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Abstract
The notion of flat minima has gained attention as
a key metric of the generalization ability of deep
learning models. However, current definitions of
flatness are known to be sensitive to parameter
rescaling. While some previous studies have pro-
posed to rescale flatness metrics using parameter
scales to avoid the scale dependence, the normal-
ized metrics lose the direct theoretical connections
between flat minima and generalization. We first
provide generalization error bounds using exist-
ing normalized flatness measures for smooth and
stochastic networks using second-order approx-
imation. Using the analysis, we then propose a
novel normalized flatness metric. The proposed
metric enjoys both direct theoretical connections
and better empirical correlation to generalization
error.

1. Introduction
Deep learning methods have achieved significant per-
formance improvement in many domains, such as com-
puter vision, language processing, and speech process-
ing (Krizhevsky et al., 2012; Devlin et al., 2019; van den
Oord et al., 2018). However, we are still on the way to
understand when they perform well on unseen data. Better
understanding of the generalization performance of deep
learning methods would help improve their performance.
Deep learning community has made tremendous effort to
understand generalization of neural networks, both theoreti-
cally and empirically (Zhang et al., 2017; Neyshabur et al.,
2017; Arora et al., 2018).

The notion of “flat minima” has gained attention as a possi-
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ble explanation for the generalization ability of deep learn-
ing methods (Hochreiter & Schmidhuber, 1997). Many em-
pirical studies have supported the usefulness of this no-
tion. For example, the notion shed light on the reason for
larger generalization gaps in large-batch training (Keskar
et al., 2017; Yao et al., 2018), and also inspired various
training methods (Hochreiter & Schmidhuber, 1997; Chaud-
hari et al., 2017; Hoffer et al., 2017). Notably, Jiang et al.
(2020) suggested that PAC-Bayes based generalization met-
rics, which have deep connections with flatness, are effective
and promising among many other generalization metrics.
As measures of flatness, previous studies proposed the vol-
ume of the region in which a network keeps roughly the
same loss value (Hochreiter & Schmidhuber, 1997), the
maximum loss value around minima (Keskar et al., 2017),
and the spectral norm of the Hessian (Yao et al., 2018).

Despite the empirical connections of “flatness” to generaliza-
tion, current definitions of flatness suffer from unnecessary
scale dependence. Dinh et al. (2017) showed that we can
arbitrarily change the flatness of the loss-landscape for some
networks without changing the functions represented by the
networks. Such scale dependence appears in networks with
ReLU activation functions or normalization layers such as
batch-normalization (Ioffe & Szegedy, 2015) and weight-
normalization (Salimans & Kingma, 2016). A major coun-
terargument to the scale dependence is that flatness provides
valid generalization error bounds when parameter scales are
taken into account (Dziugaite & Roy, 2017; Neyshabur et al.,
2017). However, both the flatness and parameter scales have
weak correlations with the generalization error in practical
settings (Sec. 8).

Previous studies have tried to make flatness metrics in-
variant with respect to parameter scaling. Li et al. (2018)
has successfully visualized connections between empirical
performances and flatness hypotheses by scaling the loss-
landscape using parameter scales. The success suggests
that the normalized loss-landscape better captures networks’
generalization and motivates us to provide their theoretical
interpretations. Neyshabur et al. (2017), Achille & Soatto
(2018), and Liang et al. (2019) also suggested scaling flat-
ness metrics by parameter scales. While these metrics are
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invariant with respect to known scaling issues, they did not
provide direct connections between the metrics and general-
ization error. From the PAC-Bayesian perspective, provid-
ing scale-invariant bounds is not straightforward because
we need to use the log-uniform distribution as a prior so that
the Kullback-Leibler divergence term in PAC-Bayes bounds
becomes scale-invariant (Kingma et al., 2015), while the use
of the prior invalidates the PAC-Bayesian analysis.

On the way to understand generalization of deep learning
and its connections to a normalized loss-landscape, this
paper makes two contributions.

• We provide PAC-Bayesian generalization error bounds
using scale-invariant loss curvature metrics.

• We propose a novel normalized loss curvature metric
that has a close connection to the bounds.

This paper is organized as follows. We start our discus-
sion with the PAC-Bayesian generalization error bound and
its connection to flat minima (Sec. 3). Next, we connect a
flatness metric normalized by parameter scales per param-
eter to the PAC-Bayesian analysis (Sec. 4). Unfortunately,
per-parameter normalization yields a constant term propor-
tional to the number of parameters in the generalization
error bounds, which makes them vacuous for deep learning
methods. Thus, we re-analyze the known scale dependence
issue (Sec. 5). We identify that we do not need to scale the
loss-landscape per-parameter, but we only need to scale
it per node. Then, applying the analysis, we improve the
method of loss-landscape normalization (Sec. 6). Using the
novel normalized flatness definition, we provide generaliza-
tion error bounds that do not have constant terms that scale
with the number of parameters. Empirically, the proposed
metric can predict the generalization performance of models
more accurately than current unnormalized metrics (Sec. 8).

Remark: We provide the generalization bounds for
stochastic networks. Most of them rely on the quadratic
approximation of the loss function, but not all of them1.

2. Related work
The notion of flat minima has its origin in the minimum
description length principle (MDL) (Hinton & van Camp,
1993; Rissanen, 1986; Honkela & Valpola, 2004). Dziugaite
& Roy (2017) connected flat minima to PAC-Bayesian argu-
ments, which is a generalization of the MDL. They pointed
out that the sharpness of local minima is not sufficient for
measuring generalization, and that parameter scales need
to be taken into account. PAC-Bayesian analysis has also

1Sec. 6 briefly explains that the stochastic network becomes
close to a deterministic network as sample size increases.

been used for generalization analysis outside the context of
flat minima (Neyshabur et al., 2018; Letarte et al., 2019).
Neyshabur et al. (2018) analyzed the propagation of pa-
rameters’ perturbations to bound the generalization error.
Given the existence of adversarial examples (Szegedy et al.,
2014), however, this approach inevitably provides vacuous
bounds. Instead, in this paper, we stick to flat-minima ar-
guments, which will better capture the effect of parameter
perturbations.

Since Dinh et al. (2017) pointed out the scale dependences
of flat minima, many studies have attempted to resolve the
issue. A common approach is scaling sharpness metrics
by parameter scales. Neyshabur et al. (2017) pointed out
that the scale dependence can be removed by balancing
parameter scales and sharpness metrics. However, their
proposal requires using data-dependent priors (Guedj, 2019;
Parrado-Hernández et al., 2012; Dziugaite & Roy, 2018)
or equivalent alternatives, which adds non-trivial costs to
the generalization bounds. In this paper, we make the costs
explicit in Sec. 3 and later reduce them in Sec. 6. Prior to
Neyshabur et al. (2017), Dziugaite & Roy (2017) tried to
achieve balance using numerical optimization. While they
partially mitigated the scale dependence, they could not
completely overcome scale dependence because the prior
variance was tied into whole network. Wang et al. (2018)
explored a better choice of posterior variance. However, not
only their analysis could not remove scale dependence, it
was based on a parameter-wise argument, which involved
a factor that scales with the number of parameters, making
their bound as vacant as naive parameter counting2. Our
analysis overcomes both problems.

Sharpness metrics normalization has also appeared outside
the PAC-Bayesian context. Li et al. (2018) proposed rescal-
ing the loss-landscape by filters’ scales of convolutional
layers. Even though they provided useful visualizations
and insights, it is unclear how the scaling relates to gener-
alization. Our work bridges the gap between the emprical
success and theoretical understandings. Achille & Soatto
(2018) proposed a notion of information in weights, which
has connections to flat minima and PAC-Bayes. However,
their arguments were based on an improper log-uniform
prior and did not provide valid generalization error bounds.
Even if we avoid the log-uniform prior to use a method
described in Neklyudov et al. (2017), the notion does not
provide non-vacuous bounds, as we show in Sec. 4. Liang
et al. (2019) proposed the Fisher-Rao norm, which is a met-
ric invariant with respect to known scaling issues. While the
Fisher-Rao norm has interesting functional equivalence, in
addition to invariance, it has been hard to directly connect
the metric to generalization.

2More comparison with Wang et al. (2018) is available in
Appendix L in the supplementary material.
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We propose a novel scale-invariant sharpness metric for loss-
landscapes. Our definition distinguishes itself by its direct
connection to PAC-Bayesian generalization error bounds.
While previous methods for normalization have been based
on per-parameter normalization, ours is based on per-node
normalization. This difference is critical from the viewpoint
of our PAC-Bayesian analysis in terms of the tightness of
the bounds.

3. Flat minima from PAC-Bayesian
perspective

This section reviews a fundamental PAC-Bayesian general-
ization error bound and its connection to flat minima pro-
vided by prior work. Table 3 in Appendix A in the sup-
plementary material summarizes the notations used in this
paper.

3.1. PAC-Bayesian generalization error bound

The following is one of the most basic PAC-Bayesian gener-
alization error bounds (Germain et al., 2016; Alquier et al.,
2016). Let D be a distribution over input-output space Z ,
S be a set of m samples drawn i.i.d. from D, H be a set
of parameters θ, ` : X × H → [0, 1] be a loss function,
P be a distribution over H independent of S, and Q be a
distribution overH. For any δ ∈ (0, 1], any distribution Q,
and any nonnegative real number λ, with probability at least
1− δ,

LD
(
Q
(
θ | θ̄

))
≤LS

(
Q
(
θ | θ̄

))
+

λ

2m
+

1

λ
ln

1

δ

+
1

λ
KL[Q

(
θ | θ̄

)
‖ P (θ)], (1)

where

LD
(
Q
(
θ | θ̄

))
:= E

z∼D,θ∼Q(θ|θ̄)
[`(z, θ)] , (2)

LS
(
Q
(
θ | θ̄

))
:= E

z∼S,θ∼Q(θ|θ̄)
[`(z, θ)] . (3)

We reorganize the PAC-Bayesian bound (1) for later use as

LD
(
Q
(
θ | θ̄

))
≤ LS (θ) +

λ

2m
+

1

λ
ln

1

δ

+ LS
(
Q
(
θ | θ̄

))
− LS (θ)︸ ︷︷ ︸

(A)

+
1

λ
KL[Q

(
θ | θ̄

)
‖ P (θ)]︸ ︷︷ ︸

(B)

.

(4)

Similar decompositions can be found in prior
work (Dziugaite & Roy, 2017; Neyshabur et al., 2017; 2018).
We use a different PAC-Bayes bound (1) for later analysis,
but they are essentially the same.3 Flat minima, which

3To apply our analysis, we can also use other PAC-Bayesian

are the noise-stable solution with respect to parameters,
naturally correspond to term (A) in Eq. (4). Following
prior work (Langford & Caruana, 2002; Hochreiter &
Schmidhuber, 1997; Dziugaite & Roy, 2017; Arora et al.,
2018), we analyze the true error of the stochastic classifier
Q in the following sections. Nagarajan & Kolter (2019)
presented a method to generalize the PAC-Bayes bounds to
deterministic classifiers. We will leave combining our work
and theirs as future work.

3.2. Effect of noise under second-order approximation

To connect PAC-Bayesian analysis with the Hessian of the
loss-landscape as in prior work (Keskar et al., 2017; Dinh
et al., 2017; Yao et al., 2018), we consider the second-order
approximation of some surrogate loss functions. We use a
Gaussian with a covariance matrix σ2I as the posterior of
parameters4. Then term (A) in the PAC-Bayesian bound (4)
can be calculated as

LS
(
Q
(
θ | θ̄

))
− LS

(
θ̄
)

= E
ε∼N (0,σI)

[
LS
(
θ̄ + ε

)]
− LS

(
θ̄
)

(5)

≈1

2
Tr
(
∇2
θLS

∣∣
θ̄

)
σ2. (6)

Thus, we can approximate term (A) by the trace of the Hes-
sian and use it as a generalization metric. The effect of the
approximation is further discussed in Appendix H in the
supplementary material. Note, connecting PAC-Bayes with
Hessian appears in the literature repeatedly (Dziugaite &
Roy, 2017; Wang et al., 2018). By tuning σ with an appro-
priate prior, we can balance terms (A) and (B) (Dziugaite &
Roy, 2017; Neyshabur et al., 2017). However, appropriate
methods to balance them have not been extensively studied.
Moreover, while some prior work proposed scaling σ by
parameter scales, the operation has not been justified from
the PAC-Bayesian viewpoint. We address the issues in the
next section.

