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Abstract
The use of machine learning algorithms in finance,
medicine, and criminal justice can deeply impact
human lives. As a consequence, research into in-
terpretable machine learning has rapidly grown
in an attempt to better control and fix possible
sources of mistakes and biases. Tree ensembles
offer a good prediction quality in various domains,
but the concurrent use of multiple trees reduces
the interpretability of the ensemble. Against this
background, we study born-again tree ensembles,
i.e., the process of constructing a single decision
tree of minimum size that reproduces the exact
same behavior as a given tree ensemble in its en-
tire feature space. To find such a tree, we develop
a dynamic-programming based algorithm that ex-
ploits sophisticated pruning and bounding rules
to reduce the number of recursive calls. This algo-
rithm generates optimal born-again trees for many
datasets of practical interest, leading to classifiers
which are typically simpler and more interpretable
without any other form of compromise.

1. Introduction
Tree ensembles constitute a core technique for prediction
and classification tasks. Random forests (Breiman, 2001)
and boosted trees (Friedman, 2001) have been used in vari-
ous application fields, e.g., in medicine for recurrence risk
prediction and image classification, in criminal justice for
custody decisions, or in finance for credit risk evaluation.
Although tree ensembles offer a high prediction quality,
distorted predictions in high-stakes decisions can be exceed-
ingly harmful. Here, interpretable machine learning models
are essential to understand potential distortions and biases.
Research in this domain has significantly increased (Mur-
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doch et al., 2019) with numerous works focusing on the
construction of optimal sparse trees (Hu et al., 2019) or on
the interpretability of neural networks (Zhang et al., 2018;
Melis & Jaakkola, 2018).

Currently, there exists a trade-off between the interpretabil-
ity and the performance of tree (ensemble) classifiers. Sin-
gle decision trees (e.g., those produced by CART) are well-
known for their interpretability, whereas tree ensembles and
gradient boosting approaches allow for high prediction qual-
ity but are generally more opaque and redundant. Against
this background, we study born-again tree ensembles in a
similar notion as born-again trees (see, Breiman & Shang,
1996), and search for a simpler classifier that faithfully re-
produces the behavior of a tree ensemble.

Formally, let (X,y) = {xi, yi}ni=1 be a training set in
which each xi ∈ Rp is a p-dimensional numerical feature
vector, and each yi ∈ N is its associated class. Each sample
of this training set has been independently drawn from an
unknown distribution (X ,Y). Based on this training set, a
tree ensemble T learns a function FT : X → Y that pre-
dicts yi for each xi drawn from X . With this notation, we
state Problem 1, which is the core of our studies.

Problem 1 (Born-again tree ensemble) Given a tree en-
semble T , we search for a decision tree T of minimal size
that is faithful to T , i.e., such that FT (x) = FT (x) for all
x ∈ Rp.

We note that the condition FT (x) = FT (x) applies to the
entire feature space. Indeed, our goal is to faithfully re-
produce the decision function of the tree ensemble for all
possible inputs in X . In other words, we are looking for
a new representation of the same classifier. Problem 1 de-
pends on the definition of a size metric. In this study, we
refer to the size of a tree either as its depth (D) or its number
of leaves (L). Additionally, we study a hierarchical objective
(DL) which optimizes depth in priority and then the num-
ber of leaves. For brevity, we detail the methodology for
the depth objective (D) in the main paper. The supplemen-
tary material contains the algorithmic adaptations needed to
cover the other objectives, rigorous proofs for all theorems,
as well as additional illustrations and experimental results.

Theorem 1 states the computational complexity of Prob-
lem 1.
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Theorem 1 Problem 1 is NP-hard when optimizing depth,
number of leaves, or any hierarchy of these two objectives.

This result uses a direct reduction from 3-SAT. Actually, the
same proof shows that the sole fact of verifying the faithful-
ness of a solution is NP-hard. In this work, we show that
despite this intractability result, Problem 1 can be solved
to proven optimality for various datasets of practical inter-
est, and that the solution of this problem permits significant
advances regarding tree ensemble simplification, interpreta-
tion, and analysis.

1.1. State of the Art

Our work relates to the field of interpretable machine learn-
ing, especially thinning tree ensembles and optimal decision
tree construction. We review these fields concisely and refer
to Guidotti et al. (2018), Murdoch et al. (2019) and Rudin
(2019) for surveys and discussions on interpretable machine
learning, as well as to Rokach (2016) for an overview on
general work on decision forests.

