
Supplementary Material: Born-Again Tree Ensembles

Thibaut Vidal 1 Maximilian Schiffer 2

1. Proofs
Proof of Theorem 1. We show the NP-hardness of the born-again tree ensemble problem by reduction from 3-SAT. Let P
be a propositional logic formula presented in conjunctive normal form with three literals per clause. For example, consider
P = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4). 3-SAT aims to determine whether there exist literal values
xi ∈ {TRUE, FALSE} in such a way that P is true. From a 3-SAT instance with k clauses and l literals, we construct an
instance of the born-again tree ensemble problem with 2k − 1 trees of equal weight as follows:

• As illustrated in Figure 1, the first k trees (t1, . . . , tk) represent the clauses. Each of these trees is complete and has a
depth of three, with eight leaves representing the possible combinations of values of the three literals. As a consequence
of this construction, seven of the leaves predict class TRUE, and the last leaf predicts class FALSE.

• The last k − 1 trees contain only a single leaf as root node predicting FALSE.

Finding the optimal born-again decision tree for this input leads to one of the two following outcomes:

• If the born-again decision tree contains only one leaf predicting class FALSE, then 3-SAT for P is FALSE.
• Otherwise 3-SAT for P is TRUE.

Indeed, in the first case, if the born-again tree only contains a single FALSE region (and since it is faithful to the behavior
of the original tree ensemble) there exists no input sample for which TRUE represents the majority class for the 2k − 1
trees. As such, the first k trees cannot jointly predict TRUE for any input and 3-SAT is FALSE. In the second case, either
the optimal born-again decision tree contains a single leaf (root node) of class TRUE, or it contains multiple leaves among
which at least one leaf predicts TRUE (otherwise the born-again tree would not be optimal). In both situations, there exists a
sample for which the majority class of the tree ensemble is TRUE and therefore for which all of the first k trees necessarily
return TRUE, such that 3-SAT is TRUE. This argument holds for any objective involving the minimization of a monotonic
size metric, i.e., a metric for which the size of a tree does not decrease upon addition of a node. This includes in particular,
the depth, the number of leaves, and the hierarchical objectives involving these two metrics.

x1
TRUE FALSE

x2 x2

x3 x3 x3 x3

TRUE E TRUE E TRUE E TRUE E TRUE E TRUE

¬x1
TRUE FALSE

¬x2 ¬x2

x4 x4 x4 x4

TRUE E TRUE E TRUE E TRUE E TRUE E TRUE

¬x2
TRUE FALSE

¬x3 ¬x3

¬x4 ¬x4 ¬x4 ¬x4

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Figure 1. Trees representing the 3-SAT clauses for P = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

1Department of Computer Science, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil. 2TUM School
of Management, Technical University of Munich, Munich, Germany. Correspondence to: Thibaut Vidal <vidalt@inf.puc-rio.br>,
Maximilian Schiffer <schiffer@tum.de>.

Supplementary material of the paper “Born-Again Tree Ensembles. Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020”. Copyright 2020 by the author(s).

Supplementary Material: Born-Again Tree Ensembles

Proof of Theorem 2. Consider a tree ensemble T = {t1, . . . , t|T |}. We construct a sequence of decision trees starting
with T1 = t1 by iteratively appending a copy of tree tk for k ∈ {2, . . . , |T |} in place of each leaf of the tree Tk−1 to
form Tk. This leads to a born-again tree T|T | of depth

∑
i Φ(ti). Each leaf of this tree represents a region of the feature

space over which the predicted class of the trees t ∈ T is constant, such that the ensemble behavior on this region is
faithfully represented by a single class. With this construction, tree T|T | faithfully reproduces the behavior of the original tree
ensemble. Since the optimal born-again tree T has a depth no greater than that of T|T |, we conclude that Φ(T) ≤

∑
i Φ(ti).

Moreover, we prove that this bound is tight, i.e., it is attained for a family of tree ensembles with an arbitrary number of
trees. To this end, we consider the feature space X = Rd and the following 2d− 1 trees with equal weight:

• For i ∈ {1, . . . , d}, tree ti contains a single internal node representing the split xi ≤ 0, leading to a leaf node predicting
class 0 when the splitting condition is satisfied, and to a leaf node predicting class 1 otherwise.