4. PAC-Bayes and parameter-wise
normalization

In this section, we propose a framework that connects
parameter-wisely normalized flatness metrics to PAC-
Bayesian generalization error analysis. As a first step, we
virtually decompose the parameters:

θ = ηµ� e[σ], (7)

bounds such as Theorem 1.2.6 in Catoni (2007), which is known
to be relatively tight in some cases and successfully provided
empirically nontrivial bounds for ImageNet scale networks in
Zhou et al. (2019).

4Remark: Eq. (1) holds with not only Gaussian posteriors but
also arbitrary posteriors.
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where � is the Hadamard product, and e[·] is an element-
wise exponential. The codomain of random variables
θ,µ,σ is Rn, and a hyperparameter η is a positive real
number η ∈ R>0. Intuitively, this is a scale-sign decompo-
sition of parameters with continuous relaxation. We extend
the decomposition to a scale-direction decomposition in
Sec. 6. We design a specific prior and posterior on µ and σ
to mitigate the scale dependence. We first define our prior
design.

P (µ) = N (µ | 0, I), (8)
P (σ) = N (σ | β, η′I), (9)

where β ∈ Rn and η′ ∈ R>0 are hyperparameters. Next,
we define our posterior design.

Q (µ | µ̄) = N (µ | µ̄, I), (10)
Q (σ | σ̄) = N (σ | σ̄, η′I), (11)

where µ̄ and σ̄ are real vectors in Rn satisfying

θ̄ = ηµ̄� e[σ̄], (12)

where a real vector θ̄ is a parameter assignment. Note that
the choice of µ̄ and σ̄ is not necessarily unique, and we
can balance them arbitrarily. Furthermore, the parameter
η was introduced to address a technical issue concerning
PAC-Bayesian analysis.

Under the second-order approximation, terms (A) and (B)
in the PAC-Bayesian bound (1) can now be approximated
as follows5.

(A) :
η2

2

n∑
i=1

(
∇2
θLS

∣∣
θ̄

)
i,i

e2σ̄i

+
(η′)2

2

n∑
i=1

(
∇2
θLS

∣∣
θ̄

)
i,i

(
θ̄i
)2

+ E (LS ,Q),

(13)

(B) :
1

(2λ)

(
1

η2

∥∥∥θ̄ � e[−2σ̄]
∥∥∥2

2
+

1

(η′)2
‖σ̄ − β‖22

)
,

(14)

where E (LS ,Q) is an error term introduced by the second-
order approximation. We obtain the following bound by
combining (13) and (14), optimizingσ, and taking the union
bound with respect to η, η′, and β.

Proposition 4.1. For any networks, any λ ∈ Λ and λ′ ∈ Λ′

where Λ ⊂ R>0 and Λ′ ⊂ R>0 are a finite set of real num-
bers independent of S, any 0–1 bounded twice continuously
differentiable loss function with respect to parameters, any
finite set of real numbers B ⊂ R independent of S, and any
parameter assignment θ̄, there exists a stochastic classifier

5See Appendix D.1 in the supplementary material for the deriva-
tion.

Q
(
θ | θ̄

)
such that with probability 1− δ over the training

set and Q, the expected error LD (Q) is bounded by

LS
(
θ̄
)

+
λ′

2
√
λ

FR +
1

2
√
λ

NS0 (λ′)

+
1

λ
Ξ +

λ

2m
+ E (LS ,Q), (15)

where

FR =

n∑
i=1

(
∇2
θLS

∣∣
θ̄

)
i,i
θ̄2
i , (16)

NS0 =
n∑
i=1

min
σ̄i∈R
βi∈B

[ (
∇2
θLS

∣∣
θ̄

)
i,i

e2σ̄i +
θ̄2
i

e2σ̄i
+

(σ̄i − βi)2

λ′

]
,

(17)

and

Ξ = ln
1

δ
+ n ln|B|+ 2 ln|Λ|+ ln|Λ′|. (18)

The optimal choice of λ is O(m−
1
2 ).

The FR and NS in the theorem stands for Fisher-Rao and
normalized sharpness respectively, where the latter will be
elaborated later and defined in Sec. 7. The convergence rate
of the whole bound is O(m−1/4) with the optimal choice
of λ. This is not worse than existing bounds such as those
of Bartlett et al. (2017), Neyshabur et al. (2018), and Arora
et al. (2018). Appendix I in the supplementary material fur-
ther discusses the convergence rate. The second term, con-
taining FR, coincides with the second-order approximation
of the scaled expected sharpness suggested by Neyshabur
et al. (2017), the information in weight (Achille & Soatto,
2018), Gauss-Newton norm (Zhang et al., 2019), and Fisher-
Rao norm under appropriate regularity conditions (Liang
et al., 2019). The third term, containing NS0, also has a
connection to normalized loss-landscapes given by

NS1 :=
1

2
lim
λ′→∞

NS0 (λ′) =

n∑
i=1

√
(∇2

θLS |θ̄)
i,i

(
θ̄i
)2
.

(19)

While this equation only holds at the limit, we can match the
sides of the equation by modifying the prior and posterior
design. We also can remove the second term at the same
time. First, we replace B to be a uniform distribution an a
finite set. The set is carefully designed so that it does not
become too large but sufficiently dense so that the scale
dependence can be ignored. Next, we replace both of the
prior and the posterior of σ with a distribution which takes
1 on a real vector and 0 anywhere else. The replacement
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corresponds to setting η′ very small in their original prior
and posterior. A more concrete explanation is provided in
the proof of the next proposition, provided in Appendix D.3
in the supplementary material.

Proposition 4.2. For any networks, any λ ∈ Λ where
Λ ⊂ R>0 is a finite set of real number independent of S, any
positive number ε ∈ R>0, any 0–1 bounded twice continu-
ously differentiable loss function with respect to parameters,
and any parameter assignment θ̄ such that maxi θ̄i ≤ b, if
the diagonal elements of the Hessian of the training loss
LS is bounded by M ∈ R>0 and nonnegative, there exists
a stochastic classifier Q

(
θ | θ̄

)
such that with probability

1−δ over the training set and Q, the expected error LD (Q)
is bounded by6

LS (θ) +
1 + ε+ ε2√

λ
NS1 +

1

λ
Ξ1 +

λ

2m
+ E (LS ,Q),

(20)

where

Ξ1 = O(n) · Cε,δ,|Λ|,M,b,λ. (21)

The assumptions that we can bound all elements of θ̄ and the
diagonal of the Hessian are reasonable because we typically
train neural networks on computers with finite precision.
Even though ReLU networks do not satisfy the smoothness
assumption, which is necessary because we use the Hes-
sian, the proposition at least addresses the scale dependence
due to normalization layers. Section 6 discusses a possible
method to address the smoothness and nonnegativity as-
sumptions for the Hessian’s diagonal elements. The method
is also applicable to the above propositions. The ε that
appears in the proposition comes from an approximation
error introduced by the discretization trick. Setting ε = 1
suggests that the parameter’s existence does not worsen the
order of the bound.

5. Finer-grained scale dependence
The generalization error bounds (15) and (20) have constant
terms proportional to the number of parameters. This is
because specifying scaling parameters per parameter is al-
most as difficult as directly specifying all parameters. Since
deep learning methods typically use overparametrized mod-
els, the constant terms make the bounds vacuous. Prior
parameter-wisely normalized sharpness metrics also suffer
from the problem explictly or inexplicitly (Wang et al., 2018;
Achille & Soatto, 2018). Fortunately, it turns out that we
can control parameter scales by using fairly small number
of scaling parameters. For example, we can guess that pa-
rameters belonging to the same weight matrix have similar

6The exact form of Ξ1 can be found in the Appendix D.3 in the
supplementary material.

scales. In this section, we discuss what controls the parame-
ter scales in deep learning models. This discussion is critical
for our improved PAC-Bayesian analysis in Sec. 6. It also
reveals the scale dependence in existing matrix-norm-based
generalization bounds7.

Here, we analyze the scale dependences appearing in net-
works with the ReLU activation function. The similar de-
pendences appear in networks with normalization layers,
which we defer the explanation to Appendix C.1 in the sup-
plementary material. We point out that the matrix-wise scale
dependence introduced by Dinh et al. (2017) does not fully
cover scale dependences8. To illustrate the hidden scale
dependence, we consider a simple network with a single
hidden layer and ReLU activation:

fθ(z) = W (2)(ReLU(W (1)(z))), (22)

where weight matrices W (1) and W (2) are subsets of the pa-
rameters θ, and z is an input of the network fθ . We can scale
the i-th column of W (2) by α > 0 and i-th row of W (1) by
1/α without modifying the function that the network rep-
resents.9 Since we are using the ReLU activation function,
which has positive homogeneity, the transformation does
not change the represented function. By the transformation,
the diagonal elements of the Hessian corresponding to the
i-th row of W (1) are scaled by α2. The transformation has
essentially the same effect as the one proposed by Dinh
et al. (2017). The difference is that the above transformation
runs node-wise instead of matrix-wise. In terms of weight
matrices, the node-wise scale dependence can be translated
into a row- and column-wise scale dependence.

6. Improved PAC-Bayesian analysis
In this section, we tighten our PAC-Bayesian bounds in
Sec. 4 based on Sec. 5. In Sec. 5, we pointed out the row-
and column-wise scale dependencies in modern network
architectures. Thus, we at least need to absorb the row and
column scales of weight matrices. It seems, however, that
we do not need to control all parameter scales separately.
Thus, we modify the decomposition per weight matrix in
Sec. 4 in the following way.

W (l) = ηDiag
(

e[γ(l)]
)
V (l)Diag

(
e[γ′(l)]

)
, η ∈ R,

(23)

where Diag
(

e[γ(l)]
)

and Diag
(

e[γ′(l)]
)

are diagonal ma-

trices whose diagonal elements are e[γ(l)] and e[γ′(l)], re-

7See Appendix C.2 in the supplementary material for the expla-
nation.

8The same scale dependences in ReLU networks were intro-
duced by Neyshabur et al. (2015).

9Running examples of the transformation can be found in Ap-
pendix B.1 in the supplementary material.
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spectively. The codomains of random variables γ(l), γ′(l),
and V (l) are Rh

(l)
1 , Rh

(l)
2 , and Rh

(l)
1 ×h

(l)
2 , respectively. Sim-

ilar decomposition with (23) has been explored for the unit-
invariant SVD (Uhlmann, 2018). In the method, weight
matrices are normalized using the solution of Program
II (Rothblum & Zenios, 1992). Even though the same
method is available for removing the scale dependence,
we consider the Hessian jointly and use different scaling
control that has some optimality from the PAC-Bayesian
perspective. We first define some notations for convenience.
Let Ū (l) be a matrix defined as Ū (l) = W̄ (l) � W̄ (l), where
W̄ (l) is a subset of a parameter assignment θ̄. Let H̄(l) be a
matrix such that

H̄
(l)
i,j =

(
∂2LS (θ)

∂W (l)
i,j∂W (l)

i,j

∣∣∣∣θ=θ̄

)
. (24)

By extending Prop. 4.2 to decomposition (23), we have the
following proposition.

Proposition 6.1. For any networks with d weight matrices,
any λ ∈ Λ where Λ ⊂ R>0 is a finite set of real number
independent of S, any positive number ε ∈ R>0, any posi-
tive number R ∈ R>0, any 0–1 bounded twice continuously
differentiable loss function with respect to parameters, and
a parameter assignment θ̄ such that maxi θ̄i ≤ b, if the
diagonal elements of the Hessian of the training loss LS are
bounded by M ∈ R>0 and nonnegative, then there exists
a stochastic classifier Q

(
θ | θ̄

)
such that with probability

1−δ over the training set and Q, the expected error LD (Q)
is bounded by10

LS
(
θ̄
)

+
(1 + ε)2

√
λ

NS2(R) +
1

λ
Ξ2 +

λ

2m
+ E (LS ,Q),

(25)

where NS2(R) =

d∑
l=1

min
γ̄(l)∈[−R,R]h

(l)
1

√
e[−γ̄(l)]

>
H̄(l)

(
Ū (l)

)>
e[γ̄′(l)], (26)

Ξ2 = Õ(hd) · Cε,δ,M,b,R,|Λ|, (27)

and h = 1
d max

(∑d
l=1 h

(l)
1 ,
∑d
l=1 h

(l)
2

)
.