Thinning tree ensembles has been studied from different
perspectives and divides in two different streams, i) classical
thinning of a tree ensemble by removing some weak learners
from the original ensemble and ii) replacing a tree ensemble
by a simpler classifier, e.g., a single decision tree.

Early works on thinning focused on finding reduced en-
sembles which yield a prediction quality comparable to the
full ensemble (Margineantu & Dietterich, 1997). Finding
such reduced ensembles has been proven to be NP-hard (Ta-
mon & Xiang, 2000) and in some cases reduced ensembles
may even outperform the full ensemble (Zhou et al., 2002).
While early works proposed a static thinning, dynamic thin-
ning algorithms that store the full ensemble but dynamically
query only a subset of the trees have been investigated by
Hernández-Lobato et al. (2009), Park & Furnkranz (2012),
and Martı́nez-Muñoz et al. (2008). For a detailed discus-
sion on this stream of research we refer to Rokach (2016),
who discusses the development of ranking-based methods
(see, e.g., Prodromidis et al., 1999; Caruana et al., 2004;
Banfield et al., 2005; Hu et al., 2007; Partalas et al., 2010;
Rokach, 2009; Zhang & Wang, 2009) and search-based
methods (see, e.g., Prodromidis & Stolfo, 2001; Windeatt
& Ardeshir, 2001; Zhou et al., 2002; Zhou & Tang, 2003;
Rokach et al., 2006; Zhang et al., 2006).

In their seminal work about born-again trees, Breiman &
Shang (1996) were the first to introduce a thinning problem
that aimed at replacing a tree ensemble by a newly con-
structed simpler classifier. Here, they used a tree ensemble
to create a data set which is then used to build a born-again
tree with a prediction accuracy close to the accuracy of
the tree ensemble. Ensuing work followed three different
concepts. Meinshausen (2010) introduced the concept of

node harvesting, i.e., reducing the number of decision nodes
to generate an interpretable tree. Recent works along this
line used tree space prototypes to sparsen a tree (Tan et al.,
2016) or rectified decision trees that use hard and soft labels
(Bai et al., 2019). Friedman & Popescu (2008) followed
a different concept and proposed a linear model to extract
rules from a tree ensemble, which can then be used to re-
built a single tree. Similarly, Sirikulviriya & Sinthupinyo
(2011) focused on deducing rules from a random forest,
while Hara & Hayashi (2016) focused on rule extraction
from tree ensembles via bayesian model selection, and Mol-
las et al. (2019) used a local-based, path-oriented similarity
metric to select rules from a tree ensemble. Recently, some
works focused on directly extracting a single tree from a
tree ensemble based on stabilized but yet heuristic splitting
criteria (Zhou & Hooker, 2016), genetic algorithms (Van-
dewiele et al., 2017), or by actively sampling training points
(Bastani et al., 2017a;b). All of these works focus on the
creation of sparse decision trees that remain interpretable
but can be used to replace a tree ensemble while securing a
similar prediction performance. However, these approaches
do not guarantee faithfulness, such that the new classifier
is not guaranteed to retain the same decision function and
prediction performance.

In the field of neural networks, related studies were done
on model compression (Buciluǎ et al., 2006). The proposed
approaches often use knowledge distillation, i.e., using a
high-capacity teacher to train a compact student with similar
knowledge (see, e.g., Hinton et al., 2015). Recent works
focused on creating soft decision trees from a neural net-
work (Frosst & Hinton, 2017), decomposing the gradient in
knowledge distillation (Furlanello et al., 2018), deriving a
class of models for self-explanatory neural networks (Melis
& Jaakkola, 2018), or specified knowledge representations
in high conv-layers for interpretable convolutional neural
networks (Zhang et al., 2018). Focusing on feed-forward
neural networks, Frankle & Carbin (2018) proposed pruning
techniques that identify subnetworks which perform close to
the original network. Clark et al. (2019) studied born-again
multi task networks for natural language processing, while
Kisamori & Yamazaki (2019) focused on synthesizing an
interpretable simulation model from a neural network. As
neural networks are highly non-linear and even less trans-
parent than tree ensembles, all of these approaches remain
predominantly heuristic and faithfulness is typically not
achievable.

