ (x) + J̃(x)(T̃M (x)− x)) ≤ φ(F̃ (x) + J̃(x)(z − x))− 〈G̃M (x), z − x〉 − 1
M ‖G̃M (x)‖2. (38)

For any βd > 0, we also have

φ(F (T̃M (x))) ≤ φ(F (x)) + 2Lφ‖F (x)− F̃ (x)‖+Mφ‖F ′(x)− J̃(x)‖‖x− T̃M (x)‖ − (2M−MφLF )
2 ‖T̃M (x)− x‖2

≤ φ(F (x)) + 2Lφ‖F (x)− F̃ (x)‖+
Mφ

2βd
‖F ′(x)− J̃(x)‖2F −

(2M−MφLF−βdLφ)
2M2 ‖G̃M (x)‖2.

(15)

Proof. The optimality condition (37) can be written as

J̃(x)>y = M(x− T̃M (x)) and y ∈ ∂φ(F̃ (x) + J̃(x)(T̃M (x)− x)).

By convexity of φ, using the above relations, we have

φ(F̃ (x) + J̃(x)(z − x)) ≥ φ(F̃ (x) + J̃(x)(T̃M (x)− x)) + 〈y, F̃ (x) + J̃(x)(z − x)− (F̃ (x) + J̃(x)(T̃M (x)− x))〉

≥ φ(F̃ (x) + J̃(x)(T̃M (x)− x)) + 〈J̃(x)>y, z − T̃M (x)〉

= φ(F̃ (x) + J̃(x)(T̃M (x)− x)) +M〈z − T̃M (x), x− T̃M (x)〉

= φ(F̃ (x) + J̃(x)(T̃M (x)− x)) +M〈x− T̃M (x), z − x〉+M‖x− T̃M (x)‖2

= φ(F̃ (x) + J̃(x)(T̃M (x)− x)) + 〈G̃M (x), z − x〉+ 1
M ‖G̃M (x)‖2,

which implies (38).
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Now, combining (10) and (38), we can show that

φ(F (T̃M (x)))
(10)
≤ φ(F (x) + F ′(x)(T̃M (x)− x)) +

MφLF
2 ‖T̃M (x)− x‖2

≤ φ(F̃ (x) + J̃(x)(T̃M (x)− x)) +
MφLF

2 ‖T̃M (x)− x‖2

+ |φ(F (x) + F ′(x)(T̃M (x)− x))− φ(F̃ (x) + J̃(x)(T̃M (x)− x))|
(38)
≤ φ(F̃ (x) + J̃(x)(z − x))−M〈x− T̃M (x), z − x〉 − (2M−MφLF )

2 ‖T̃M (x)− x‖2

+ Mφ‖F (x)− F̃ (x) + [F ′(x)− J̃(x)](T̃M (x)− x)‖

≤ φ(F (x))− (2M−MφLF )
2 ‖T̃M (x)− x‖2 +Mφ‖F (x)− F̃ (x)‖

+ Mφ‖F (x)− F̃ (x)− J̃(x)(z − x)‖ −M〈x− T̃M (x), z − x〉

+ Mφ‖(F ′(x)− J̃(x))(T̃M (x)− x)‖.

Substituting z = x into this estimate, we obtain

φ(F (T̃M (x))) ≤ φ(F (x))− (2M−MφLF )
2 ‖T̃M (x)− x‖2 + 2Mφ‖F (x)− F̃ (x)‖

+ Mφ‖(F ′(x)− J̃(x))(T̃M (x)− x)‖.
(39)

Using the Cauchy-Schwarz inequality, we have

‖(F ′(x)− J̃(x))(T̃M (x)− x)‖ ≤ ‖F ′(x)− J̃(x)‖‖T̃M (x)− x‖.

Next, applying Young’s inequality to the right hand side of this inequality, for any βd > 0, we obtain

‖(F ′(x)− J̃(x))(T̃M (x)− x)‖ ≤ ‖F ′(x)− J̃(x)‖F ‖T̃M (x)− x‖ ≤ 1

2βd
‖F ′(x)− J̃(x)‖2 +

βd
2
‖T̃M (x)− x‖2. (40)

Finally, plugging (40) into (39), we have

φ(F (T̃M (x))) ≤ φ(F (x))− (2M−MφLF )
2 ‖T̃M (x)− x‖2 + 2Lφ‖F (x)− F̃ (x)‖+Mφ‖F ′(x)− J̃(x)‖‖T̃M (x)− x‖

≤ φ(F (x))− (2M−MφLF−βdLφ)
2 ‖T̃M (x)− x‖2 + 2Lφ‖F (x)− F̃ (x)‖+

Mφ

2βd
‖F ′(x)− J̃(x)‖2,

for any βd > 0, which exactly implies (15).

B.2. The Proof of Theorem 3.1: Convergence Rate of Algorithm 1

Theorem. 3.1. Assume that Assumptions 1.1 and 1.2 are satisfied. Let {xt} be generated by Algorithm 1 to solve either (1)
or (2). Then, the following statements hold:

(a) If (16) holds for some ε ≥ 0, then

min
0≤t≤T

‖G̃M (xt)‖2 ≤
1

(T + 1)

T∑
t=0

‖G̃M (xt)‖2 ≤
2M2 [Ψ(x0)−Ψ?]

Cg(T + 1)
+
ε2

2
, (19)

where Cg := 2M −Mφ(LF + βd) for M > 1
2Mφ(LF + βd).

(b) If (17) and (18) hold for given Ca > 0, then

min
0≤t≤T

‖G̃M (xt)‖2 ≤
1

(T + 1)

T∑
t=0

‖G̃M (xt)‖2 ≤
2M2 [Ψ(x0)−Ψ?]

Ca(T + 1)
+
ε2

2
. (20)

Consequently, with ε > 0, the total number of iterations T to achieve 1
(T+1)

T∑
t=0

‖G̃M (xt)‖2 ≤ ε2 is at most

T :=

⌊
4M2 [Ψ(x0)−Ψ?]

Dε2

⌋
= O

(
[Ψ(x0)−Ψ?]

ε2

)
,

where D := Cg for the case (a) and D := Ca for the case (b).
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Proof. Using the second inequality of (15) with x := xt and TM (x) = xt+1, we have

φ(F (xt+1)) ≤ φ(F (xt))−
(2M −Mφ(LF + βd))

2
‖xt+1 − xt‖2 + 2Mφ‖F (xt)− F̃t‖+

Mφ‖F ′(xt)− J̃t‖2

2βd
. (41)

(a) If (16) holds for some ε ≥ 0, then using (16) into (41), we have

φ(F (xt+1)) ≤ φ(F (xt))−
Cg
2
‖xt+1 − xt‖2 + 2Mφ ·

Cgε
2

16MφM2
+
Mφ

2βd
· βdCgε

2

4MφM2
,

where Cg := 2M −Mφ(LF + βd) > 0. Since Ψ(x) = φ(F (x)), the last estimate leads to

Ψ(xt+1) ≤ Ψ(xt)−
Cg
2
‖xt+1 − xt‖2 +

Cgε
2

4M2
.