• The remaining d− 1 trees contain a single leaf at the root node predicting class 1.

In the resulting tree ensemble, class 0 represents the majority if and only if xi ≤ 0 for all i ∈ {1, . . . , d}. To be faithful to
the original tree ensemble, the optimal born-again decision tree must verify that xi ≤ 0 for all i ∈ {1, . . . , d} to declare a
sample as part of class 0. This requires at least d comparisons. The depth of the born-again decision tree needed to make
these tests is Φ(T) = d =

∑
i Φ(ti).

Proof of Theorem 3. Any tree T satisfying FT (x) = FT (x) on a region (zL, zR) also satisfies this condition for any
subregion (z̄L, z̄R). Therefore, every feasible solution (tree) of the born-again tree ensemble problem for region (zL, zR)
is feasible for the subproblem restricted to (z̄L, z̄R). As a consequence, the optimal solution value Φ(z̄L, z̄R) for the
subproblem is smaller or equal than the optimal solution value Φ(zL, zR) of the original problem.

Proof of Theorem 4. We will use the extended notation 1jl(z
L, zR) to denote 1jl. Firstly, we observe that 1jl(z

L, zR) =
1jl′(z

L, zR) for all l and l′. Indeed, regardless of l and j,

(Φ(zL, zR
jl) = Φ(zL

jl, z
R) = 0 and FT (zL) = FT (zR))⇔ Φ(zL, zR) = 0.

Next, we observe that Φ(zL, zR
jl) ≤ Φ(zL, zR

jl′) and Φ(zL
jl′ , z

R) ≤ Φ(zL
jl, z

R) for all l′ > l follows from Theorem 3. If
Φ(zL, zR

jl) ≥ Φ(zL
jl, z

R), then Φ(zL, zR
jl′) ≥ Φ(zL

jl′ , z
R) follows from the two previous inequalities and:

max{Φ(zL, zR
jl),Φ(zL

jl, z
R)} = Φ(zL, zR

jl) ≤ Φ(zL, zR
jl′) = max{Φ(zL, zR

jl′),Φ(zL
jl′ , z

R)}.

Analogously, we observe that based on Theorem 3 Φ(zL
jl, z

R) ≤ Φ(zL
jl′ , z

R) and Φ(zL, zR
jl′) ≤ Φ(zL, zR

jl) for all l′ < l holds.
If Φ(zL, zR

jl) ≤ Φ(zL
jl, z

R), then Φ(zL
jl′ , z

R) ≥ Φ(zL, zR
jl′) follows from the two previous inequalities and:

max{Φ(zL, zR
jl),Φ(zL

jl, z
R)} = Φ(zL

jl, z
R) ≤ Φ(zL

jl′ , z
R) = max{Φ(zL, zR

jl′),Φ(zL
jl′ , z

R)}.

Combining these results with the first observation, we obtain in both cases that:

1jl(z
L, zR) + max{Φ(zL, zR

jl),Φ(zL
jl, z

R)} ≤ 1jl′(z
L, zR) + max{Φ(zL, zR

jl′),Φ(zL
jl′ , z

R)}.

2. Pseudo-Codes for Objectives D and DL
Our solution approach is applicable to different tree size metrics, though the binary search argument resulting from
Theorem 4 is only applicable for depth minimization. We considered three possible objectives.

• (D) Depth minimization;
• (L) Minimization of the number of leaves;
• (DL) Depth minimization as primary objective, and then number of leaves as a secondary objective.

The dynamic programming algorithm for depth minimization (D) is described in the main body of the paper. Algo-
rithms 1 and 2 detail the implementation of the dynamic programming algorithm for objectives L and DL, respectively.
To maintain a similar structure and use the same solution extraction procedure in Section 3, these two algorithms focus
on minimizing the number of splits rather than the number of leaves, given that these quantities are proportional and only

Supplementary Material: Born-Again Tree Ensembles

differ by one unit in a proper binary tree. Moreover, the hierarchical objective DL is transformed into a weighted sum by
associating a large cost of M for each depth increment, and 1 for each split. This allows to store each dynamic programming
result as a single value and reduces memory usage.

