
Linear Bandits with Stochastic Delayed Feedback

A. Proof of Theorem 3
For p, q ∈ (0, 1) let d(p, q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q)) be the relative entropy between Bernoulli
distributions with biases p and q respectively. For θ ∈ [0, 1]K let Eθ denote the expectation when the algorithm interacts
with the Bernoulli bandit determined by θ ∈ [0, 1]K . Let θ = (1/2 + ∆, 1/2, . . . , 1/2) where ∆ ∈ (0, 1/4) is some
parameter to be tuned subsequently. Then let

i = arg min
k>1

Eθ[Nk(T )] .

By the pigeonhole principle it follows that Eθ[Ni(T )] ≤ T/(K − 1). Then define φ ∈ [0, 1]K so that φj = θj for all j 6= i
and φi = 1/2 + 2∆. By the definitions of θ and φ we have

Rθ(T ) ≥ ∆(T − Eθ[N1(T )]) and Rφ(T ) ≥ ∆Eφ[N1(T )] ,

which means that

Rθ(T ) ≥ T∆

2
Pθ(N1(T ) ≤ T/2) and Rφ(T ) ≥ T∆

2
Pφ(N1(T ) > T/2) .

Summing the two regrets and applying the Bretagnolle-Huber inequality shows that

Rθ(T ) +Rφ(T ) ≥ T∆

2
(Pθ(N1(T ) ≤ T/2) + Pφ(N1(T ) > T/2))

≥ T∆

4
exp (−KL(Pθ,Pφ)) .

The next step is to calculate the relative entropy between Pθ and Pφ. Both bandits behave identically on all arms except
action i. When action i is played the learner effectively observes a reward with bias either τm/2 or τm(1/2+2∆). Therefore

KL(Pθ,Pφ) = Eθ [Ni(T )] d(τm/2, τm(1/2 + 2∆)) .

Upper bounding the relative entropy by the χ-squared distance shows that

d(τm/2, τm(1/2 + 2∆)) ≤ 2 (τm/2− τm(1/2 + 2∆))
2

τm(1/2− 2∆)
≤ 32τm∆2 ,

where we used the assumption that 2∆ ≤ 1/4. Therefore

KL(Pθ,Pφ) ≤ 32τm∆2Eθ[Ni(T )] ≤ 32τm∆2T

K − 1
.

Finally we conclude that

Rθ(T ) +Rφ(T ) ≥ T∆

4
exp

(
−32τm∆2T

K − 1

)
.

The result follows by tuning ∆.