By induction, G̃M (xt) := M(xt − T̃M (xt)), and Ψ(xT+1) ≥ Ψ?, we can show that

1

M2(T + 1)

T∑
t=0

‖G̃M (xt)‖2 =
1

T + 1

T∑
t=0

‖xt+1 − xt‖2 ≤
2 [Ψ(x0)−Ψ?]

Cg(T + 1)
+

ε2

2M2
, (42)

which leads to (19).

(b) If (17) and (18) are used, then from (41) and (18), we have

φ(F (xt+1)) ≤ φ(F (xt))−
C1

2
‖xt+1 − xt‖2 +

C2

2
‖xt − xt−1‖2, ∀t ≥ 1.

where C1 := 2M −MφLF − βdMφ and C2 := 2Mφ

√
Cf +

MφCd
2βd

. For t = 0, it follows from (41) and (17) that

φ(F (x1)) ≤ φ(F (x0))− C1

2
‖x1 − x0‖2 +

(C1 − C2)ε2

4M2
.

Now, note that Ψ(x) = φ(F (x)), the last two estimates respectively become

Ψ(xt+1) ≤ Ψ(xt)−
C1

2
‖xt+1 − xt‖2 +

C2

2
‖xt − xt−1‖2, ∀t ≥ 1,

and for t = 0, it holds that

Ψ(x1) ≤ Ψ(x0)− C1

2
‖x1 − x0‖2 +

(C1 − C2)ε2

4M2
.

By induction and Ψ? ≤ Ψ(xT+1), this estimate leads to

Ψ? ≤ Ψ(xT+1) ≤ Ψ(x0)− (C1−C2)
2

∑T
t=0 ‖xt+1 − xt‖2 + (C1−C2)ε2

4M2

− C2

2 ‖xT+1 − xT ‖2.

Since C1 > C2, if we define Ca := C1 − C2 > 0, then the last inequality implies

1

M2(T + 1)

T∑
t=0

‖G̃M (xt)‖2 =
1

(T + 1)

T∑
t=0

‖xt+1 − xt‖2 ≤
2 [Ψ(x0)−Ψ?]

Ca(T + 1)
+

ε2

4M2
,

which leads to (20). The last statement of this theorem is a direct consequence of either (19) or (20), and we omit the
detailed derivation here.
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C. High Probability Inequalities and Variance Bounds
Since our methods are stochastic, we recall some mathematical tools from high probability and concentration theory, as well
as variance bounds that will be used for our analysis. First, we need the following lemmas to estimate sample complexity of
our algorithms.

Lemma C.1 (Matrix Bernstein inequality (Tropp, 2012)(Theorem 1.6)). Let X1, X2, · · · , Xn be independent random
matrices in Rp1×p2 . Assume that E [Xi] = 0 and ‖Xi‖ ≤ R a.s. for i = 1, · · · , n and given R > 0, where ‖ · ‖ is the
spectral norm. Define σ2

X := max
{∥∥∑n

i=1 E
[
XiX

>
i

]∥∥ ,∥∥∑n
i=1 E

[
X>i Xi

]∥∥}. Then, for any ε > 0, we have

Prob

(∥∥∥ n∑
i=1

Xi

∥∥∥ ≥ ε) ≤ (p1 + p2) exp

(
− 3ε2

6σ2
X + 2Rε

)
.

As a consequence, if σ2
X ≤ σ̄2

X for a given σ̄2
X > 0, then

Prob

(∥∥∥ n∑
i=1

Xi

∥∥∥ ≤ ε) ≥ 1− (p1 + p2) exp

(
− 3ε2

6σ̄2
X + 2Rε

)
.

Lemma C.2 (Lohr (2009)). Let F̃ (xt) and J̃(xt) be the mini-batch stochastic estimators of F (xt) and F ′(xt) defined by
(21), respectively, and Ft := σ(x0, x1, · · · , xt−1) be the σ-field generated by {x0, x1, · · · , xt−1}. Then, these are unbiased

estimators, i.e., E
[
F̃ (xt) | Ft

]
= F (xt) and E

[
J̃(xt) | Ft

]
= F ′(xt). Moreover, under Assumption 1.2, we have

E
[
‖F̃ (xt)− F (xt)‖2 | Ft

]
≤ σ2

F

bt
and E

[
‖J̃(xt)− F ′(xt)‖2 | Ft

]
≤ σ2

D

b̂t
. (43)

Lemma C.3 (Nguyen et al. (2017); Pham et al. (2020)). Let F̃t and J̃t be the mini-batch SARAH estimators of F (xt) and
F ′(xt), respectively defined by (27), and Ft := σ(x0, x1, · · · , xt−1) be the σ-field generated by {x0, x1, · · · , xt−1}. Then,
we have the following estimate

E
[
‖F̃t − F (xt)‖2 | Ft

]
= ‖F̃t−1 − F (xt−1)‖2 + ρtEξ

[
‖F(xt, ξ)− F(xt−1, ξ)‖2

]
− ρt‖F (xt)− F (xt−1)‖2, (44)

where ρt := n−bt
(n−1)bt

if F (x) := 1
n

∑n
i=1 Fi(x), and ρt := 1

bt
, otherwise, i.e., F (x) = Eξ [F(x, ξ)].

Similarly, we also have

E
[
‖J̃t − F ′(xt)‖2 | Ft

]
= ‖J̃t−1−F ′(xt−1)‖2 + ρ̂tEξ

[
‖F′(xt, ξ)− F′(xt−1, ξ)‖

2
]
− ρ̂t‖F ′(xt)−F ′(xt−1)‖2, (45)

where ρ̂t := n−b̂t
(n−1)b̂t

if F (x) := 1
n

∑n
i=1 Fi(x), and ρ̂t := 1

b̂t
, otherwise, i.e., F (x) = Eξ [F(x, ξ)].

D. The Proof of Technical Results in Section 4
This appendix provides the full proof of technical results in Section 4 on our stochastic Gauss-Newton methods.

D.1. The Proof of Theorem 4.1: Convergence of The Stochastic Gauss-Newton Method for Solving (1)

Theorem. 4.1. Suppose that Assumptions 1.1 and 1.2 hold for (1). Let F̃t and J̃t defined by (21) be mini-batch stochastic
estimators of F (xt) and F ′(xt), respectively. Let {xt} be generated by Algorithm 1 (called SGN) to solve (1). For a given
tolerance ε > 0, assume that bt and b̂t in (21) are chosen as

bt :=

⌊
256M2

φM
4σ2
F

C2
gε

4

⌋
= O

(
σ2
F

ε4

)
,

b̂t :=

⌊
2MφM

2σ2
D

βdCgε2

⌋
= O

(
σ2
D

ε2

)
.

(22)
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Furthermore, let x̂T be chosen uniformly at random in {xt}Tt=0 as the output of Algorithm 1 after T iterations. Then

E
[
‖G̃M (x̂T )‖2

]
=

1

(T + 1)

T∑
t=0

E
[
‖G̃M (xt)‖2

]
≤ 2M2 [Ψ(x0)−Ψ?]