The constant term, Ξ2, scales by the number of nodes, in-
stead of parameters. The reduction of the constant term
from Prop. 4.2 makes the bound meaningful in practical
settings. For example, ResNet50 has tens of millions of
parameters, while it only has tens of thousands of nodes. In
classification on ImageNet, which has millions of images,
this reduction is critical.

10The exact form of Ξ2 can be found in the Appendix D.4 in the
supplementary material.

Note that the proof of Prop. 6.1 is constructive. In the
construction, the posterior Q

(
θ | θ̄

)
is a Gaussian cen-

tered at θ̄ with a diagonal covariance matrix Σ such that
‖Σ‖F = O(λ−

1
2 ). Since the E (LS ,Q) term comes from

a second-order approximation of the loss function, as λ
increases, which means a training set size m increases,
the second-order approximation will hold better, and the
E (LS ,Q) term will decrease.

For the sake of theoretical completeness, we address the
E (LS ,Q) term, smoothness assumption, and nonnegative
assumption. In Props. 4.2 and 6.1, the E (LS ,Q) term was
introduced as a term satisfying the following equation.

LS
(
Q
(
θ | θ̄

))
= LS

(
θ̄
)

+ E (LS ,Q)

+
1

2
E

θ∼Q(θ|θ̄)

[(
θ − θ̄

)> (∇2
θLS

∣∣
θ̄

) (
θ − θ̄

)]
. (28)

As long as the equation is satisfied, we can use any vec-
tors which mimick the Hessian’s diagonal elements. For
example, we can use the following as an estimation of the
Hessian diagonal.

f = Es∈{−1,1}n
[
Div
[
s�

(
gS,θ̄,ε(r, s)− gS,θ̄,ε(r,−s)

)
,

2r(Abs[θ] + ε1)
]]
, (29)

where

gS,θ̄,ε(r, s) = ∇θLS
(
θ̄ + r(Abs(θ̄)s+ ε1)

)
, (30)

Div [·, ·] is an elementwise division, and Abs [·, ·] is an ele-
mentwise absolute. We added a parameter ε for numerical
stability. When a network is smooth, f is an approximation
of the diagonal elements of the Hessian. Note, the estima-
tion is scale-invariant when ε = 0. The estimation is defined
even when networks are not smooth. Furthermore, we can
carry out the following modification to f to enforce the
nonnegative condition.

f̂ = Max [f ,0] , (31)

where Max[·, ·] is an elementwise maximum. Let F̄ (l) be
a matrix such that we substitute the diagonal elements of
the Hessian by f̂ in the definition of H̄(l) (24). Using F̄ (l)

instead of H̄(l), we have the following theorem.

Theorem 6.1. For any networks with d weight matrices,
for any λ ∈ Λ where Λ ⊂ R>0 is a finite set of real num-
ber independent of S, a positive number ε ∈ (0, 0.1], any
positive number R ∈ R>0, any 0–1 bounded loss function,
and a parameter assignment θ̄ such that maxi θ̄i ≤ b, if all
elements of f̂ are bounded by M ∈ R>0, then there exists
a Gaussian distribution Q

(
θ | θ̄

)
with a mean θ̄ and a co-

variance matrix Σ such that ‖Σ‖F = O(λ−1/2) in terms of
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λ, and with probability 1− δ over the training set S and Q,
the expected error LD (Q) is bounded by11

LS
(
Q
(
θ | θ̄

))
+

1√
λ

NS3(R) +
1

λ
Ξ3 +

λ

2m
. (32)

where NS2(R) =

d∑
l=1

min
γ̄(l)∈[−R,R]h

(l)
1

√
e[−γ̄(l)]

>
F̄ (l)

(
Ū (l)

)>
e[γ̄′(l)] (33)

and

Ξ3 = Õ(hd) · Cε,δ,M,b,R,|Λ|. (34)

Note that we can statistically bound the term
LS
(
Q
(
θ | θ̄

))
using the Monte-Carlo algorithm

and Hoeffding’s inequality. In Theorem 6.1, we use the
second-order approximation of the loss to estimate the best
choice of posterior variance to minimize both terms (A) and
(B) in Eq. (4).

7. Normalized sharpness definition and
calculation

In this section, based on the analysis in Sec. 6, we define
normalized sharpness, a sharpness and generalization met-
ric invariant with respect to node-wise rescaling. We also
describe a practical calculation technique for the metric.

We define normalized sharpness as

NS =

d∑
l=1

inf
γ̄(l)∈Rh

(l)
1

√
e[γ̄(l)]

>
F̄ (l)

(
Ū (l)

)>
e[−γ̄(l)],

(35)

where the notations Ū (l) and F̄ (l) were introduced in Sec. 6.
Normalized sharpness appeared in Prop. 6.1 and Theo-
rem 6.1. The reason for the scale-invariance of normalized
sharpness is explained in Appendix J in the supplementary
material.

In convolutional layers, since the same filter has the same
scale, we can tie the scaling parameter per channel. We
defer a more detailed description of normalized sharpness
for convolutional layers to Appendix F in the supplemen-
tary material. Fortunately, the optimization problem (35)
is convex with respect to γ̄(l).12 Thus, we can estimate a
near-optimal solution to the optimization problem by gradi-
ent descent. It is straightforward to see that the convexity
also holds with convolutional layers. When calculating the

11The exact form of Ξ3 can be found in the Appendix D.5 in the
supplementary material.

12See Appendix E in the supplementary material.

normalized sharpness, we need to ensure that the choice
of surrogate loss function does not introduce other scale
dependences. We discuss this choice in Appendix G in the
supplementary material

8. Numerical evaluation
We numerically evaluated the effectiveness of normalized
sharpness (35). We mainly validated the following two
points.

• Unnormalized sharpness metrics can fail to predict
generalization performance.

• Normalized sharpness (35) better predicts generaliza-
tion than unnormalized metrics.

For these purposes, we checked the metrics’ ability to dis-
tinguish models trained on random labels (Sec. 8.1) and pre-
dict the generalization performance of models trained with
different hyperparameters (Sec. 8.2). As existing current
sharpness metrics, we used the trace of the Hessian with-
out normalization (6) and the sum of the squared Frobenius
norm of the weight matrices (Neyshabur et al., 2017). We
also investigated the empirical dependence of normalized
sharpness on the width and depth of networks (Sec. 8.3).
In all experiments, we trained multilayer perceptrons with
three hidden layers, LeNet (Lecun et al., 1998), and Wide
ResNet (Zagoruyko & Komodakis, 2016) with 16 layers and
width factor 4 on MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky, 2009). More detailed experimental setups
are described in Appendix M in the supplementary material.

8.1. Random labels

We first investigated whether normalized sharpness (35) and
current unnormalized sharpness metrics can distinguish
models trained on random labels. In this experiment, sharper
minima are expected to indicate larger generalization gaps.

Results: Figure 1 shows plots of the mean sharpness met-
rics for models trained on datasets with different random
label ratios. The results show that networks trained on ran-
dom labels had larger normalized sharpness to fit the random
labels. Thus, we can say that normalized sharpness provides
a fairly good hierarchy in the hypothesis class. Even though
sharpness without normalization and the squared Frobe-
nius norm of weight matrices could also distinguish models
trained on random labels to some extent, the signal was
much weaker than that of normalized sharpness. Note that
normalized sharpness has an advantage in that it does not
require a biplot for both the unnormalized sharpness and the
squared Frobenius norm.
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Figure 1. The figure shows the values of normalized sharp-
ness (35), trace of the Hessian (6), and the sum of the squared
Frobenius norms of weight matrices of models trained on datasets
with different random label ratios. Each dot represents the mean
of the generalization metric among trained networks and the error
bars represent the standard deviation. The left column is the re-
sults on MNIST and the right is on CIFAR10. All generalization
metrics were rescaled to [0, 1] by their maximum and minimum
per network architecture.

8.2. Different hyperparameters

We tested whether normalized sharpness and the ex-
isting unnormalized sharpness metrics can predict the
generalization performance of models trained with dif-
ferent hyperparameters. We then checked the correla-
tions between the generalization metrics and their gener-
alization gaps, defined by (test misclassification ratio) −
(train misclassification ratio). Models are trained with
different strengths of l2-regularization, weight de-
cay (Loshchilov & Hutter, 2019), and dropout. This is an
adversarial setting for existing unnormalized sharpness met-
rics because both regularizations on weights and dropout
directly affects the balance between parameter scales and
flatness of minima.

Table 1. Correlation coefficients between generalization gap and
the generalization metrics for models trained on MNIST.

MLP Lenet WResNet

Normalized sharpness 0.73 0.73 0.59
Trace of Hessian −0.62 −0.79 −0.59
Frobenius norm 0.58 0.58 0.49

Table 2. Correlation coefficients between generalization gap and
the generalization metrics for models trained on CIFAR10.

MLP Lenet WResNet

Normalized sharpness 0.92 0.98 0.92
Trace of Hessian −0.42 −0.51 −0.53
Frobenius norm 0.72 0.76 0.43

Results: We summarized the correlation coefficients be-
tween curvature metrics and the accuracy gaps in Table 1
and Table 2. Scatter plots can be found in Appendix N.1
in the supplementary material with more detailed results.
On CIFAR10, especially for LeNet and Wide ResNet, we
observed almost linear correlations between normalized
sharpness and accuracy gap. Thus, we can confirm the use-
fulness of our generalization error bounds and normalized
sharpness. On MNIST, even though there were weak corre-
lations between normalized sharpness and the accuracy gap,
the correlation was weaker than the results on CIFAR10. A
possible explanation of this phenomenon is that the scale of
the accuracy gap was too small on MNIST, which was at
most 0.02. Since we could not create models with various
accuracy gaps by merely changing the regularization param-
eters on MNIST, the effect of noise would have become
larger. In all settings, both the trace of the Hessian and the
squared Frobenius norm of the weight matrices had a weaker
ability to predict the generalization. We can confirm that
normalized sharpness had consistently stronger correlations
with generalization. Notably, we observed a negative corre-
lation with the trace of the Hessian and positive correlation
with the squared Frobenius norm. If we use the tuples of
the two as a generalization metric (Neyshabur et al., 2017),
we cannot determine which models will generalize better.
We explain the negative correlations as follows. In our
expeirments, we used three regularizers: l2-regularization,
weight-decay, and dropout. When we use l2-regularization
or weight-decay, stronger regularization decreases the gener-
alization error and parameter scales. Since there are certain
trade-offs between the sharpness and parameter scales, as
shown in Eq.(4), the stronger regularization makes the Hes-
sian larger.
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Figure 2. Plot of the dependence of normalized sharpness on width
and depth. The top figure plots the dependence on width of the
normalized shaprness of multilayer-perceptron with different width.
The bottom figure plots those on depth. The normalized sharpness
showed almost linear dependence on network depth and sublinear
dependence on network width.

8.3. Dependence on width and depth

To verify that the reduction of the constant term presented
in Sec. 6 improves the overall bounds, we empirically in-
vestigated the dependency of normalized sharpness on net-
work width and depth. We trained multilayer perceptron
with depth-{1, 2, 3, 4} and width-{32, 128, 512, 2048} on
MNIST three times for each and calculated normalized
sharpness for every trained model. Figure 2 shows the re-
sults. It indicates that the normalized sharpness has an al-
most linear dependence on the network depth and sub-linear
dependence on the network width, at least under this setting.
This suggests that the constant term reduction presented in
Sec. 6 contributes to tightening the overall generalization
bounds.

9. Comparison with other generalization
bounds:

We compare the tightness of our bounds and a prior PAC-
Bayesian approach13 (Neyshabur et al., 2018). First, we
remark that Neyshabur et al. (2018) relies on a margin pa-
rameter. The margin parameter controls the term (A) in
Eq. (4) to some extent. Importantly, the margin loss they
rely on does not decrease when the sample size increases.
On the other hand the term (A) is solely controlled by the
posterior choice in our bounds. As a result, the term de-
crease as the sample size increases. However, the difference
makes the rate of convergence different and their direct com-
parison harder. The convergence rate is further discussed in
Appendix I in the supplementary material. Nevertheless, we
can still compare the effect of our constant term, which is
O(hd), with existing bounds. The main bound in Neyshabur
et al. (2018) scales at least O(d2h). Compared to that, our
constant term will not be critical to the tightness of our
bound.

An O(hd) generalization bound corresponds to O(1/h)
compression per layer. This is fairly competitive with the
reported result by Arora et al. (2018). Even though our
work is not directly comparable to Arora et al. (2018), this
suggests that our bounds are comparably tight compared to
those derived by Arora et al. (2018).