Algorithm 1 BORN-AGAIN-L(zL, zR)

1: if (zL = zR) return 0
2: if (zL, zR) exists in memory then
3: return MEMORY(zL, zR)
4: end if
5: UB ←∞
6: LB ← 0
7: for j = 1 to p and LB < UB do
8: for l = zL

j to zR
j − 1 and LB < UB do

9: Φ1 ← BORN-AGAIN-L(zL, zR + ej(l − zR
j))

10: Φ2 ← BORN-AGAIN-L(zL + ej(l + 1− zL
j), zR)

11: if (Φ1 = 0) and (Φ2 = 0) then
12: if f(zL, T) = f(zR, T) then
13: MEMORIZE((zL, zR), 0) and return 0
14: else
15: MEMORIZE((zL, zR), 1) and return 1
16: end if
17: end if
18:
19:
20: UB ← min{UB, 1 + Φ1 + Φ2}
21: LB ← max{LB,max{Φ1,Φ2}}
22: end for
23: end for
24: MEMORIZE((zL, zR), UB) and return UB

Algorithm 2 BORN-AGAIN-DL(zL, zR)

1: if (zL = zR) return 0
2: if (zL, zR) exists in memory then
3: return MEMORY(zL, zR)
4: end if
5: UB ←∞
6: LB ← 0
7: for j = 1 to p and LB < UB do
8: for l = zL

j to zR
j − 1 and LB < UB do

9: Φ1 ← BORN-AGAIN-DL(zL, zR + ej(l − zR
j))

10: Φ2 ← BORN-AGAIN-DL(zL +ej(l+1−zL
j), zR)

11: if (Φ1 = 0) and (Φ2 = 0) then
12: if f(zL, T) = f(zR, T) then
13: MEMORIZE((zL, zR), 0) and return 0
14: else
15: MEMORIZE((zL, zR),M+1) and return M+1
16: end if
17: end if
18: DEPTH ← 1 + max{bΦ1/Mc, bΦ2/Mc}
19: SPLITS ← 1 + Φ1%M + Φ2%M
20: UB ← min{UB,M× DEPTH + SPLITS}
21: LB ← max{LB,max{Φ1,Φ2}}
22: end for
23: end for
24: MEMORIZE((zL, zR), UB) and return UB

The main differences with the algorithm for objective D occur in the loop of Line 8, which consists for L and DL in an
enumeration instead of a binary search. The objective calculations are also naturally different. As seen in Line 20, the new
number of splits is calculated as 1 + Φ1 + Φ2 for objective L (i.e., the sum of the splits from the subtrees plus one). When
using the hierarchical objective DL, we obtain the depth and number of splits from the subproblems as bΦi/Mc and Φi%M,
respectively, and use these values to obtain the new objective. Our implementation of these algorithms (in C++) is available
at the following address: https://github.com/vidalt/BA-Trees.

3. Solution Extraction
To reduce computational time and memory consumption, our dynamic programming algorithms only store the optimal
objective value of the subproblems. To extract the complete solution, we exploit the following conditions to recursively
retrieve the optimal splits from the DP states. For a split to belong to the optimal solution:

1. Both subproblems should exist in the dynamic programming memory.
2. The objective value calculated from the subproblems should match the known optimal value for the considered region.

These conditions lead to Algorithm 3, which reports the optimal tree in DFS order.

4. Detailed Results
In this section, we report additional computational results which did not fit in the main paper due to space limitations.
Tables A1 to A3 extend the results of Tables 2 and 3 in the main paper. They report for each objective the depth and number
of leaves of the different classifiers, as well as their minimum and maximum values achieved over the ten runs (one for each
training/test pair).

https://github.com/vidalt/BA-Trees

Supplementary Material: Born-Again Tree Ensembles

Algorithm 3 EXTRACT-OPTIMAL-SOLUTION(zL, zR,ΦOPT)

1: if ΦOPT = 0 then
2: EXPORT a leaf with class MAJORITY-CLASS(zL)
3: return
4: else
5: for j = 1 to p do
6: for l = zL

j to zR
j − 1 do

7: Φ1 ← MEMORY(zL, zR + ej(l − zR
j))