Cg(T + 1)
+
ε2

2
, (23)

where Cg := 2M −Mφ(LF + βd) with M > 1
2Mφ(LF + βd). Moreover, the total number Tf of function evaluations

F(xt, ξ) and the total number Td of Jacobian evaluations F′(xt, ζ) to achieve E
[
‖G̃M (x̂T )‖2

]
≤ ε2 do not exceed

Tf :=

⌊
1024M6M2

φσ
2
F [Ψ(x0)−Ψ?]

C3
gε

6

⌋
= O

(
σ2
F

ε6

)
,

Td :=

⌊
8M4Mφσ

2
D [Ψ(x0)−Ψ?]

βdC2
gε

4

⌋
= O

(
σ2
D

ε4

)
.

(24)

Proof. Let Ft := σ(x0, x1, · · · , xt−1) be the σ-field generated by {x0, x1, · · · , xt−1}. By repeating a similar proof as of
(19), but taking the full expectation overall the randomness with E [·] = E [E [·] | Ft+1], we have

1

(T + 1)

T∑
t=0

E
[
‖G̃M (xt)‖2

]
≤ 2M2 [Ψ(x0)−Ψ?]

Cg(T + 1)
+
ε2

2
, (46)

where Cg := 2M−Mφ(LF +βd) withM > 1
2Mφ(LF +βd). Moreover, by the choice of x̂T , we have E

[
‖G̃M (x̂T )‖2

]
=

1

(T + 1)

T∑
t=0

E
[
‖G̃M (xt)‖2

]
. Combining this relation and (46), we proves (23).

Next, by Lemma C.2, to guarantee the condition (16) in expectation, i.e.:
E
[
‖F̃ (xt)− F (xt)‖2 | Ft

]
≤

C2
gε

4

256M2
φM

4
,

E
[
‖J̃(xt)− F ′(xt)‖2 | Ft

]
≤ βdCgε

2

2M2Mφ
,

we have to choose σ2
F

bt
≤ C2

gε
4

256M2
φM

4 and σ2
D

b̂t
≤ βdCgε

2

2MφM2 , which respectively lead to

bt ≥
256M2

φM
4σ2
F

C2
gε

4
and b̂t ≥

2MφM
2σ2
D

βdCgε2
.

By rounding to the nearest integer, we obtain (22). Using (19), we can see that since E
[
‖G̃M (x̂T )‖2

]
=

1
(T+1)

∑T
t=0 E

[
‖G̃M (xt)‖2

]
, to guarantee E

[
‖G̃M (x̂T )‖2

]
≤ ε2, we impose 2M2[Ψ(x0)−Ψ?]

Cg(T+1) ≤ ε2

2 , which leads to

T :=
⌊

4M2[Ψ(x0)−Ψ?]
Cgε2

⌋
. Hence, the total number Tf of stochastic function evaluations F(xt, ξ) can be bounded by

Tf := Tbt =

⌊
1024M6M2

φσ
2
F [Ψ(x0)−Ψ?]

C3
gε

6

⌋
= O

(
σ2
F

ε6

)
.

Similarly, the total number Td of stochastic Jacobian evaluations F′(xt, ζ) can be bounded by

Td := T b̂t =

⌊
8M4Mφσ

2
D [Ψ(x0)−Ψ?]

βdC2
gε

4

⌋
= O

(
σ2
D

ε4

)
.

These two last estimates prove (24).
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D.2. The Proof of Theorem 4.2: Convergence of The Stochastic Gauss-Newton Method for Solving (2)

Theorem. 4.2. Suppose that Assumptions 1.1 and 1.2 hold for (2). Let F̃t and J̃t defined by (21) be mini-batch stochastic
estimators to approximate F (xt) and F ′(xt), respectively. Let {xt} be generated by Algorithm 1 for solving (2). Assume

that bt and b̂t in (21) are chosen such that bt := min
{
n, b̄t

}
and b̂t := min

{
n, ˆ̄bt

}
for t ≥ 0, where



b̄0 :=

⌊
32MφM

2σF
[
48σFMφM

2 + Caε
2
]

3C2
aε

4
· log

(
p+ 1

δ

)⌋
,

ˆ̄b0 :=

⌊
4M
√

2MφσD
(
3M
√

2MφσD +
√
βdCaε

)
βdCaε2

· log

(
p+ q

δ

)⌋
,

b̄t :=

⌊(
6σ2

F + 2σF
√
Cf‖xt − xt−1‖2

)
3C2

f‖xt − xt−1‖4
· log

(
p+ 1

δ

)⌋
(t ≥ 1),

ˆ̄bt :=

⌊(
6σ2

D + 2σD
√
Cd‖xt − xt−1‖

)
3Cd‖xt − xt−1‖2

· log

(
p+ q

δ

)⌋
(t ≥ 1),

(25)

for δ ∈ (0, 1), and Cf and Cd given in Condition 2, where ε > 0 is a given tolerance.
Then, we have the following conclusions:

• With probability at least 1− δ, the bound (20) in Theorem 3.1 still holds.
• Moreover, the total number Tf of stochastic function evaluations F(xt, ξ) and the total number Td of stochastic

Jacobian evaluations F′(xt, ζ) to guarantee 1
(T+1)

∑T
t=0 ‖G̃M (xt)‖2 ≤ ε2 do not exceed

Tf := O
(
σ2
F [Ψ(x0)−Ψ?]

ε6
· log

(
p+ 1

δ

))
,

Td := O
(
σ2
D [Ψ(x0)−Ψ?]

ε4
· log

(
p+ q

δ

))
.

(26)

Proof. We first use Lemma C.1 to estimate the total number of samples for F (xt) and F ′(xt). Let Ft :=
σ(x0, x1, · · · , xt−1) be the σ-field generated by {x0, x1, · · · , xt−1}. We define Xi := Fi(xt) − F (xt) ∈ Rp for i ∈ Bt.
Conditioned on Ft, due to the choice of Bt, {Xi}i∈Bt are independent vector-valued random variables and E [Xi] = 0.
Moreover, by Assumption 1.2, we have ‖Fi(x) − F (x)‖ ≤ σF for all i ∈ [n]. This implies that ‖Xi‖ ≤ σF a.s. and
E
[
‖Xi‖2

]
≤ σ2

F . Hence, the conditions of Lemma C.1 hold. In addition, we have

σ2
X := max

{∥∥∥∑
i∈Bt

E
[
XiX

>
i

] ∥∥∥,∥∥∥∑
i∈Bt

E
[
X>i Xi

] ∥∥∥} ≤∑
i∈Bt

E
[
‖Xi‖2

]
≤ btσ2

F .

Since F̃t := 1
bt

∑
i∈Bt Fi(xt), by Lemma C.1, we have

Prob
(
‖F̃t − F (xt)‖ ≤ ε

)
= Prob

(∥∥∥∑i∈Bt Xi

∥∥∥ ≤ btε)
≥ 1− (p+ 1) exp

(
− 3b2t ε

2

6btσ2
F+2σF btε

)
= 1− (p+ 1) exp

(
− 3btε

2

6σ2
F+2σF ε

)
.