Observations in Sec. 8.3 suggest an advantage of normalized
sharpness over the Fisher-Rao norm. Since the Fisher-Rao
norm scales O(d2) with respect to depth, when the repre-
sented function is identical (Liang et al., 2019), normalized
sharpness might be more robust against architecture changes,
especially concerning depth of networks.

10. Conclusion
We have formally connected normalized loss curvatures
with generalization through PAC-Bayesian analysis. The
analysis bridged the known gap between theoretical under-
standings and empirical connections between normalized
loss-landscape and generalization. The proof consists of
two steps: scale-direction decompositions of parameters and
discretization trick. In the analysis, we found that using a
smaller number of scaling parameters is critical for mean-
ingful generalization bounds, at least within our framework.
Applying this discovery, we proposed normalized sharpness
as a novel generalization metric. Experimental results sug-
gest that this metric is more powerful than unnormalized
loss sharpness metrics as a measure of generalization.

13Remark: Our primal goal is not providing the state-of-the-art
tightest bound, but connecting scale-invariant flatness metric and
generalization.
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A. Notation
Our notation is summarized in Table 3.

Table 3. Notation table.
P: prior distribution
Q: posterior distribution
P (θ): prior distribution of random variable θ
Q
(
θ | θ̄

)
: prior distribution of random variable θ, θ̄ is a hyperparameter of Q

D: underlying (true) data distribution
S: training set with size m, i.i.d. sample from D
zi: i-th sample in S, zi ∈ S
m: number of data points in a training set
K: number of classes
d: number of layers in NN (depth)
W (l): l-th weight matrix
h

(l)
1 : input dimension of the l-th weight matrix, random variable
h

(l)
2 : output dimension of the l-th weight matrix

h: average width of a network, defined as Max
(∑

l h
(l)
1 ,
∑
l h

(l)
2

)
/d

θ: parameters of a network, a random variable
Ū (l): a real matrix whose i, j-th element is a squared i, j-th element of the l-th weight matrix
H̄(l): a real matrix whose i, j-th element is ∂LS (θ) /∂W (l)

i,j∂W
(l)
i,j at θ̄

θ̄: parameters of a network, a real vector
LD
(
θ̄
)
: expected loss over a distribution D at θ̄

LS
(
θ̄
)
: expected loss over a training set S at θ̄

Lz
(
θ̄
)
: loss on a data point z at θ̄

LD (Q): Eθ̄′∼Q
[
LD
(
θ̄′
)]

KL[Q ‖ P]: KL divergence
∇θ: derivative concerning parameter θ
∇2
θ: Hessian concerning parameter θ∥∥W̄∥∥

F
: Frobenius norm of a matrix W̄∥∥W̄∥∥

2
: Spectral norm of a matrix W̄

f(z): output of a network f at a data point z
x̄i: the i-th element of a vector x̄
Āi,j : the (i, j)-th element of a matrix Ā
Āi,:: the i-th row of a matrix Ā
Ā:,j : the j-th column of a matrix Ā
yz: label of data point z
I: identity matrix
Diag (x̄): a diagonal matrix which a vector consists of its diagonal elements is a vector x̄
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B. Running examples
B.1. Row and column scaling

We show running examples of the transformation proposed in Sec. 5. We consider the following network.

f(X) = W (2)(ReLU(W (1)(X))), (36)

W (1) =

(
1 2
3 4

)
, (37)

W (2) =

(
5 6
7 8

)
. (38)

Now, matrix norms are as follows. ∥∥∥W (1)
∥∥∥

F
=
√

30, (39)∥∥∥W (1)
∥∥∥

2
≈ 5.48, (40)∥∥∥W (2)

∥∥∥
F

=
√

174, (41)∥∥∥W (2)
∥∥∥

2
≈ 13.19. (42)

We apply the transformation to the first row of W (1) and the first column of W (2) with α = 10. Then, the parameters
change as follows.

W (1) =

(
0.1 0.2
3 4

)
, (43)

W (2) =

(
50 6
70 8

)
. (44)

Next, we apply the transformation to the second row of W (1) and the second column of W (2) with α = 0.1. The parameters
change as follows.

W (1) =

(
0.1 0.2
30 40

)
, (45)

W (2) =

(
50 0.6
70 0.8

)
. (46)

Now, matrix norms have changed as follows. ∥∥∥W (1)
∥∥∥

F
=
√

2500.05, (47)∥∥∥W (1)
∥∥∥

2
≈ 50.00, (48)∥∥∥W (2)

∥∥∥
F

=
√

6101.13, (49)∥∥∥W (2)
∥∥∥

2
≈ 78.11. (50)

Using the same method, we can make matrix norms of both W (1) and W (2) arbitrarily large.

C. Scale Dependences
In this section, we first review scale dependencies appear in normalization layers. Next, we point out how the scale
dependencies can affect to known matrix-norm based generalization error bounds.
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C.1. Scale dependence in normalization layers

Normalization layers such as layer-normalization (Ba et al., 2016), batch-normalization, and weight-normalization are
critical components of modern network architectures. These normalization layers also introduce scale dependences to
flatness metrics (Dinh et al., 2017). Let us take weight-normalization as an example. We consider the following simple
network.

fθ(x) = WeightNorm(W )(x). (51)

By the definition of weight-normalization, scaling the i-th row of W by α > 0 does not change the function represented
by the network. However, its gradients are scaled by α−1 (Salimans & Kingma, 2016), and the corresponding diagonal
elements of the Hessian are scaled by α−2. Again, we have the node-wise scale dependence.

C.2. Scale dependence in known generalization metrics

This subsection is not critical for this paper, but the row- and column-wise scale dependence reveals scale dependence
in known capacity controls with matrix-norms, which will take other interests. We reconsider a network (22). Assume
that W̄ (1) has at least two non-zero rows, and W̄ (2) has at least two non-zero columns. Using the row- and column-wise
rescaling, we can make both W̄ (1), and W̄ (2) have at least one arbitrarily large element. In other words, both weight matrices
have arbitrarily large spectral norms and Frobenius norms. Thus, matrix-norm based capacity controls (Bartlett et al., 2017;
Neyshabur et al., 2018) also suffer from the same scale dependencies as flatness metrics.

D. Proofs
D.1. Derivation of (A) and (B) term

This section derives the (A) and (B) term using a Taylor expansion in the new parameter space.

D.1.1. (A) TERM

LS
(
Q
(
θ | θ̄

))
− LS (θ) (52)

= E
ε0∼N (0,I)

ε1∼N (0,η′I)

[
LS
(
η (µ̄+ ε0)� e[σ̄+ε1]

)
− LS

(
θ̄
)]

(53)

(54)

=
1

2

∑
i

(
∂2LS
∂µ∂µ

∣∣∣∣θ̄)
i,i

+
1

2

∑
i

(
∂2LS
∂σ∂σ

∣∣∣∣θ̄)
i,i

(η′)
2

+ E (LS ,Q) (55)

=
1

2
η2
∑
i

(
∂2LS
∂θ∂θ

∣∣∣∣θ̄)
i,i

e[2σ̄i] +
1

2
(η′)

2
∑
i

(
∂2LS
∂θ∂θ

∣∣∣∣θ̄)
i,i

θ̄2
i + E (LS ,Q). (56)

D.1.2. (B) TERM

1

λ
KL[Q

(
θ | θ̄

)
‖ P (θ)] ≤ 1

λ
(KL[Q (µ | µ̄) ‖ P (µ)] + KL[Q (σ | σ̄) ‖ P (σ)]) (57)

=
1

λ

(
‖µ̄‖22

2
+
‖σ̄ − β‖22

2 (η′)
2

)
(58)

=
1

λ

(
‖θ̄ � e[−2σ]‖22

2η2
+
‖σ̄ − β‖22

2 (η′)
2

)
(59)
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D.2. Proposition 4.1

Let H = {x− 1
4 |x ∈ Λ} and H ′ = {x− 1

4 y−
1
4 |x ∈ Λ′, y ∈ Λ}. Taking union bound for η over H , η′ over H ′, and β over

Bn, with probability at least 1− δ,

∀η ∈ H,∀η′ ∈ H ′,∀β ∈ Bn,∀σ ∈ Rn,∀λ ∈ R>0,

LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

1

2
η2e[σ̄]>(∇2

θLS
∣∣
θ̄

)
e[σ̄] +

1

2
η′

2
θ̄>
(
∇2
θLS

∣∣
θ̄

)
θ̄

+
1

2λ

(
1

η2

∥∥∥θ̄ � e[−2σ̄]
∥∥∥2

2
+

1

η′2
‖σ̄ − β‖22

)
+ E (LS ,Q)

+
1

λ

(
ln|H|+ ln|H ′|+ n ln|B|+ ln

1

δ

)
+

λ

2m
. (60)

Limiting η′ to ηΛ′, we have

∀η ∈ H,∀η′ ∈ ηΛ′,∀β ∈ Bn,∀σ ∈ Rn,∀λ ∈ Λ,

LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

1

2
η2e[σ̄]>(∇2

θLS
∣∣
θ̄

)
e[σ̄] +

1

2
η′

2
θ̄>
(
∇2
θLS

∣∣
θ̄

)
θ̄

+
1

2λ

(
1

η2

∥∥∥θ̄ � e[−2σ̄]
∥∥∥2

2
+

1

η′2
‖σ̄ − β‖22

)
+ E (LS ,Q)

+
1

λ

(
ln|H|+ ln|H ′|+ n ln|B|+ ln

1

δ

)
+

λ

2m
. (61)

By setting η = λ−
1
4 ∈ H and using |H| = |Λ|, |H ′| = |Λ||Λ′|,

∀λ′ ∈ Λ′,∀β ∈ Bn,σ̄ ∈ Rn,∀λ ∈ Λ,

LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

λ′

2
√
λ
θ̄>
(
∇2
θLS

∣∣
θ̄

)
θ̄ +

1

2
√
λ

e[σ̄]>(∇2
θLS

∣∣
θ̄

)
e[σ̄]

+
1

2
√
λ

(∥∥∥θ̄ � e[−2σ̄]
∥∥∥2

2
+

1

λ′2
‖σ̄ − β‖22

)
+ E (LS ,Q)

+
1

λ

(
2 ln|Λ|+ ln|Λ′|+ n ln|B|+ ln

1

δ

)
+

λ

2m
. (62)

Thus,

∀λ′ ∈ Λ′,∀λ ∈ Λ,

LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

λ′

2
√
λ
θ̄>
(
∇2
θLS

∣∣
θ̄

)
θ̄ +

1

2
√
λ

e[σ̄]>(∇2
θLS

∣∣
θ̄

)
e[σ̄]

+
1

2
√
λ

min
β∈Bn
σ̄∈Rn

(∥∥∥θ̄ � e[−2σ̄]
∥∥∥2

2
+

1

λ′2
‖σ̄ − β‖22

)
+ E (LS ,Q)

+
1

λ

(
2 ln|Λ|+ ln|Λ′|+ n ln|B|+ ln

1

δ

)
+

λ

2m
. (63)
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D.3. Proposition 4.2

First, we change our design of the prior and the posterior. Let B be a set of positive real numbers such that B ⊂ R>0. We
describe our choice of B later.

P (µ) = N (µ | 0, I), (64)

P (σ) =

{
1
|B|n , if σ ∈ Bn

0, otherwise.
(65)

Q (µ | µ̄) = N (µ | µ̄, I), (66)

Q (σ | σ̄) =

{
1, if σ = σ̄

0, otherwise,
(67)

where µ̄ and σ̄ are vectors which satisfies θ = ηµ̄� σ̄. Now, (A) term and (B) term in the PAC-Bayes bound (4) can be
written as follows.