8: Φ2 ← MEMORY(zL + ej(l + 1− zL
j , z

R)
9: if ΦOPT = CALCULATE-OBJECTIVE(Φ1,Φ2) then

10: EXTRACT-OPTIMAL-SOLUTION(zL, zR + ej(l − zR
j),Φ1)

11: EXTRACT-OPTIMAL-SOLUTION(zL + ej(l + 1− zL
j), zR,Φ2)

12: EXPORT a split on feature j with level zL
j

13: return
14: end if
15: end for
16: end for
17: end if

Table A1. Complexity of the different classifiers – Considering objective D

Random Forest Born Again Tree Born Again Tree + Pruning
#Leaves Depth #Leaves Depth #Leaves

Data set Avg. Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg. Min Max

BC 61.1 57 68 12.5 11 13 2279.4 541 4091 9.1 8 11 35.9 26 44
CP 46.7 40 55 8.9 7 11 119.9 23 347 7.0 4 9 31.2 10 50
FI 47.3 40 52 8.6 3 13 71.3 5 269 6.5 3 9 15.8 4 27
HT 42.6 36 49 6.0 2 7 20.2 3 38 5.1 2 6 13.2 3 22
PD 53.7 45 63 9.6 7 12 460.1 101 1688 9.4 7 12 79.0 53 143
SE 55.7 51 60 10.2 9 11 450.9 159 793 7.5 6 8 21.5 16 31

Overall 51.2 36 68 9.3 2 13 567.0 3 4091 7.4 2 12 32.8 3 143

Table A2. Complexity of the different classifiers – Considering objective L

Random Forest Born Again Tree Born Again Tree + Pruning
#Leaves Depth #Leaves Depth #Leaves

Data set Avg. Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg. Min Max

BC 61.1 57 68 18.0 17 20 890.1 321 1717 9.0 7 11 23.1 17 32
CP 46.7 40 55 8.9 7 11 37.1 10 105 6.5 3 8 11.4 4 21
FI 47.3 40 52 8.6 3 13 39.2 4 107 6.3 3 8 12.0 4 20
HT 42.6 36 49 6.3 2 8 11.9 3 19 4.3 2 6 6.4 3 9
PD 53.7 45 63 15.0 12 19 169.7 50 345 11.0 8 17 30.7 20 42
SE 55.7 51 60 13.8 12 16 214.6 60 361 7.7 6 9 14.2 9 19

Overall 51.2 36 68 11.8 2 20 227.1 3 1717 7.5 2 17 16.3 3 42

Supplementary Material: Born-Again Tree Ensembles

Table A3. Complexity of the different classifiers – Considering objective DL

Random Forest Born Again Tree Born Again Tree + Pruning
#Leaves Depth #Leaves Depth #Leaves

Data set Avg. Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg. Min Max

BC 61.1 57 68 12.5 11 13 1042.3 386 2067 8.9 8 10 27.7 18 39
CP 46.7 40 55 8.9 7 11 37.1 10 105 6.5 3 8 11.4 4 21
FI 47.3 40 52 8.6 3 13 39.2 4 107 6.3 3 8 12.0 4 20
HT 42.6 36 49 6.0 2 7 12.0 3 19 4.6 2 6 6.5 3 10
PD 53.7 45 63 9.6 7 12 206.7 70 387 8.9 7 11 42.1 28 62
SE 55.7 51 60 10.2 9 11 261.0 65 495 7.4 6 9 17.0 12 24

Overall 51.2 36 68 9.3 2 13 266.4 3 2067 7.1 2 11 19.5 3 62

Finally, Tables A4 to A6 extend the results of Table 4 in the main paper. They report for each objective the average
accuracy and F1 scores of the different classifiers, as well as the associated standard deviations over the ten runs on different
training/test pairs.