Let us choose δ ∈ (0, 1] such that δ ≥ (p + 1) exp
(
− 3btε

2

6σ2
F+2σF ε

)
and δ ≤ 1, then Prob

(
‖F̃t − F (xt)‖ ≤ ε

)
≥ 1 − δ.

Hence, we have bt ≥
(

6σ2
F+2σF ε

3ε2

)
· log

(
p+1
δ

)
.

To guarantee the first condition of (17), we choose ε := Caε
2

16MφM2 . Then, the condition on b0 leads to b0 ≥
32MφM

2σF (48σFMφM
2+Caε

2)
3C2

gε
4 · log

(
p+1
δ

)
. To guarantee the first condition of (18), we choose ε :=

√
Cf ‖xt − xt−1‖2.
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Then, the condition on bt leads to bt ≥
(6σ2

F+2σF
√
Cf‖xt−xt−1‖2

3C2‖xt−xt−1‖4 · log
(
p+1
δ

)
. Rounding both b0 and bt, we obtain

b̄0 :=

⌊
32MφM

2σF [48σFMφM
2+Caε

2]
3C2

aε
4 · log

(
p+1
δ

)⌋
= O

(
σ2
F

ε4 · log
(
p
δ

))
,

b̄t :=

⌊
(6σ2

F+2σF
√
Cf‖xt−xt−1‖2

3C2‖xt−xt−1‖4 · log
(
p+1
δ

)⌋
= O

(
σ2
F

‖xt−xt−1‖4 · log
(
p
δ

))
, ∀t ≥ 1.

Since bt ≤ n for all t ≥ 0, we have bt := min
{
n, b̄t

}
for t ≥ 0, which proves the first part of (25).

Next, we estimate a sample size for J̃t. Let us define Yi := F ′i (xt)− F ′(xt). Then, similar to the above proof of Xi for F ,
we have J̃t − F ′(xt) = 1

b̂t

∑
i∈B̂t(F

′
i (xt)− F ′(xt)) = 1

b̂t

∑
i∈B̂t Yi. Under Assumption 1.2, the sequence {Yi} satisfies

all conditions of Lemma C.1. Hence, we obtain

Prob
(
‖J̃t − F ′(xt)‖ ≤ ε

)
≥ 1− (p+ q) exp

(
−3b̂tε

2

6σ2
D + 2σDε

)
.

Hence, we can choose b̂t ≥
[

6σ2
D+2σDε

3ε2

]
· log

(
p+q
δ

)
. From the second condition of (17), if we choose ε :=

√
βdCaε

M
√

2Mφ

,

then we have b̂0 ≥
4M
√

2MφσD(3M
√

2MφσD+
√
βdCaε)

βdCaε2
· log

(
p+q
δ

)
. From the second condition of (18), if we choose

ε :=
√
Cd‖xt − xt−1‖, then we have b̂t ≥

(6σ2
D+2σD

√
Cd‖xt−xt−1‖)

3Cd‖xt−xt−1‖2 · log
(
p+q
δ

)
. Rounding b̂t, we obtain

ˆ̄b0 :=

⌊
4M
√

2MφσD(3M
√

2MφσD+
√
βdCaε)

βdCaε2
· log

(
p+q
δ

)⌋
= O

(
σ2
D

ε2 · log
(
p+q
δ

))
,

ˆ̄bt :=

⌊
(6σ2

D+2σD
√
Cd‖xt−xt−1‖)

3Cd‖xt−xt−1‖2 · log
(
p+q
δ

)⌋
= O

(
σ2
D

‖xt−xt−1‖2 · log
(
p+q
δ

))
, t ≥ 1.

Since b̂t ≤ n for all t ≥ 0, combining these conditions, we obtain b̂t := min{n, ˆ̄bt} for t ≥ 0, which proves the second part
of (25).

For t ≥ 1, we have ‖G̃M (xt−1)‖ = M‖xt − xt−1‖ > ε. Otherwise, the algorithm has been terminated. Therefore, we can
even bound bt and b̂t as

bt ≤
2M2σF (3M2σF +

√
Cfε

2)

3C2ε4
· log

(
p+ 1

δ

)
and b̂t ≤

M
(
6Mσ2

D + 2σD
√
Cdε

)
3Cdε2

· log

(
p+ q

δ

)
.

From (20), to guarantee 1
(T+1)

∑T
t=0 ‖G̃M (xt)‖2 ≤ ε2, we impose 2M2[Ψ(x0)−Ψ?]

Ca(T+1) ≤ ε2

2 , which leads to T :=⌊
4M2[Ψ(x0)−Ψ?]

Caε2

⌋
. Hence, the total number Tf of stochastic function evaluations F(·, ξ) can be bounded by

Tf := b0 + (T − 1)bt

≤
[

32MφM
2σF (48σFMφM

2+Caε
2)

3C2
aε

4 +
8M4σF (3M2σF+

√
Cfε

2)[Ψ(x0)−Ψ?]

3C2Caε6

]
· log

(
p+1
δ

)
= O

(
σ2
F [Ψ(x0)−Ψ?]

ε6 · log
(
p+1
δ

))
.

Similarly, the total number Td of stochastic Jacobian evaluations F′(·, ζ) can be bounded by

Td := b̂0 + (T − 1)b̂t

≤
[

4M
√

2MφσD(3M
√

2MφσD+
√
βdCaε)

βdCaε2
+

4M3[Ψ(x0)−Ψ?](6Mσ2
D+2σD

√
Cdε)

3CdCaε4

]
· log

(
p+q
δ

)
= O

(
σ2
D[Ψ(x0)−Ψ?]

ε4 · log
(
p+q
δ

))
.

Taking the upper bounds, these two last estimates prove (26).



Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization

D.3. The Proof of Theorem 4.3: Convergence and Complexity Analysis of Algorithm 2 for (1)

Theorem. 4.3. Suppose that Assumptions 1.1 and 1.2, and 4.1 are satisfied for (1). Let {x(s)
t }s=1→S

t=0→m be generated by
Algorithm 2 to solve (1). Let θF and m be chosen by (28), and the mini-batches bs, b̂s, b

(s)
t , and b̂(s)t be set as in (29).

Assume that the output x̂T of Algorithm 2 is chosen uniformly at random in {x(s)
t }s=1→S

t=0→m. Then:

(a) For a given tolerance ε > 0, the following bound holds

E
[
‖G̃M (x̂T )‖2

]
=

1

S(m+ 1)

S∑
s=1

m∑
t=0

E
[
‖G̃M (xt)‖2

]
≤ ε2. (30)

(b) The total number of iterations T to obtain E
[
‖G̃M (x̂T )‖2

]
≤ ε2 is at most

T := S(m+ 1) =

⌊
8M2

[
Ψ(x̃0)−Ψ?

]
θF ε2

⌋
= O

(
1

ε2

)
.