(A) :
η2

2

n∑
i=1

(
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + E (LS ,Q), (68)

(B) :

{
1
λ

(
1

2η2

∑n
i=1 θi

2e[−2σ̄i] + n ln|B|
)
, if σ̄ ∈ Bn

∞, otherwise,
(69)

Let H = {x− 1
4 |x ∈ Λ}. Taking union bound for η over H , with probability at least 1− δ,

∀η ∈ H,∀σ̄ ∈ Bn,∀λ ∈ Λ,

LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

η2

2

n∑
i=1

(
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] +
1

2λη2

n∑
i=1

θi
2e[−2σ̄i]

+E (LS ,Q) +
1

λ

(
ln|H|+ n ln|B|+ ln

1

δ

)
+

λ

2m
. (70)

By setting η = λ−
1
4 , we have

∀λ ∈ Λ,LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

1

2
√
λ

n∑
i=1

min
σ̄i∈B

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
+E (LS ,Q) +

1

λ

(
ln|Λ|+ n ln|B|+ ln

1

δ

)
+

λ

2m
. (71)

Now, we specify the set B. Let

B =

{
c+

d− c
p

(
i+

1

2

)∣∣∣∣i ∈ {0, 1, . . . , p− 1}
}

for some c, d ∈ R and p ∈ N. We specify c, d, and p later so that B become sufficiently dense.

In the rest of the proof, we bound the error caused by the discretization of R by B. First, we bound

Di = min
σ̄i∈[c,d]

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
− inf
σ̄i∈R>0

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
. (72)

Due to

∂

∂σ̄i

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
= 2

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] − θi2e[−2σ̄i]
)

(73)
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and convexity of Di, when (
∇2
θLS

∣∣
θ̄

)
i,i

e[2c] ≤ θi2e[−2c] (74)

and (
∇2
θLS

∣∣
θ̄

)
i,i

e[2d] ≥ θi2e[−2d], (75)

the minimizer of the second term of Di lies in [c, d]. Thus Di = 0. Otherwise, when(
∇2
θLS

∣∣
θ̄

)
i,i

e[2c] > θi
2e[−2c], (76)

Di ≤ min
σ̄i∈[c,d]

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
≤
(
∇2
θLS

∣∣
θ̄

)
i,i

e[2c] + θi
2e[−2c]

≤ 2
(
∇2
θLS

∣∣
θ̄

)
i,i

e[2c]

≤ 2Me[2c]. (77)

When (
∇2
θLS

∣∣
θ̄

)
i,i

e[2d] ≥ θi2e[−2d], (78)

Di ≤ min
σ̄i∈[c,d]

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
≤
(
∇2
θLS

∣∣
θ̄

)
i,i

e[2d] + θi
2e[−2d]

≤ 2θi
2e[−2d]

≤ 2b2e[−2d]. (79)

Thus,

D ≤ max
(

2Me[2c] + 2b2e[−2d]
)
. (80)

Next, we bound

Ei = min
σ̄i∈{(c+ d−c

p i)|i∈{0,1,...,p}}

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
− min
σ̄i∈[c,d]

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
. (81)

Let

σ̄∗i = argmin
σ̄i∈[c,d]

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

)
, (82)

j∗ = argmin
j

{∣∣∣∣(c+
d− c
p

(
j +

1

2

))
− σ̄∗i

∣∣∣∣∣∣∣∣j ∈ {0, 1, . . . , p− 1}
}
, (83)

and

y∗ = c+
d− c
p

(
j∗ +

1

2

)
. (84)
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Now,

Ei ≤
((
∇2
θLS

∣∣
θ̄

)
i,i

e[2y∗] + θi
2e[−2y∗]

)
−
((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄∗i ] + θi
2e[−2σ̄∗i ]

)
≤
(
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄∗i ]
∣∣∣e[2y∗−2σ̄∗i ] − 1

∣∣∣+ θi
2e[−2σ̄∗i ]

∣∣∣e[−2y∗+2σ̄∗i ] − 1
∣∣∣

≤
((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄∗i ] + θi
2e[−2σ̄∗i ]

)(
e[2|y∗−σ̄∗i |] − 1

)
≤
((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄∗i ] + θi
2e[−2σ̄∗i ]

)(
e[ d−cp ] − 1

)
=

(
min
σ̄i∈[c,d]

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σ̄i] + θi
2e[−2σ̄i]

))(
e[ d−cp ] − 1

)
. (85)

Thus,

min
σi∈B

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θ̄ie
[−2σ̄i]

)
− inf
σi∈R

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θi
2e[−2σi]

)
=Di + Ei

≤Di +

(
inf
σi∈R

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θi
2e[−2σi]

)
+Di

)(
e[ d−cp ] − 1

)
. (86)

We set c and d so that e[2c] = ε
M
√
λ

and e[−2d] = ε
b2
√
λ

. Then,

min
σi∈B

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θ̄2
i e[−2σ̄i]

)
− inf
σi∈R

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θi
2e[−2σi]

)
≤
(

inf
σi∈R

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θi
2e[−2σi]

)
+

2√
λ
ε

)(
e[ d−cp ] − 1

)
+

2√
λ
ε. (87)

For any ε ∈ R>0, if we choose
ln(M)+2 ln(b)+ln(λ)+2 ln( 1

ε )
ln(1+ε) ≤ p < ln(M)+2 ln(b)+ln(λ)+2 ln( 1

ε )
ln(1+ε) + 1,

min
σi∈B

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + (θ̄2
i e[−2σ̄i]

)
− inf
σi∈R

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θi
2e[−2σi]

)
≤ inf
σi∈R

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θi
2e[−2σi]

)
ε+

2√
λ

(ε+ ε2). (88)

Thus,

∀λ ∈ Λ,∀ε ∈ R>0,

LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

1 + ε+ ε2

2
√
λ

n∑
i=1

inf
σi∈R

((
∇2
θLS

∣∣
θ̄

)
i,i

e[2σi] + θi
2e[−2σi]

)
+ E (LS ,Q)

+
1

λ

(
n(ε+ ε2) + ln|Λ|+ n ln

(
ln(M) + 2 ln(b) + ln(λ) + 2 ln

(
1
ε

)
ln (1 + ε)

+ 1

)
+ ln

1

δ

)
+

λ

2m

≤LS (θ) +
1 + ε+ ε2√

λ

n∑
i=1

√
(∇2

θLS |θ̄)
i,i
θi

2 + E (LS ,Q)

+
1

λ

(
n(ε+ ε2) + ln|Λ|+ n ln

(
ln(M) + 2 ln(b) + ln(λ) + 2 ln

(
1
ε

)
ln (1 + ε)

+ 1

)
+ ln

1

δ

)
+

λ

2m
. (89)
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D.4. Proposition 6.1

First, we describe our design of the prior and the posterior. Let B1 and B2 be a set of positive real numbers such that
B1 ⊂ R≥0 and B2 ⊂ R≥0. We describe our choice of B1 and B2 later.

P
(
V (l)

)
= N

(
V (l) | 0, I

)
, (90)

P
(
γ(l)

)
=

 1

|B1|h
(l)
1

, if γ(l) ∈ Bh
(l)
1

1

0, otherwise.
, (91)

P
(
γ′

(l)
)

=

 1

|B2|h
(l)
2

, if γ′(l) ∈ Bh
(l)
2

2

0, otherwise.
(92)

Q
(
V (l) | V̄ (l)

)
= N

(
V (l) | V̄ (l), I

)
, (93)

Q
(
γ(l) | γ̄(l)

)
=

{
1, if γ(l) = γ̄(l)

0, otherwise,
(94)

Q
(
γ′

(l) | γ̄
′(l)
)

=

{
1, if γ′(l) = γ̄

′(l)

0, otherwise.
(95)

Now, (A) term and (B) term in the PAC-Bayes bound (4) can be written as follows.

(A) :
η2

2

d∑
l=1

e[−γ̄(l)]
>
H̄(l)e

[
−γ̄
′(l)
]

+ E (LS ,Q), (96)

(B) :

 1
λ

(
1

2η2

∑d
l=1 e[γ̄(l)]

>
Ū (l)e

[
γ̄
′(l)
]

+
∑d
l=1

(
h

(l)
1 ln|B1|+ h

(l)
2 ln|B2|

))
, if γ̄(l) ∈ Bh

(l)
1

1 and γ̄
′(l) ∈ Bh

(l)
2

2

∞, otherwise.
(97)

Let H = {x− 1
4 |x ∈ Λ}. Taking union bound for η over H , with probability at least 1− δ,

∀η ∈ H,
(
∀l ∈ {1, . . . , l},

(
∀γ̄(l) ∈ Bh

(l)
1

1 ,∀γ̄
′(l) ∈ Bh

(l)
2

2

))
,∀λ ∈ Λ,

LD
(
Q
(
θ | θ̄

))
≤ LS (θ) +

η2

2

d∑
l=1

e[−γ̄(l)]
>
H̄(l)e

[
−γ̄
′(l)
]

+
1

2λη2

d∑
l=1

e[γ̄(l)]
>
Ū (l)e

[
γ̄
′(l)
]

+
1

λ

(
ln|Λ|+ h1d ln|B1|+ h2d ln|B2|+ ln

1

δ

)
+

λ

2m
+ E (LS ,Q), (98)

where

h1 :=
1

d

d∑
i=1

h
(l)
1 , (99)

h2 :=
1

d

d∑
i=1

h
(l)
2 . (100)
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By setting η = λ−
1
4 , we have(

∀l ∈ {1, . . . , l},
(
∀γ̄(l) ∈ Bh

(l)
1

1 ,∀γ̄
′(l) ∈ Bh

(l)
2

2

))
,∀λ ∈ Λ,

LD
(
Q
(
θ | θ̄

))
≤ LS (θ) +

1

2
√
λ

d∑
l=1

(
e[−γ̄(l)]

>
H̄(l)e

[
−γ̄
′(l)
]

+ e[γ̄(l)]
>
Ū (l)e

[
γ̄
′(l)
])

+
1

λ

(
ln|Λ|+ h1d ln|B1|+ h2d ln|B2|+ ln

1

δ

)
+

λ

2m
+ E (LS ,Q). (101)

Thus,

∀λ ∈ Λ,LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

1

2
√
λ

d∑
l=1

min

γ̄(l)∈B
h
(l)
1

1 ,γ̄′(l)∈B
h
(l)
2

2

(
e[−γ̄(l)]

>
H̄(l)e

[
−γ̄
′(l)
]

+ e[γ̄(l)]
>
Ū (l)e

[
γ̄
′(l)
])

+
1

λ

(
ln|Λ|+ h1d ln|B1|+ h2d ln|B2|+ ln

1

δ

)
+

λ

2m
+ E (LS ,Q). (102)

In the rest of the proof, we bound

min

x∈B
h
(l)
1

1 ,y∈B
h
(l)
2

2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
− inf
x∈[−R,R]h

(l)
1 ,y∈Rh

(l)
2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
(103)

by choosing B1 and B2 appropriately.

First, we bound

Dl := min

x∈[−R,R]h
(l)
1 ,y∈B

h
(l)
2

2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
− inf
x∈[−R,R]h

(l)
1 ,y∈Rh

(l)
2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
(104)

by choosing B2. Let B2 be a set of real numbers defined as follows.