Table A4. Accuracy of the different classifiers – Considering objective D

Random Forest Born Again Tree Born Again Tree + Pruning
Acc. F1 Acc. F1 Acc. F1

Data set Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

BC 0.953 0.040 0.949 0.040 0.953 0.040 0.949 0.040 0.946 0.047 0.941 0.046
CP 0.660 0.022 0.650 0.024 0.660 0.022 0.650 0.024 0.660 0.022 0.650 0.024
FI 0.697 0.049 0.690 0.049 0.697 0.049 0.690 0.049 0.697 0.049 0.690 0.049
HT 0.977 0.009 0.909 0.044 0.977 0.009 0.909 0.044 0.977 0.009 0.909 0.044
PD 0.746 0.062 0.692 0.065 0.746 0.062 0.692 0.065 0.750 0.067 0.700 0.069
SE 0.790 0.201 0.479 0.207 0.790 0.201 0.479 0.207 0.790 0.196 0.481 0.208

Avg. 0.804 0.064 0.728 0.072 0.804 0.064 0.728 0.072 0.803 0.065 0.729 0.073

Table A5. Accuracy of the different classifiers – Considering objective L

Random Forest Born Again Tree Born Again Tree + Pruning
Acc. F1 Acc. F1 Acc. F1

Data set Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

BC 0.953 0.040 0.949 0.040 0.953 0.040 0.949 0.040 0.943 0.052 0.938 0.053
CP 0.660 0.022 0.650 0.024 0.660 0.022 0.650 0.024 0.660 0.022 0.650 0.024
FI 0.697 0.049 0.690 0.049 0.697 0.049 0.690 0.049 0.697 0.049 0.690 0.049
HT 0.977 0.009 0.909 0.044 0.977 0.009 0.909 0.044 0.977 0.009 0.909 0.044
PD 0.746 0.062 0.692 0.065 0.746 0.062 0.692 0.065 0.751 0.064 0.698 0.068
SE 0.790 0.201 0.479 0.207 0.790 0.201 0.479 0.207 0.790 0.193 0.479 0.207

Avg. 0.804 0.064 0.728 0.072 0.804 0.064 0.728 0.072 0.803 0.065 0.727 0.074

Supplementary Material: Born-Again Tree Ensembles

Table A6. Accuracy of the different classifiers – Considering objective DL

Random Forest Born Again Tree Born Again Tree + Pruning
Acc. F1 Acc. F1 Acc. F1

Data set Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

BC 0.953 0.040 0.949 0.040 0.953 0.040 0.949 0.040 0.941 0.051 0.935 0.049
CP 0.660 0.022 0.650 0.024 0.660 0.022 0.650 0.024 0.660 0.022 0.650 0.024
FI 0.697 0.049 0.690 0.049 0.697 0.049 0.690 0.049 0.697 0.049 0.690 0.049
HT 0.977 0.009 0.909 0.044 0.977 0.009 0.909 0.044 0.977 0.009 0.909 0.044
PD 0.746 0.062 0.692 0.065 0.746 0.062 0.692 0.065 0.747 0.069 0.693 0.076
SE 0.790 0.201 0.479 0.207 0.790 0.201 0.479 0.207 0.781 0.195 0.477 0.210

Avg. 0.804 0.064 0.728 0.072 0.804 0.064 0.728 0.072 0.801 0.066 0.726 0.075

5. Born-Again Tree Illustration
Finally, Figure 2 illustrates the born-again tree ensemble problem on a simple example with an original ensemble composed
of three trees. All cells and the corresponding majority classes are represented. There are two classes, depicted by a • and a
◦ sign, respectively.

x2 ≤ 4

x1 ≤ 7 x1 ≤ 2

○ ● ○ ●

x1 ≤ 2

x2 ≤ 2 x2 ≤ 4

○ ● ○ ●

x2 ≤ 2

x1 ≤ 7 x1 ≤ 4

○ ● ○ ●

TRUE FALSE

TRUE FALSE

TRUE FALSE

○

○

○

○

○

○

●

●

●

●

●

●

MAJORITY
CLASS

TREE ENSEMBLE

●

● ● ●

●

○ ○ ○

○

○ ○ ○

MAP OF ALL CELLS

DYNAMIC
PROGRAM

●
●

○

●

●
●

○

○
○

x2 ≤ 4

x1 ≤ 4 x1 ≤ 2

○ ●

TRUE FALSE

BORN-AGAIN TREE

x2

x1 7 4 2

2

4

x2 ≤ 4 x1 ≤ 7

● ○ ● ○

Figure 2. Cells and born-again tree on a simple example