Moreover, the total numbers Tf and Td of stochastic function evaluations F(xt, ξ) and stochastic Jacobian evaluations
F′(xt, ζ), respectively do not exceed:

Tf := O

(
M2
φσ

2
F

θ2
F ε

4
+
M4M2

φ

[
Ψ(x̃0)−Ψ?

]
θ2
F ε

5

)
,

Td := O

(
Mφσ

2
D

θF ε2
+
M2Mφ

[
Ψ(x̃0)−Ψ?

]
θF ε3

)
.

(31)

Proof. We first analyze the inner loop. Using (15) with x := x
(s)
t and TM (x) = x

(s)
t+1, and then taking the expectation

conditioned on F (s)
t+1 := σ(x

(s)
0 , x

(s)
1 , · · · , x(s)

t ), we have

E
[
φ(F (x

(s)
t+1)) | F (s)

t+1

]
≤ φ(F (x

(s)
t ))− (2M−Mφ(LF+βd))

2 E
[
‖x(s)

t+1 − x
(s)
t ‖2 | F

(s)
t+1

]
+

Lφ
ξst

E
[
‖F (x

(s)
t )− F̃ (x

(s)
t )‖2 | F (s)

t+1

]
+

Mφ

2βd
E
[
‖F ′(x(s)

t )− J̃(x
(s)
t )‖2 | F (s)

t+1

]
+Mφξ

s
t ,

for any ξst > 0, where we use 2ab ≤ a2 + b2 and the Jensen inequality
(
E
[
‖F (x

(s)
t )− F̃ (x

(s)
t )‖ | F (s)

t+1

])2

≤

E
[
‖F (x

(s)
t )− F̃ (x

(s)
t )‖2 | F (s)

t+1

]
in the second line. Taking the full expectation both sides of the last inequality, and

noting that Ψ(x) = φ(F (x)), we obtain

E
[
Ψ(x

(s)
t+1)

]
≤ E

[
Ψ(x

(s)
t )
]
− Cg

2 E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
+

Lφ
ξst

E
[
‖F (x

(s)
t )− F̃ (x

(s)
t )‖2

]
+Mφξ

s
t

+
Mφ

2βd
E
[
‖F ′(x(s)

t )− J̃(x
(s)
t )‖2

]
,

(47)

where Cg := 2M −Mφ(LF + βd) > 0, and βd > 0 and ξst > 0 are given.

Next, from Lemma C.3, using the Lipschitz continuity of F ′ in Assumption 1.2, we have

E
[
‖J̃ (s)
t − F ′(x

(s)
t )‖2

]
≤ E

[
‖J̃ (s)
t−1 − F ′(x

(s)
t−1)‖2

]
+
L2
F

b̂
(s)
t

E
[
‖x(s)

t − x
(s)
t−1‖2

]
. (48)

Similarly, using Lemma C.3, we also have

E
[
‖F̃ (s)

t − F (x
(s)
t )‖2 | F (s)

t+1

]
≤ ‖F̃ (s)

t−1 − F (x
(s)
t−1)‖2 +

1

bt
Eξ
[
‖F(xt, ξ)− F(xt−1, ξ)‖2

]
.
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Taking the full expectation both sides of this inequality, and using Assumption 4.1, we obtain

E
[
‖F̃ (s)

t − F (x
(s)
t )‖2

]
≤ E

[
‖F̃ (s)

t−1 − F (x
(s)
t−1)‖2

]
+
M2
F

b
(s)
t

E
[
‖x(s)

t − x
(s)
t−1‖2

]
. (49)

Let us define a Lyapunov function as

L(x
(s)
t ) := E

[
Ψ(x

(s)
t )
]

+
ast
2
E
[
‖F̃ (s)

t − F (x
(s)
t ‖2

]
+
cst
2
E
[
‖J̃ (s)
t − F ′(x

(s)
t ‖2

]
, (50)

for some ast > 0 and cst > 0.

Combining (47), (48), and (49), and then using the definition of L in (50), we have

L(x
(s)
t+1) = E

[
Ψ(x

(s)
t+1)

]
+

ast+1

2 E
[
‖F̃ (s)

t+1 − F (x
(s)
t+1‖2

]
+

cst+1

2 E
[
‖J̃ (s)
t+1 − F ′(x

(s)
t+1‖2

]
≤ E

[
Ψ(x

(s)
t )
]
−
[
Cg
2 −

M2
F a

s
t+1

2b
(s)
t+1

− L2
F c
s
t+1

2b̂
(s)
t+1

]
E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
+Mφξ

s
t

+
(
ast+1

2 +
Lφ
ξst

)
E
[
‖F (x

(s)
t )− F̃ (x

(s)
t )‖2

]
+
(
cst+1

2 +
Mφ

2βd

)
E
[
‖F ′(x(s)

t )− J̃(x
(s)
t )‖2

]
.

(51)

If we assume that
ast ≥ ast+1 +

Mφ

ξst
and cst ≥ cst+1 +

Mφ

βd
, (52)

then, from (51), we have

L(x
(s)
t+1) ≤ L(x

(s)
t )−

ρst+1

2
E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
+Mφξ

s
t , (53)

where ρst+1 := Cg −
M2
F a

s
t+1

b
(s)
t+1

− L2
F c
s
t+1

b̂
(s)
t+1

.

Let us first fix ξst := ξ > 0. Next, we choose ast := (m+ 1− t)Mφ

ξ and cst := (m+ 1− t)Mφ

βd
. Clearly, asm+1 = csm+1 = 0

and they both satisfy the condition (52). Then, we choose b(s)t := 1
γ1
ast = (m+1−t)Mφ

γ1ξ
and b̂(s)t = 1

γ2
cst =

Mφ

βdγ2
(m+1−t)

for some γ1 > 0 and γ2 > 0. In this case, we have ρst = Cg −M2
F γ1 − L2

F γ2 ≡ θF > 0 due to (28) by appropriately
choosing γ1 and γ2. Consequently, (53) reduces to

L(x
(s)
t+1) ≤ L(x

(s)
t )− θF

2
E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
+Mφξ.

Summing up this inequality from t = 0 to t = m, we obtain

θF
2

m∑
t=0

E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
≤ L(x

(s)
0 )− L(x

(s)
m+1) + (m+ 1)Mφξ.

Using the fact that x̃s−1 = x
(s)
0 and x̃s = x

(s)
m+1, we have

θF
2

m∑
t=0

E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
≤ L(x̃s−1)− L(x̃s) + (m+ 1)Mφξ.

Summing up this inequality from s = 1 to S and multiplying the result by 2
θFS(m+1) , we obtain

1

S(m+ 1)

S∑
s=1

m∑
t=0

E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
≤

2
[
L(x̃0)− L(x̃S)

]
θFS(m+ 1)

+
2Mφξ

θF
. (54)

Since L(x̃0) = Ψ(x̃0) +
(m+1)Mφ

2ξ E
[
‖F̃0 − F (x̃0)‖2

]
+

(m+1)Mφ

2βd
E
[
‖J̃0 − F ′(x̃0)‖2

]
and L(x̃S) = E

[
Ψ(x̃S

]
≥ Φ?,

we obtain from (54) that

1

S(m+ 1)

S∑
s=1

m∑
t=0

E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
≤

2
[
Ψ(x̃0)−Ψ?