B2 =

{
c+

d− c
p

i

∣∣∣∣i ∈ {0, 1, . . . , p}} (105)

for some c, d ∈ R such that c < d and p ∈ N. We specify c, d, and p later. It is straightforward to bound Dl if we can bound
the following quantity for arbitral j ∈ {1, . . . , h(l)

1 } and x ∈ [−R,R]h
(l)
1 :

D′l,j := min
yj∈B2

(
e[x]>H̄

(l)
:,j e[yj ] + e[−x]>Ū

(l)
:,j e[−yj ]

)
− inf
yj∈R

(
e[x]>H̄

(l)
:,j e[yj ] + e[−x]>Ū

(l)
:,j e[−yj ]

)
. (106)

Since

∂

∂yi

(
e[x]>H̄

(l)
:,j e[yj ] + e[−x]>Ū

(l)
:,j e[−yj ]

)
= e[x]>H̄

(l)
:,j e[yj ] − e[−x]>Ū

(l)
:,j e[−yj ], (107)

when

e[x]>H̄
(l)
:,j e[c] ≤ e[−x]>Ū

(l)
:,j e[−c] (108)

and

e[−x]>Ū
(l)
:,j e[−d] ≤ e[x]>H̄

(l)
:,j e[d] (109)

there exists a minimizer of the second term of D′l,j in [c, d]. We bound D′l,j by division into cases.
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Case 1:

e[x]>H̄
(l)
:,j e[c] ≤ e[−x]>Ū

(l)
:,j e[−c] and e[−x]>Ū

(l)
:,j e[−d] ≤ e[x]>H̄

(l)
:,j e[d] (110)

Let

yj
∗ = argmin

yj∈[−R,R]

(
e[x]>H̄

(l)
:,j e[yj ] + e[−x]>Ū

(l)
:,j e[−yj ]

)
, (111)

k∗ = argmin
k

{∣∣∣∣(c+
d− c
p

k

)
− yj∗

∣∣∣∣∣∣∣∣k ∈ {0, 1, . . . , p}} , (112)

z∗ = c+
d− c
p

k∗. (113)

Note, c ≤ yj∗ ≤ d by the assumption. Then,

D′l,j ≤
(

e[x]>H̄
(l)
:,j e[z∗] + e[−x]>Ū

(l)
:,j e[−z∗]

)
−
(

e[x]>H̄
(l)
:,j e[yj

∗] + e[−x]>Ū
(l)
:,j e[−yj∗]

)
(114)

≤
∣∣∣e[x]>H̄

(l)
:,j e[z∗] − e[x]>H̄

(l)
:,j e[yj

∗]
∣∣∣+
∣∣∣e[−x]>Ū

(l)
:,j e[−z∗] − e[−x]>Ū

(l)
:,j e[−yj∗]

∣∣∣ (115)

≤
(

e[x]>H̄
(l)
:,j e[yj

∗]
)(

e[|yj∗−z∗|] − 1
)

+
(

e[−x]>Ū
(l)
:,j e[−yj∗]

)(
e[|yj∗−z∗|] − 1

)
(116)

≤
(

e[x]>H̄
(l)
:,j e[yj

∗] + e[−x]>Ū
(l)
:,j e[−yj∗]

)(
e[ d−c2p ] − 1

)
. (117)

Case 2:

e[−x]>Ū
(l)
:,j e[−c] ≤ e[x]>H̄

(l)
:,j e[c] (118)

Since

min
yj∈B2

(
e[x]>H̄

(l)
:,j e[yj ] + e[−x]>Ū

(l)
:,j e[−yj ]

)
=
(

e[x]>H̄
(l)
:,j e[c] + e[−x]>Ū

(l)
:,j e[−c]

)
, (119)

D′l,j ≤e[x]>H̄
(l)
:,j e[c] + e[−x]>Ū

(l)
:,j e[−c] (120)

≤2e[x]>H̄
(l)
:,j e[c] (121)

≤2Mh
(l)
1 eRe[c]. (122)

Case 3:

e[x]>H̄
(l)
:,j e[d] ≤ e[−x]>Ū

(l)
:,j e[−d] (123)

Since

min
yj∈B2

(
e[x]>H̄

(l)
:,j e[yj ] + e[−x]>Ū

(l)
:,j e[−yj ]

)
=
(

e[x]>H̄
(l)
:,j e[d] + e[−x]>Ū

(l)
:,j e[−d]

)
, (124)

D′l,j ≤e[x]>H̄
(l)
:,j e[c] + e[−x]>Ū

(l)
:,j e[−c] (125)

≤2e[−x]>Ū
(l)
:,j e[−d] (126)

≤2b2h
(l)
1 eRe[−d]. (127)

Combining case 1–3, we have

D′l,j ≤
(

inf
yj∈R

(
e[x]>H̄

(l)
:,j e[yj ] + e[−x]>Ū

(l)
:,j e[−yj ]

))(
e[ d−c2p ] − 1

)
+ max

(
2Mh

(l)
1 eRe[c] + 2b2h

(l)
1 eRe[−d]

)
. (128)
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We set c, d, and p so that

e[c] =
hdε

nM
√
λeR

, (129)

e[−d] =
hdε

nb2
√
λeR

, (130)

d− c
2 ln (1 + ε)

≤ p < d− c
2 ln (1 + ε)

+ 1. (131)

Then,

Dl ≤ inf
y∈Rh

(l)
2

(
e[x]>H̄

(l)
:,j e[y] + e[−x]>Ū

(l)
:,j e[−y]

)
ε+ 2

h
(l)
1 h

(l)
2

n
√
λ
hdε. (132)

Next, we bound

El := min

x∈B
h
(l)
1

1 ,y∈B
h
(l)
2

2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
− min

x∈[−R,R]h
(l)
1 ,y∈B

h
(l)
2

2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
. (133)

by choosing B1. Let B1 be a set of real numbers defined as follows.

B1 =

{
−R+

2R

p′

(
i+

1

2

)∣∣∣∣i ∈ {0, 1, . . . , p′ − 1}
}
. (134)

Let

x∗,y∗ = argmin

x∈[−R,R]h
(l)
1 ,y∈B

h
(l)
2

2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
, (135)

j∗ = argmin
j

{∣∣∣∣(−R1 +
2R

p′
�
(
j +

1

2
1

))
− x∗

∣∣∣∣∣∣∣∣j ∈ {0, 1, . . . , p′ − 1}h
(l)
1

}
, (136)

and

z∗ = −R1 +
2R

p′
�
(
j∗ +

1

2
1

)
. (137)

Then,

El ≤
(

e[z∗]>H̄(l)e[y∗] + e[−z∗]>Ū (l)e[−y∗]
)
−
(

e[x∗]>H̄(l)e[y∗] + e[−x∗]>Ū (l)e[−y∗]
)

(138)

≤
(

e[x∗] �
(

e[|z∗−x∗|] − 1
))>

H̄(l)e[y∗] +
(

e[−x∗] �
(

e[|z∗−x∗|] − 1
))>

Ū (l)e[−y∗] (139)

≤
(

e[x∗] �
(
e
R
p′ 1 − 1

))>
H̄(l)e[y∗] +

(
e[−x∗] �

(
e
R
p′ 1 − 1

))>
Ū (l)e[−y∗] (140)

=
(

e[x∗]>H̄(l)e[y∗] + e[−x∗]>Ū (l)e[−y∗]
)(

e
R
p′ − 1

)
. (141)

We set p′ so that

R

ln (1 + ε)
≤ p′ < R

ln (1 + ε)
+ 1. (142)
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Then,

El ≤ min

x∈[−R,R]h
(l)
1 ,y∈B

h
(l)
2

2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
ε. (143)

Combining Eq. (132) and Eq. (143),

d∑
l=1

(
min

x∈B
h
(l)
1

1 ,y∈B
h
(l)
2

2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)

− inf
x∈[−R,R]h

(l)
1 ,y∈Rh

(l)
2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

))
(144)

=

d∑
l=1

(Dl + El) (145)

≤
d∑
l=1

(
inf

y∈Rh
(l)
2

(
e[x]>H̄

(l)
:,j e[y] + e[−x]>Ū

(l)
:,j e[−y]

)
ε+ 2

h
(l)
1 h

(l)
2

n
√
λ
hdε (146)

+ min

x∈[−R,R]h
(l)
1 ,y∈B

h
(l)
2

2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
ε

)
(147)

≤
d∑
l=1

(
inf

y∈Rh
(l)
2

(
e[x]>H̄

(l)
:,j e[y] + e[−x]>Ū

(l)
:,j e[−y]

)
ε+ 2

h
(l)
1 h

(l)
2

n
√
λ
hdε (148)

+

(
inf

y∈Rh
(l)
2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
(1 + ε) + 2

h
(l)
1 h

(l)
2

n
√
λ
hdε

)
ε

)
(149)

=

d∑
l=1

(
inf

y∈Rh
(l)
2

(
e[x]>H̄

(l)
:,j e[y] + e[−x]>Ū

(l)
:,j e[−y]

) (
2ε+ ε2

)
+ 2

h
(l)
1 h

(l)
2

n
√
λ
hd
(
ε+ ε2

))
(150)

=

d∑
l=1

inf
y∈Rh

(l)
2

(
e[x]>H̄

(l)
:,j e[y] + e[−x]>Ū

(l)
:,j e[−y]

) (
2ε+ ε2

)
+ 2

hd√
λ

(
ε+ ε2

)
(151)
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Thus,

∀λ ∈ Λ,∀ε ∈ R>0,

LD
(
Q
(
θ | θ̄

))
≤LS (θ) +

(1 + ε)
2

2
√
λ

d∑
l=1

inf
x∈[−R,R]h

(l)
1 ,y∈Rh

(l)
2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
+ E (LS ,Q) +

λ

2m

+
1

λ

(
h2 (1 + ε) ε+ ln|Λ|+ h2d ln

(
1
2 ln(M) + ln(b) + 1

2 ln(λ) + ln( nhd ) +R+ ln
(

1
ε

)
ln (1 + ε)

+ 2

)

+ h1d ln

(
ln (R)

ln (1 + ε)
+ 1

)
+ ln

1

δ

)
(152)

≤LS (θ) +
(1 + ε)

2

2
√
λ

d∑
l=1

inf
x∈[−R,R]h

(l)
1 ,y∈Rh

(l)
2

(
e[x]>H̄(l)e[y] + e[−x]>Ū (l)e[−y]

)
+ E (LS ,Q) +

λ

2m

+
1

λ

(
hd (1 + ε) ε+ ln|Λ|+ 2hd ln

(
1
2 ln(M) + ln(b) + 1

2 ln(λ) + ln( nhd ) +R+ ln
(

1
ε

)
ln (1 + ε)

+ 2

)
+ ln

1

δ

)
(153)

=LS (θ) +
(1 + ε)

2

√
λ

d∑
l=1

inf
x∈[−R,R]h

(l)
1

(√
e[x]>H̄(l)Ū (l)e[−x]

)
+ E (LS ,Q) +

λ

2m

+
1

λ

(
hd (1 + ε) ε+ ln|Λ|+ 2hd ln

(
1
2 ln(M) + ln(b) + 1

2 ln(λ) + ln( nhd ) +R+ ln
(

1
ε

)
ln (1 + ε)

+ 2

)
+ ln

1

δ

)
. (154)
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D.5. Theorem 6.1

The theorem immediately follows if we bound the following quantity.

Gl :=
1

2
NS(l) − e[γ̄(l)

∗ ]
>
F̄ (l)e

[
γ̄
′(l)
∗

]
, (155)

where

γ̄
(l)
∗ , γ̄

′(l)
∗ = argmin

γ̄(l)∈B
h
(l)
1

1 ,γ̄′(l)∈B
h
(l)
2

2

(
e[γ̄(l)]

>
F̄ (l)e

[
γ̄
′(l)
]

+ e[−γ̄(l)]
>
Ū (l)e

[
−γ̄
′(l)
])

, (156)

NS(l) = inf
γ̄(l)∈[−R,R]h

(l)
1 ,γ̄′(l)∈Rh

(l)
2

(
e[γ̄(l)]

>
F̄ (l)e

[
γ̄
′(l)
]>

+ e[−γ̄(l)]
>
Ū (l)e

[
−γ̄
′(l)
])

. (157)

The sets B1 and B2 are specified in D.4.

Gl ≤
1

2
inf

γ̄′(l)∈Rh
(l)
2

(
e[γ̄(l)
∗ ]
>
F̄ (l)e

[
γ̄
′(l)
]

+ e[−γ̄(l)
∗ ]
>
Ū (l)e

[
−γ̄
′(l)
])
− e[γ̄(l)

∗ ]
>
F̄ (l)e

[
γ̄
′(l)
∗

]
. (158)

Let

Gl,j =
1

2
inf

γ̄
′(l)
j ∈R

(
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[
γ̄
′(l)
j

]
+ e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e

[
−γ̄
′(l)
j

])
− e[γ̄(l)

∗ ]F̄ (l)e

[(
γ̄
′(l)
∗

)
j

]
, (159)

and c, d are real numbers defined in Sec. D.4. We bound Gl,j by division into cases.