]
θFS(m+ 1)

+
Mφ

ξθFS
E
[
‖F̃0 − F (x̃0)‖2

]
+

Mφ

θFβdS
E
[
‖J̃0 − F ′(x̃0)‖2

]
+

2Mφξ

θF
. (55)
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Note that E
[
‖F̃0 − F (x̃0)‖2

]
≤ σ2

F

b and E
[
‖J̃0 − F ′(x̃0)‖2

]
≤ σ2

D

b̂
due to the choice of bs = b > 0 and b̂s = b̂ > 0 at

Step 3 of Algorithm 2. Hence, we can further bound (55) as

1

S(m+ 1)

S∑
s=1

m∑
t=0

E
[
‖x(s)

t+1 − x
(s)
t ‖2

]
≤

2
[
Ψ(x̃0)−Ψ?

]
θFS(m+ 1)

+
Mφσ

2
F

ξθFSb
+

Mφσ
2
D

θFβdSb̂
+

2Mφξ

θF
.

Since ‖G̃M (x
(s)
t )‖ = M‖x(s)

t+1 − x
(s)
t ‖, to guarantee 1

S(m+1)

∑S
s=1

∑m
t=0 E

[
‖G̃M (x

(s)
t )‖2

]
≤ ε2 for a given tolerance

ε > 0, we need to set
2
[
Ψ(x̃0)−Ψ?

]
θFS(m+ 1)

+
Mφσ

2
F

ξθFSb
+

Mφσ
2
D

θFβdSb̂
+

2Mφξ

θF
=

ε2

M2
.

Let us break this condition into

2
[
Ψ(x̃0)−Ψ?

]
θFS(m+ 1)

=
ε2

4M2
and

Mφσ
2
F

ξθFSb
=

Mφσ
2
D

θFβdSb̂
=

2Mφξ

θF
=

ε2

4M2
.

Hence, we can choose ξ := θF ε
2

8M2Mφ
, b̂ :=

4Mφσ
2
D

θF βdM2Sε2 , b :=
2M2

φσ
2
F

θ2FM
2Sε4

, and S(m+ 1) =
8M2

[
Ψ(x̃0)−Ψ?

]
θF ε2

.

Now, let us choose m+ 1 := Ĉ
ε for some constant Ĉ > 0. Then, we can estimate the total number Tf of stochastic function

evaluations F(x
(s)
t , ξ) as follows:

Tf :=
∑S
s=1 bs +

∑S
s=1

∑m
t=0 b

(s)
t = Sb+

Mφ

γ1ξ

∑S
s=1

∑m
t=0(m+ 1− t)

=
2M2

φσ
2
F

θ2FM
2ε4

+
8M2M2

φ

γ1θF ε2
· S(m+1)(m+2)

2

=
2M2

φσ
2
F

θ2FM
2ε4

+
8M2M2

φ

γ1θF ε2
· 8M2[Ψ(x̃0)−Ψ?]

θF ε2
· Ĉ+ε

2ε

= O
(
M2
φσ

2
F

θ2F ε
4 +

M4M2
φ

[
Ψ(x̃0)−Ψ?

]
θ2F ε

5

)
.

Similarly, the total number Td of stochastic Jacobian evaluations F′(x(s)
t , ζ) can be bounded as

Td :=
∑S
s=1 b̂s +

∑S
s=1

∑m
t=0 b̂

(s)
t = Sb̂+

MφS
βdγ2

∑m
t=0(m+ 1− t)

≤ 4Mφσ
2
D

θF βdM2ε2 +
8M2Mφ[Ψ(x̃0)−Ψ?]

βdγ2θF ε2
· Ĉ+ε

2ε

= O
(
Mφσ

2
D

θF ε2
+

M2Mφ

[
Ψ(x̃0)−Ψ?

]
θF ε3

)
.

Hence, taking the upper bounds, we have proven (31).

E. Solution Routines for Computing Gauss-Newton Search Directions
One main step of SGN methods is to compute the Gauss-Newton direction by solving the subproblem (11). This subproblem
is also called a prox-linear operator, which can be rewritten as

min
d∈Rp

{
φ(F̃t + J̃td) + ĝ(d) + M

2 ‖d‖
2
2

}
, (56)

where F̃t ≈ F (xt), J̃t ≈ F ′(xt), d := x− xt, φ is convex, ĝ(d) := g(xt + d), and M > 0 is given. This is a basic convex
problem, and we can apply different methods to solve it. Here, we describe two methods for solving (56).
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E.1. Accelerated Dual Proximal-Gradient Method

For accelerated dual proximal-gradient method, we consider the case ĝ(d) = 0 for simplicity. Using Fenchel’s conjugate of
φ, we can write φ(F̃t + J̃td) = max

{
〈F̃t + J̃td, u〉 − φ∗(u)

}
. Assume that strong duality holds for (56), then using this

expression, we can write it as

min
d

max
u

{
〈F̃t + J̃td, u〉 − φ∗(u) +

M

2
‖d‖22

}
⇔ max

u

{
min
d

{
〈F̃t + J̃td, u〉+

M

2
‖d‖22

}
− φ∗(u)

}
.

Solving the inner problem mind

{
〈F̃t+ J̃td, u〉+ M

2 ‖d‖
2
2

}
, we obtain d∗(u) := − 1

M J̃>u. Substituting it into the objective,
we eventually obtain the dual problem as follows:

min
u

{ 1

2M
‖J̃>t u‖22 − 〈F̃t, u〉+ φ∗(u)

}
. (57)

We can solve this problem by an accelerated proximal-gradient method (Beck & Teboulle, 2009; Nesterov, 2004), which is
described as follows.

Algorithm 3 (Accelerated Dual Proximal-Gradient (ADPG))

1: Initialization: Choose u0 ∈ Rm. Set τ0 := 1 and û0 := u0. Evaluate L := 1
M ‖J̃

>
t J̃t‖.

2: For k := 0, · · · , kmax do
3: uk+1 := prox(1/L)φ∗

(
ûk − 1

L ( 1
M J̃tJ̃

>
t ûk − F̃t)

)
.

4: τk+1 :=
1+
√

1+4τ2
k

2 .

5: ûk+1 := uk+1 +
(
τk−1
τk+1

)
(uk+1 − uk).

6: End For
7: Output: Reconstruct d∗ := − 1

M J̃>t uk as an approximate solution of (56).

Note that in Algorithm 3, we use the proximal operator proxλφ∗ of φ∗. However, by Moreau’s identity, proxλφ∗(v) +
λproxφ/λ(v/λ) = v, we can again use the proximal operator proxφ/λ of φ.

E.2. Primal-Dual First-Order Methods

We can apply any primal-dual algorithm from the literature (Bauschke & Combettes, 2017; Chambolle & Pock, 2011; Esser,
2010; Goldstein et al., 2013; Tran-Dinh et al., 2018; Tran-Dinh, 2019) to solve (56). Here, we describe the well-known
Chambolle-Pock’s primal-dual method (Chambolle & Pock, 2011) to solve (56).

Let us define φ̂(z) := φ(z + Fk) and ψ̂(d) := ĝ(d) + M
2 ‖d‖

2. Since (56) is strongly convex with the strong convexity
parameter µψ̂ := M , we can apply the strongly convex primal-dual variant as follows.

Choose σ0 > 0 and τ0 > 0 such that τ0σ0 ≤ 1

‖J̃>t J̃t‖
. For example, we can choose σ0 = τ0 = 1

‖J̃t‖
, or we choose σ0 > 0

first, and choose τ0 := 1

σ0‖J̃>t J̃t‖
. Choose d0 ∈ Rp and u0 ∈ Rm and set d̄0 := d0. Then, at each iteration k ≥ 0, we update

uk+1 := proxσkφ̂∗
(
uk + σkJ̃td̄k

)
,

dk+1 := proxτkψ̂

(
dk − τkJ̃>t uk+1

)
,

θk := 1/
√

1 + 2Mτk,

τk+1 := θkτk,

σk+1 := σk/θk,

d̄k+1 := dk+1 + θk(dk+1 − dk).

(58)

Alternatively to the Accelerated Dual Proximal-Gradient and the primal-dual methods, we can also apply the alternating
direction method of multipliers (ADMM) to solve (56). However, this method requires to solve a linear system, that may not
scale well when the dimension p is large.
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F. Details of The Experiments in Section 5
In this supplementary document, we provide the details of our experiments in Section 5, including modeling, data generating
routines, and experiment configurations. We also provide more experiments for both examples. All algorithms are
implemented in Python 3.6 running on a Macbook Pro with 2.3 GHz Quad-Core, 8 GB RAM and on a Linux-based
computing node, called Longleaf, where each node has 24 physical cores, 2.50 GHz processors, and 256 GB RAM.

F.1. Stochastic Nonlinear Equations

Our goal is to solve the following nonlinear equation in expectation as described in Subsection 5.1:

F (x) = 0, where F (x) := Eξ [F(x, ξ)] . (59)

Here, F is a stochastic vector function from Rp × Ω → Rq. As discussed in the main text, (59) covers the first-order
optimality condition Eξ [∇xG(x, ξ)] = 0 of a stochastic optimization problem minx Eξ [G(x, ξ)] as a special case. More
generally, it also covers the KKT condition of a stochastic optimization problem with equality constraints. However, these
problems may not have stationary point, which leads to an inconsistency of (59). As a remedy, we can instead consider

min
x
{Ψ(x) := ‖Eξ [F(x, ξ)] ‖} , (60)

for a given norm ‖ · ‖ (e.g., `1-norm or `2-norm). Problem (59) also covers the expectation formulation of stochastic
nonlinear equations such as stochastic ODEs or PDEs.

In our experiment from Subsection 5.1, we only consider one instance of (60) by choosing q = 4 and Fj (j = 1, · · · , q) as

F1(x, ξi) := (1− tanh(yi(a
>
i x+ bi)),

F2(x, ξi) :=
(

1− 1
1+exp(−yi(a>i x+bi))

)2

,

F3(x, ξi) := log(1 + exp(−yi(a>i x+ bi)))− log(1 + exp(−yi(a>i x+ bi)− 1)),

F4(x, ξi) := log(1 + (yi(a
>
i x+ bi)− 1)2),

(61)

where ai is the i-row of an input matrix A ∈ Rn×p, y ∈ {−1, 1}n is a vector of labels, b ∈ Rn is a bias vector in binary
classification, and ξi := (ai, bi, yi). Note that the binary classification problem with nonconvex loss has been widely studied
in the literature, including Zhao et al. (2010), where one aims at solving:

min
x∈Rp

{
H(x) :=

1

n

n∑
i=1

`(yi(a
T
i x+ bi))

}
, (62)

for a given loss function `. If ` is nonnegative, then instead of solving (62), we can solve minx |H(x)|. If we have q different
losses `j for j = 1, · · · , q and we want to solve q problems of the form (62) for different losses simultaneously, then we can
formulate such a problem into (60) to have minx ‖H(x)‖, where H(x) := (H1(x), H2(x), · · · , Hq(x))>. Since we use
different losses, under the formulation (60), we can view it as a binary classification task with an averaging loss.

Table 1. Hyper-parameter configurations for the two algorithms on all datasets when using the ‖ · ‖2 loss.

Algorithm w8a ijcnn1 covtype url combined
b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations

SGN 256 512 512 1,024 1,024 4,096 20,000 50,000
SGN2 64 128 2,000 128 256 1,000 256 512 2000 5,000 10,000 5,000

a9a rcv1 train.binary real-sim skin nonskin
b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations

SGN 512 1,024 512 1,024 1,024 4,096 512 1024
SGN2 64 128 2000 128 256 1,000 256 512 2,000 128 256 5,000

Datasets. We test three algorithms: GN, SGN, and SGN2 on four real datasets: w8a (n = 49, 749; p = 300),
ijcnn1 (n = 91, 701; p = 22), covtype (n = 581, 012; p = 54), and url combined
(n = 2, 396, 130; p = 3, 231, 961) from LIBSVM.
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Table 2. Hyper-parameter configurations for the four algorithms on 4 datasets when using the Huber loss.

Algorithm w8a ijcnn1 covtype url combined
b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations

SGN 256 512 512 1,024 512 1,024 20,000 50,000
SCGD 256 512 512 1,024 512 1,024 20,000 50,000
SGN2 64 128 5,000 128 256 2,000 128 256 5,000 5,000 10,000 5,000

N-SPIDER 64 128 5,000 128 256 2,000 128 256 5,000 5,000 10,000 5,000
a9a rcv1 train.binary real-sim news20.binary

b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations
SGN 128 256 128 512 256 512 128 512

SCGD 1,024 2,048 128 512 256 512 128 512
SGN2 64 128 2,000 64 128 5,000 64 128 5,000 64 128 5,000

N-SPIDER 64 128 2,000 64 128 5,000 64 128 5,000 64 128 5,000

Parameter configuration. We can easily check that F defined by (61) satisfies Assumption 1.1 and Assumption 2. However,
we do not accurately estimate the Lipschitz constant of F ′ since it depends on the dataset. We were instead experimenting
with different choices of the parameterM and ρ, and eventually fix ρ := 1 andM := 1 for our tests. We also choose the mini-
batch sizes for both F̃ and J̃ in SGN and SGN2 by sweeping over the set of {64, 128, 256, 512, 1024, 2048, 4096, 8192} to
estimate the best ones. Table 1 presents the chosen parameters for the instance when φ = || · ||2.