Case 1:

e[γ̄(l)
∗ ]
>
H̄

(l)
:,j e[c] ≤ e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e[−c] and e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e[−d] ≤ e[γ̄(l)

∗ ]
>
H̄

(l)
:,j e[d] (160)

Since

inf
γ̄
′(l)
j ∈R

(
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[
γ̄
′(l)
j

]
+ e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e

[
−γ̄
′(l)
j

])
= min
γ̄
′(l)
j ∈[c,d]

(
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[
γ̄
′(l)
j

]
+ e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e

[
−γ̄
′(l)
j

])
, (161)

there exists z ∈ [c, d] such that

z = argmin

γ̄
′(l)
j ∈Rh

(l)
2

(
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[
γ̄
′(l)
j

]
+ e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e

[
−γ̄
′(l)
j

])
. (162)

Note, z satisfies

e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e[z] = e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e[−z]. (163)

Thus,

Gl,j = e[γ̄(l)
∗ ]
>
F̄

(l)
:,j

(
e[z] − e

[(
γ̄
′(l)
∗

)
j

])
. (164)

Due to the convexity of

e[γ̄(l)]
>
F̄ (l)e

[
γ̄
′(l)
]

+ e[−γ̄(l)]
>
Ū (l)e

[
−γ̄
′(l)
]

(165)

with respect to γ̄
′(l) and the choice of B2,

Gl,j ≤ e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[(
γ̄
′(l)
∗

)
j

] (
e[ d−c2p ] − 1

)
(166)

≤ e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[(
γ̄
′(l)
∗

)
j

]
ε. (167)
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Case 2:

e[−γ̄(l)
∗ ]
>
F̄

(l)
:,j e[−c] ≤ e[γ̄(l)

∗ ]
>
F̄

(l)
:,j e[c] (168)

By the choice of c,

Gl,j ≤
1

2
inf

γ̄
′(l)
j ∈R

(
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[
γ̄
′(l)
j

]
+ e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e

[
−γ̄
′(l)
j

])
(169)

≤ 1

2

(
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e[c] + e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e[−c]

)
(170)

≤ e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e[c] (171)

≤ hdh
(l)
2

n
√
λ
ε. (172)

Case 3:

e[x]>H̄
(l)
:,j e[d] ≤ e[−x]>Ū

(l)
:,j e[−d] (173)

By the choice of d,

Gl,j ≤
1

2
inf

γ̄
′(l)
j ∈R

(
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[
γ̄
′(l)
j

]
+ e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e

[
−γ̄
′(l)
j

])
(174)

≤ 1

2

(
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e[d] + e[−γ̄(l)

∗ ]
>
Ū

(l)
:,j e[−d]

)
(175)

≤ e[−γ̄(l)
∗ ]
>
Ū

(l)
:,j e[−d] (176)

≤ hdh
(l)
2

n
√
λ
ε. (177)

Combining case 1–3,

Gl,j ≤
1

2
e[γ̄(l)
∗ ]
>
F̄

(l)
:,j e

[(
γ̄
′(l)
∗

)
j

]
ε+

hdh
(l)
2

n
√
λ
ε. (178)

Thus,

Gl ≤
1

2
e[γ̄(l)
∗ ]
>
F̄ (l)e

[
γ̄
′(l)
∗

]
ε+

hdh
(l)
1 h

(l)
2

n
√
λ

ε (179)

≤ 1

2

(
e[γ̄(l)
∗ ]
>
F̄ (l)e

[
γ̄
′(l)
∗

]
+ e[−γ̄(l)

∗ ]
>
Ū (l)e

[
−γ̄
′(l)
∗

])
ε+

hdh
(l)
1 h

(l)
2

n
√
λ

ε. (180)

Using Eq. (132) and Eq. (143),

d∑
l=1

Gl ≤
1

2

(
d∑
l=1

NS(l)
(
1 + 2ε+ ε2

)
+ 2

hd√
λ

(
ε+ ε2

))
ε+

hd√
λ
ε (181)

=
ε(1 + ε)2

2

d∑
l=1

NS(l) +
hd√
λ

(
ε+ ε2 + ε3

)
. (182)

Since

E (LS ,Q) ≤ LS
(
Q
(
θ | θ̄

))
−

(
LS (θ) +

1

2
√
λ

d∑
l=1

NS(l)

)
+

1

2
√
λ

d∑
l=1

Gl, (183)
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we can now substitute E (LS ,Q) in Prop. 6.1 using F̄ (l) and Eq. (182) as follows.

∀λ ∈ Λ,∀ε ∈ R>0,

LD
(
Q
(
θ | θ̄

))
≤LS

(
Q
(
θ | θ̄

))
+

(1 + ε)
2

2
√
λ

d∑
l=1

NS(l) +
λ

2m

+
1

λ

(
hd (1 + ε) ε+ ln|Λ|+ 2hd ln

(
1
2 ln(M) + ln(b) + 1

2 ln(λ) + ln( nhd ) +R+ ln
(

1
ε

)
ln (1 + ε)

+ 2

)
+ ln

1

δ

)

+
1

2
√
λ

(
ε(1 + ε)2

2

d∑
l=1

NS(l) +
hd√
λ

(
ε+ ε2 + ε3

))
− 1

4
√
λ

d∑
l=1

NS(l) (184)

=LS
(
Q
(
θ | θ̄

))
+

1 + 5ε+ 4ε2 + ε3

4
√
λ

d∑
l=1

NS(l) +
λ

2m

+
1

λ

(
3ε+ 3ε2 + ε3

2
h+ ln|Λ|+ 2hd ln

(
1
2 ln(M) + ln(b) + 1

2 ln(λ) + ln( nhd ) +R+ ln
(

1
ε

)
ln (1 + ε)

+ 2

)
+ ln

1

δ

)
(185)

=LS
(
Q
(
θ | θ̄

))
+

1 + 5ε+ 4ε2 + ε3

2
√
λ

NS2(R) +
λ

2m

+
1

λ

(
3ε+ 3ε2 + ε3

2
hd+ ln|Λ|+ 2hd ln

(
1
2 ln(M) + ln(b) + 1

2 ln(λ) + ln( nhd ) +R+ ln
(

1
ε

)
ln (1 + ε)

+ 2

)
+ ln

1

δ

)
.

(186)

Using ε ≤ 0.1, we recover the theorem.
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E. Convexity of variance optimization
We show that the optimization problem (35) is convex with respect to the scaling parameters γ̄(l). It suffices to show the
convexity of the following minimization problem.

minimize
γ̄(l)∈Rh

(l)
1

S := e[γ̄(l)]
>
Ae[−γ̄(l)], (187)

where A is a nonnegative matrix.

First, we calculate the elements of the Hessian of S.

∂2S

∂γ̄
(l)
i ∂γ̄

(l)
j

=
∂S

∂γ̄
(l)
i

(
e[γ′(l)j]Aj,:e

[−γ′(l)] − e[γ′(l)]A:,je
[−γ′(l)j]

)
(188)

= δi,j

(
e[γ′(l)j]Aj,:e

[−γ′(l)] + e[γ′(l)]A:,je
[−γ′(l)j]

)
−
(

e[γ′(l)j] (Aj,i +Ai,j) e[−γ′(l)i]
)

(189)

Now, it suffices to show that ∀v, v>
(
∇2
γ̄(l)S

)
v ≥ 0.

v>
(
∇2
γ̄(l)S

)
v (190)

=
∑
i

(
e[γ′(l)j]Aj,:e

[−γ′(l)] + e[γ′(l)]A:,je
[−γ′(l)j]

)
v2
i −

∑
i 6=j

(
e[γ′(l)j] (Aj,i +Ai,j) e[−γ′(l)i]

)
vivj (191)

=
∑
i,j

(
e[γ′(l)i] (Ai,j +Aj,i) e[−γ′(l)j]

)
v2
i −

∑
i,j

(
e[γ′(l)j] (Aj,i +Ai,j) e[−γ′(l)i]

)
vivj (192)

=
1

2

∑
i,j

(
e[γ′(l)i] (Ai,j +Aj,i) e[−γ′(l)j]

)
(vi − vj)2 (193)

≥0 (194)

F. Normalized sharpness for convolutional layers
Let K(l) ∈ Rcout×cin×h×w be a kernel of a convolutional layer, where cin, cout, h, w are input channel size, output channel
size, kernel height, and kernel width, respectively. Since the scale dependence only appears in the input and output channels,
we can use the following reparametrization of K.

K(l)
i,j,a,b = ηe[γ(l)

i]V (l)
i,j,a,be

[γ′(l)j], (195)

where γ(l) ∈ Rcout ,γ′
(l) ∈ Rcin are scaling parameters and V (l) ∈ Rcout×cin×h×w is a normalized kernel. Using the same

discussion with the noramalized sharpness for fully-connected layers, we have

KL[Q
(
V (l),γ,γ′ | V̄ (l), γ̄, γ̄′

)
‖ P
(
V (l),γ,γ′

)
]

=
1

η2

cout∑
i=1

cin∑
j=1

h∑
a=1

w∑
b=1

(
K̄

(l)
i,j,a,b

)2

e

[
−2γ(l)

i−2γ̄
′(l)
j

]
+ const.

=
1

η2

cout∑
i=1

cin∑
j=1

h∑
a=1

w∑
b=1

(
K̄

(l)
i,j,a,b

)2

e

[
−2γ(l)

i−2γ̄
′(l)
j

]
+ const. (196)

Also, let

(
∇2
K(l)LS

∣∣
K̄(l)

)
i,j,a,b

=
∂2LS

∂K(l)
i,j,a,b∂K(l)

i,j,a,b

∣∣∣∣K̄(l) (197)
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and

(
∇2
K(l)LS

∣∣
K̄(l)

)
i,j

=

h∑
a=1

w∑
b=1

(
∂2LS

∂K(l)
i,j,a,b∂K(l)

i,j,a,b

∣∣∣∣K̄(l)

)
. (198)

Then, we have

LS
(
Q
(
θ | θ̄

))
− LS

(
θ̄
)

=η2
d∑
l

cout∑
i=1

cin∑
j=1

h∑
a=1

w∑
b=1

(
∇2
K(l)LS

∣∣
K̄(l)

)
i,j,a,b

e[2γ(l)
i+2γ′(l)j] + E (LS ,Q)

=η2
d∑
l

cout∑
i=1

cin∑
j=1

(
∇2
K(l)LS

∣∣
K̄(l)

)
i,j

e[2γ(l)
i+2γ′(l)j] + E (LS ,Q). (199)

Thus, a natural extension of the normalized sharpness to convolutional networks is as follows.

d∑
l=1

min
γ̄(l),γ̄′(l)

cout∑
i=1

cin∑
j=1

(∥∥∥K̄(l)
i,j,:,:

∥∥∥2

F
e

[
−2γ̄

(l)
i −2γ̄

′(l)
j

]
+
(
∇2
K(l)LS

∣∣
K̄(l)

)
i,j

e

[
2γ̄

(l)
i +2γ̄

′(l)
j

])
. (200)

G. Considerations on surrogate loss
When we measure the generalization gap using the 0-1 loss, which is not differentiable with respect to parameters, we need
to use surrogate loss functions. The choice of the surrogate loss function needs special care when we use flatness for model
comparison. The loss is preferable if the value of sharpness metrics do not change when the accuracy of the models does not
change. Thus, the surrogate loss function is better to be invariant to a set of transformations that do not change accuracy,
such as scaling and shifting of the networks’ outputs. For example, the cross-entropy loss after softmax does not satisfy the
first condition. Thus, using the loss function makes model comparison less meaningful. While the above conditions do not
make the choices of the surrogate loss function unique, we heuristically use the following loss.

− ln

 exp
(
f ′(z)yz

)
∑
i exp (f ′(z)i)

 , (201)

where

µ :=
1

K

∑
i

f(z)i, f
′(z) :=

f(z)√
1
K

∑
i (f(z)i − µ)

2
, (202)

f(z) is an output of a network, yz is a label of z, and K is the number of classes. We refer to the loss function as a
normalized-softmax-cross-entropy loss. We use the loss function in later experiments (Sec. 8). Note that we do not need to
train networks using the loss function, but we use it only when we calculate normalized sharpness for model comparison.

H. Error in second-order approximation
While the Hessian has been a popular measure of flatness, we discuss when the approximation is reasonable.