In the case of smooth φ, i.e., using Huber loss, we add two competitors: N-SPIDER (Yang et al., 2019, Algorithm 3) and
SCGD Wang et al. (2017a, Algorithm 1). The learning rates of N-SPIDER and SCGD are tuned from a set of different
values: {0.01, 0.05, 0.1, 0.5, 1, 2}. Eventually we obtain η := 1.0 and set ε := 10−1 for N-SPIDER, see (Yang et al., 2019,
Algorithm 3). For SCGD, we use βk := 1 and αk := 1, see Wang et al. (2017a, Algorithm 1). The mini-batch sizes of
these algorithm are chosen using similar search as in the previous case. Table 2 reveals the parameter configuration of the
algorithms when using the Huber loss.
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Figure 6. The performance of three algorithms on additional real datasets when φ(·) = ‖·‖2.

Additional Experiments. When φ(·) = ‖·‖2, we also run these algorithms on other classification datasets
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from LIBSVM: a9a (n = 32, 561; p = 123), rcv1 train.binary (n = 20, 242; p = 47, 236), real-sim
(n = 72, 309; p = 20, 958), and skin nonskin (n = 245, 057; p = 3). We set M := 1 and ρ := 1 for three
datasets. Other parameters are obtained via grid search and the results are shown in Table 1. The performance of three
algorithms on these datasets are presented in Figure 6.

SGN2 appears to be the best among the 3 algorithms while SGN is much better than the baseline GN. SGN appears to have
advantage in the early stage but SGN2 makes better progress later on.
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Figure 7. The performance of three algorithms on additional real datasets when using Huber loss.

In addition, we also run 5 algorithms on these datasets in the smooth case when using the Huber loss. We still tune the
parameters for these algorithms and obtain the learning rate of 1.0 for both N-SPIDER and SCGD. We again use ε = 10−1

for N-SPIDER. More details about other parameters selection are presented in Table 2 and the performance of these
algorithms are shown in Figure 7.

From Figure 7, SGN2 performs better than other algorithms in most cases while N-SPIDER is better than SGN and somewhat
comparable with SGN2 in the rcv1 train.binary and news20.binary datasets. SGN and SCGD appear to have
similar behavior, but SGN is slightly better than SCGD in these datasets.

F.2. Optimization Involving Expectation Constraints

We consider an optimization problem involving expectation constraints as described in (34). As mentioned, this problem has
various applications in different fields, including optimization with conditional value at risk (CVaR) constraints and metric
learning, see, e.g., Lan & Zhou (2016) for detailed discussion.

Instead of solving the constrained setting (34), we consider its exact penalty formulation (35):

min
x∈Rp

{
Ψ(x) := g(x) + φ(Eξ [F(x, ξ)])

}
, (35)

where φ(u) := ρ
∑q
i=1[ui]+ with [u]+ := max {0, u} is a penalty function, and ρ > 0 is a given penalty parameter. It is
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well-known that under mild conditions and ρ sufficiently large (e.g., ρ > ‖y?‖∗, the dual norm of the optimal Lagrange
multiplier y?), if x? is a stationary point of (35) and it is feasible to (34), then it is also a stationary point of (34).

As a concrete instance of (34), we solve the following asset allocation problem studied in Rockafellar & Uryasev (2000);
Lan & Zhou (2016): 

min
z∈Rp,τ∈[τ,τ̄ ]

−c>z

s.t τ + 1
βn

∑n
i=1[−ξ>i z − τ ]+ ≤ 0,

z ∈ ∆p :=
{
ẑ ∈ Rp+ |

∑p
i=1 ẑi = 1

}
.

(63)

Here, ∆p denotes the standard simplex in Rp, and [τ , τ̄ ] is a given range of τ . The exact penalty formulation of (63) is given
by (36):

min
z∈∆p,τ∈[τ,τ̄ ]

{
−c>z + φ

(
τ +

1

βn

n∑
i=1

[−ξ>i z − τ ]+

)}
, (36)

where φ(u) := ρ[u]+ with given ρ > 0. However, since [−ξ>i z− τ ]+ is nonsmooth, we smooth it by
√

(ξ>i z + τ)2 + γ2−
γ − ξ>i z − τ for sufficiently small value of γ > 0. Hence, (36) can be approximated by

min
z∈∆p,τ∈[τ,τ̄ ]

{
−c>z + φ

(
τ +

1

βn

n∑
i=1

[√
(ξ>i z + τ)2 + γ2 − γ − ξ>i z − τ

])}
. (64)

If we introduce x := (z, τ), F(x, ξ) := τ + 1
2β

(√
(ξ>i z + τ)2 + γ2 − γ − ξ>i z − τ

)
for i = 1, · · · , n, and g(x) =

−c>z + δ∆p×[τ,τ̄ ](x), where δX is the indicator of X , then we can reformulate (64) into (3). It is obvious to check that

F(·, ξ) is Lipschitz continuous withMi := 1+ ‖ξi‖+1
βγ and its gradient F′(·, ζ) is also Lipschitz continuous with Li := ‖ξi‖2

2βγ .
Hence, Assumptions 1.1 and 4.1 hold.

Datasets. We consider both synthetic and US stock datasets. For the synthetic datasets, we follow the procedures from Lan
et al. (2012) to generate the data with n = 105 and p ∈ {300, 500, 700}. We obtain real datasets of US stock prices for 889,
865, and 500 types of stocks as described, e.g., Sun & Tran-Dinh (2019). Then, we apply a bootstrap strategy to resample in
order to obtain three corresponding new datasets of sizes n = 105.

Table 3. Hyper-parameter configuration of the two algorithms on 6 datasets in the asset allocation example.

Algorithm Synthetic: p = 300 Synthetic: p = 500 Synthetic: p = 700
b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations

SGN 1,024 2,048 1,024 2,048 1,024 2,048
SGN2 128 256 5,000 128 256 2,000 256 512 2,000

Algorithm US Stock 1: p = 889 US Stock 1: p = 865 US Stock 1: p = 500
b̂t bt Inner Iterations b̂t bt Inner Iterations b̂t bt Inner Iterations

SGN 512 1,024 512 1,024 512 1,024
SGN2 128 256 5,000 128 256 5,000 128 256 5,000

Parameter selection. We fix the smoothness parameter γ := 10−3 and choose the range [τ , τ̄ ] to be [0, 1]. The parameter
β := 0.1 as discussed in Lan & Zhou (2016). Note that we do not use the theoretical values for M as in our theory since
that value is obtained in the worst-case. We were instead experimenting different values for the penalty parameter ρ and M ,
and eventually get ρ := 5 and M := 5 as default values for this example.

Experiment setup. We implement our algorithms: SGN and SGN2, and also a baseline variant, the deterministic GN
scheme (i.e., we exactly evaluate F and its Jacobian using the full batches) as in the first example. Similar to the first
example, we sweep over the same set of possible mini-batch sizes, and the chosen parameters are reported in Table 3.
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Figure 8. The performance of the three algorithms on two synthetic and two real datasets.

Additional experiments. We run three algorithms: GN, SGN, and SGN2 with 3 synthetic datasets, where the first one was
reported in Figure 2 of the main text. We also use two other US Stock datasets and the performance of three algorithms on
these synthetic and real datasets are revealed in Figure 8.

Clearly, SGN2 is the best, while SGN still outperforms GN in these two datasets. We believe that this experiment confirms
our theoretical results presented in the main text.