First, we review Eq.(6). When the loss is twice-continuously differentiable, we have

∃α ∈ [0, 1],LS
(
θ̄′
)

=LS
(
θ̄
)

+ (∇θLS (θ)|θ̄) (θ̄′ − θ̄)

+
1

2
(θ̄′ − θ̄)>

(
∇2
θLS (θ)

∣∣∣θ̄+α(θ̄′−θ̄)

)
(θ̄′ − θ̄). (203)

We further assume M -Lipschitz condition on the Hessian:

∀θ̄,∀θ̄′,
∥∥(∇2

θLS (θ)
∣∣
θ̄′
)
−
(
∇2
θLS (θ)

∣∣
θ̄

)∥∥
2

‖θ̄′ − θ̄‖2
≤M. (204)
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Combining Eq. (203) and Eq. (204), we have

LS
(
θ̄′
)
≤LS

(
θ̄
)

+ (∇θLS (θ)|θ̄) (θ̄′ − θ̄)

+
1

2
(θ̄′ − θ̄)>

(
∇2
θLS (θ)

∣∣
θ̄

)
(θ̄′ − θ̄) +

1

2
M‖θ̄′ − θ̄‖32. (205)

Thus,

LS
(
Q
(
θ | θ̄

))
≤ E
θ̄′∼Q(θ|θ̄)

[
LS
(
θ̄′
)]

+ E
θ̄′∼Q(θ|θ̄)

[
(∇θLS (θ)|θ̄) (θ̄′ − θ̄)

]
+

1

2
E

θ̄′∼Q(θ|θ̄)

[
(θ̄′ − θ̄)>

(
∇2
θLS (θ)

∣∣
θ̄

)
(θ̄′ − θ̄)

]
+

1

2
E

θ̄′∼Q(θ|θ̄)

[
M‖θ̄′ − θ̄‖32

]
. (206)

When the posterior is a Guassian N
(
θ
∣∣θ̄, σ2I

)
,

LS
(
Q
(
θ | θ̄

))
≤LS

(
θ̄′
)

+
1

2
Tr
(
∇2
θLS (θ)

∣∣
θ̄

)
σ2 +M

√
2Γ(n+3

2 )

Γ(n2 )
σ3. (207)

Next, we extend the above discussion to more general Gaussian, i.e., N
(
θ
∣∣θ̄,Σ), where Σ is a positive-definite diagonal

matrix. We define a noramlized M -Hessian Lipschitz condition with a covariance matrix Σ as follows.

∀θ̄,∀θ̄′,

∥∥∥Σ
1
2

((
∇2
θLS

∣∣
θ̄′
)
−
(
∇2
θLS

∣∣
θ̄

))
Σ

1
2

∥∥∥
2√

(θ̄′ − θ̄)>Σ−1(θ̄′ − θ̄)
≤M. (208)

Using the same argument, we recover a similar bound with Eq. (207).

LS
(
Q
(
θ | θ̄

))
≤LS

(
θ̄′
)

+
1

2
Tr
((
∇2
θLS (θ)

∣∣
θ̄

)
Σ
)

+M

√
2Γ(n+3

2 )

Γ(n2 )
σ3. (209)

I. Rate of convergence concerning m

The NS terms in Prop. 4.1, Prop. 4.2, Prop. 6.1, and Theorem 6.1 areO(λ−
1
2 ), which areO(m−

1
4 ) with the optimal choice of

λ. This convergence rate is apparently bad compared to usual O(m−
1
2 ) convergence rate. However, by examining exisitng

bounds, we can confirm that the convergence rate of our bounds are not looser than existing bounds.

First, we review Eq. (4).

LD
(
Q
(
θ | θ̄

))
≤ LS

(
Q
(
θ | θ̄

))
+

1

λ
KL[Q

(
θ | θ̄

)
‖ P (θ)] +

λ

2m
+

1

λ
ln

1

δ
. (210)

To achieve a bound smaller than c ∈ R>0, we will set λ < cm. Thus, apparent rate of convergence is O(m−1). However, if
we tune λ and use the optimal value, the inequality changes as follows.

LD
(
Q
(
θ | θ̄

))
≤ LS

(
Q
(
θ | θ̄

))
+

√
2KL[Q

(
θ | θ̄

)
‖ P (θ)] + 2 ln 1

δ

m
. (211)

Now, the convergence rate turned out to be O(m−
1
2 ). We further decompose the bound as follows.

LD
(
Q
(
θ | θ̄

))
≤ LS (θ) + LS

(
Q
(
θ | θ̄

))
− LS (θ)︸ ︷︷ ︸

(C)

+

√
2KL[Q

(
θ | θ̄

)
‖ P (θ)] + 2 ln 1

δ

m︸ ︷︷ ︸
(D)

. (212)

Let the prior be a zero-mean Gaussian with a covariance matrix whose i-th diagonal elements are σi, and the posterior be a
Gaussian with a mean θ and the same covariance matrix. Then,

LD
(
Q
(
θ | θ̄

))
≤ LS (θ) + LS

(
Q
(
θ | θ̄

))
− LS (θ)︸ ︷︷ ︸

(C)

+

√∑
i
θ2
i

σ2
i

+ 2 ln 1
δ

m︸ ︷︷ ︸
(D)

. (213)
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The second-order approximation of (C)-term yields the following.

LS (θ) +
1

2

∑
i

(
∇2
θLS

∣∣
θ̄

)
i,i
σ2
i︸ ︷︷ ︸

(C)

+

√∑
i
θ2
i

σ2
i

+ 2 ln 1
δ

m︸ ︷︷ ︸
(D)

. (214)

If we tune σi with some appropriate procedures, it tightens the bound. The point is that σis depend on m. This makes the
rate of convergence concerning m different. Now, we return to Prop. 4.2. In the bound, we first tuned σ and then tune λ.
Thus, this yields the same convergence rate with Eq.(214).

In Theorem 6.1 in (Neyshabur et al., 2018), we have a trade-off between the first and the second term through a margin
parameter, which also depends on m. Even though we cannot make sure that the order of the bound exactly matches with
ours, the apparent rate of their bound changes if we tune the parameter. The same applies to Bartlett et al. (2017) and
Arora et al. (2018). Note that these two papers are based on Rademacher complexity and compression-based framework,
respectively. This suggests that similar changes in convergence rate appear in other frameworks than PAC-Bayes.

J. Scale invariance of normalized sharpness
In this section, we briefly explain why normalized sharpness is invariant to parameter scale changes presented in Sec. 5. The
definition of normalized sharpness (35) can be written as follows.

d∑
l=1

inf
γ̄(l)∈Rh

(l)
1 ,γ̄′(l)∈Rh

(l)
2

(
e[γ̄(l)]

>
F̄ (l)e

[
γ̄
′(l)
j

]
+ e[−γ̄(l)]

>
Ū (l)e

[
−γ̄
′(l)
])

(215)

It suffices to show that the metric does not change when a row or column of l-th weight matrix is multiplied by α as
described in Sec. 5. Assume that an i-th row of the l-th weight matrix is multiplied by exp(α), and the successive matrix is
multiplied by exp(−α). It suffices to show the invariance of the following metrics.

inf
γ̄

(l)
i ∈R,γ̄

′(l)∈Rh
(l)
2

(
e

[
γ̄

(l)
i

]>
F̄

(l)
i,: e

[
γ̄
′(l)
]

+ e

[
−γ̄(l)

i

]>
Ū

(l)
i,: e

[
−γ̄
′(l)
])

, (216)

inf
γ̄(l+1)∈Rh

(l+1)
1 ,γ̄

′(l+1)
i ∈R

(
e[γ̄(l+1)]

>
F̄

(l+1)
:,i e

[
γ̄
′(l+1)
i

]
+ e[−γ̄(l+1)]

>
Ū

(l+1)
:,i e

[
−γ̄
′(l+1)
i

])
. (217)

We show the invariance of (216). Applying the same discussion to the other is straightforward. By the transformation, the
i-th row of the Hessian with respect to W (l), or F̄ (l), is scaled by exp(−2α). Thus, the metric changes as follows.

inf
γ̄

(l)
i ∈R,γ̄

′(l)∈Rh
(l)
2

(
e−2αe

[
γ̄

(l)
i
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F̄

(l)
i,: e

[
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′(l)
]

+ e2αe

[
−γ̄(l)

i
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Ū

(l)
i,: e

[
−γ̄
′(l)
])

(218)

= inf
(γ̄

(l)
i −2α)∈R,γ̄′(l)∈Rh

(l)
2

(
e

[
γ̄

(l)
i −2α

]>
F̄

(l)
i,: e

[
γ̄
′(l)
]

+ e

[
−(γ̄

(l)
i −2α)

]>
Ū

(l)
i,: e

[
−γ̄
′(l)
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(219)

= inf
γ̄

(l)
i ∈R,γ̄

′(l)∈Rh
(l)
2

(
e

[
γ̄

(l)
i

]>
F̄

(l)
i,: e

[
γ̄
′(l)
]

+ e

[
−γ̄(l)

i

]>
Ū

(l)
i,: e

[
−γ̄
′(l)
])

(220)

K. Comparison with existing normalized curvatures
In this section, we discuss the connections between normalized sharpness and prior normalized curvature studies such as
Fisher-Rao norm (Liang et al., 2019), Gauss-Newton norm (Zhang et al., 2019), information in wegits (Achille & Soatto,
2018), and expected sharpness (Neyshabur et al., 2017).

Advantage of Fisher-Rao norm and Gauss-Newton norm: In some simple architectures, the Fisher-Rao norm and
Gauss-Newton norm have connections with input-output Jacobians, parameter-output Jacobians, and function space
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norms (Liang et al., 2019; Zhang et al., 2019). However, normalized sharpness does not have the interpretations. This is a
clear advantage of Fisher-Rao norm and Gauss-Newton norm. Note that the interpretations are lost when networks have skip
connections or branches, which are common in modern networks. In our analysis, we did not rely on special structures of
network architectures. Thus, normalized sharpness does not lose its connection to generalization even when they exist.

Additional invariance in normalized sharpness: Normalized sharpness has additional invariance compared to current
normalized curvature metrics. Let us consider the following network.

f(z) = ReLU(W (1)z) + ReLU(W (2)z). (221)

This type of connection is often found in modern networks (Xie et al., 2017; Zoph et al., 2018). We assume that the following
condition is satisfied.

W (1) = W (2) = W/2. (222)

Next, we rescale the parameters as follows.

f(z) = ReLU(W ′(1)z) + ReLU(W ′(2)z), (223)

W ′(1) = W, W ′(2) = O. (224)

By this rescaling, the existing normalized curvature metrics become double, while normalized sharpness (35) is kept the
same. Note, the considered network does not satisfy the assumpsions of the invariance theorem in Liang et al. (2019). This
additional invariance suggests that our definition better captures generalization in some cases.

L. Further comparison with existing work
Comparison with Wang et al. (2018): Our paper explores scale-independent generalization error bounds and flatness
definition, while Wang et al. (2018) explored to limit the perturbation in a small region to make the quadratic-approximation
holds better. Thus, the two papers make orthogonal contributions. We also point out that the generalization error bounds
presented by Wang et al. (2018) depend on the sum of the log of parameter scales. It is much larger than the log of the sum
of parameter scales and often not negligible. Additionally, the scale-direction decomposition in Sec. 4 is a crucial step to
removing parameter-count-dependence in Sec. 6, and the technique in Sec. 6 is not directly applicable to Wang et al. (2018).

M. Experimental setups
We used cross-entropy loss during the training. We used a normalized-softmax-cross-entropy loss (201) to calculate
normalized sharpness and the trace of the Hessian. We trained all models using Adam optimizer with its default parameters
(lr = 0.001) for 200 epochs with batchsize 128.

Experiment 8.1: We set the ratio of random labels from 0 to 1 at 0.1 intervals and trained models six times for each ratio.
We used the Adam optimizer and did not apply regularization or data augmentation so that the training accuracy would
reach near 1.0 even with random labels.

Experiment 8.2: We chose the hyperparameter of L2 regularization from [10−6, 10−5, 10−4, 10−3, 10−2], the
hyperparameter of weight decay from [10−6, 10−5, 10−4, 10−3, 10−2], and the hyperparameter of dropout from
[0.1, 0.2, 0.3, 0.4, 0.5]. We did not use more than one of the regularization techniques at the same time. We trained
models for five times for each hyperparameter setting, and then removed models with lower training accuracy than 0.5. We
used the Adam optimizer and applied no other regularizations.

Computing resource: We used Intel Xeon E5-2695 v4 and NVIDIA Tesla P100 (Pascal) for all experiments.

In the calculation of the trace of the Hessian, Frobenius norms, and normalized sharpness, we excluded the bias terms and
scaling parameters of normalization layers from the calculation. This can be justified by applying union bound over numbers
representable by floating point numbers. This increase terms Ξ2 in Prop 6.1 and Ξ3 in Theorem 6.1 by O(h), which does not
conflict with our discussion.
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N. Experimental results
N.1. Scatter plots of experiment 8.2

Figure 3 shows the scatter plots of normalized sharpness, the trace of the Hessian, and the squared Frobenius norm of weight
matrices v.s. the accuracy gap between train and test data.
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Figure 3. Scatter plot between normalized sharpness (35), trace of the Hessian (6), the sum of the squared Frobenius norms of weight
matrices, and the accuracy gap. The left column is the results on MNIST and the right is on CIFAR10. All generalization metrics
were rescaled to [0, 1] by their maximum and minimum per network architecture. Thus, direct comparisons between architectures are
meaningless.