Optimal decision trees. Since the 1990’s, some works fo-
cused on constructing decision trees based on mathematical
programming techniques. Bennett (1992) used linear pro-
gramming to construct trees with linear combination splits
and showed that this technique performs better than conven-
tional univariate split algorithms. Bennett & Blue (1996)
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focused on building global optimal decision trees to avoid
overfitting, while Nijssen & Fromont (2007) presented an
exact algorithm to build a decision tree for specific depth, ac-
curacy, and leaf requirements. Recently, Bertsimas & Dunn
(2017) presented a mixed integer programming formulation
to construct optimal classification trees. On a similar note,
Günlük et al. (2018) presented an integer programming ap-
proach for optimal decision trees with categorical data, and
Verwer & Zhang (2019) presented a binary linear program
for optimal decision trees. Hu et al. (2019) presented a
scalable algorithm for optimal sparse binary decision trees.
While all these works show that decision trees are in general
amenable to be built with optimization techniques, none of
these works focused on constructing born-again trees that
match the accuracy of a given tree ensemble.

Summary. Thinning problems have been studied for both
tree ensembles and neural networks in order to derive inter-
pretable classifiers that show a similar performance than the
aforementioned algorithms. However, all of these works em-
bed heuristic construction techniques or an approximative
objective, such that the resulting classifiers do not guarantee
a behavior and prediction performance equal to the original
tree ensemble or neural network. These approaches appear
to be plausible for born-again neural networks, as neural net-
works have highly non-linear structures that cannot be easily
captured in an optimization approach. In contrast, work in
the field of building optimal decision trees showed that the
construction of decision trees is generally amenable for op-
timization based approaches. Nevertheless, these works
focused so far on constructing sparse or optimal trees that
outperform heuristically created trees, such that the question
whether one could construct an optimal decision tree that
serves as a born-again tree ensemble remains open. Answer-
ing this question and discussing some of its implications is
the focus of our study.

1.2. Contributions

With this work, we revive the concept of born-again tree
ensembles and aim to construct a single —minimum-size—
tree that faithfully reproduces the decision function of the
original tree ensemble. More specifically, our contribution is
fourfold. First, we formally define the problem of construct-
ing optimal born-again tree ensembles and prove that this
problem is NP-hard. Second, we highlight several properties
of this problem and of the resulting born-again tree. These
findings allow us to develop a dynamic-programing based
algorithm that solves this problem efficiently and constructs
an optimal born-again tree out of a tree ensemble. Third, we
discuss specific pruning strategies for the born-again tree
that allow to reduce redundancies that cannot be identified
in the original tree ensemble. Fourth, besides providing
theoretical guarantees, we present numerical studies which

allow to analyze the characteristics of the born-again trees
in terms of interpretability and accuracy. Further, these stud-
ies show that our algorithm is amenable to a wide range of
real-world data sets.

We believe that our results and the developed algorithms
open a new perspective in the field of interpretable machine
learning. With this approach, one can construct simple
classifiers that bear all characteristics of a tree ensemble.
Besides interpretability gains, this approach casts a new light
on tree ensembles and highlights new structural properties.

2. Fundamentals
In this section, we introduce some fundamental definitions.
Afterwards, we discuss a worst-case bound on the depth of
an optimal born-again tree.

Tree ensemble. We define a tree ensemble T as a set of
trees t ∈ T with weights wt. For any sample x, the tree
ensemble returns the majority vote of its trees: FT (x) =
WEIGHTED-MAJORITY{(Ft(x), wt)}t∈T (ties are broken
in favor of the smaller index).

Cells. Let Hj be the set of all split levels (i.e., hyper-
planes) extracted from the trees for each feature j. We
can partition the feature space Rp into cells SELEM =
{1, . . . , |H1|+ 1}× · · ·× {1, . . . , |Hp|+ 1} such that each
cell z = (z1, . . . , zp) ∈ SELEM represents the box contained
between the (zj − 1)th and zth

j hyperplanes for each feature
j ∈ {1, . . . , p}. Cells such that zj = 1 (or zj = |Hj | + 1)
extend from −∞ (or to∞, respectively) along dimension j.
We note that the decision function of the tree ensemble
FT (z) is constant in the interior of each cell z, allowing us
to exclusively use the hyperplanes of {Hj}dj=1 to construct
an optimal born-again tree.

Regions. We define a region of the feature space as a
pair (zL, zR) ∈ S2ELEM such that zL ≤ zR. Region (zL, zR)
encloses all cells z such that zL ≤ z ≤ zR. Let SREGIONS

be the set of all regions. An optimal born-again tree T
for a region (zL, zR) is a tree of minimal size such that
FT (x) = FT (x) within this region.
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Figure 1. Example of a cell, region and splitting hyperplane
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Figure 1 depicts a cell and a region on a two-dimensional
feature space. We also provide a more extensive example of
the born-again tree generation process in the supplementary
material. The number of cells and regions increases rapidly
with the number of hyperplanes and features, formally:

|SELEM| =
p∏

j=1

(|Hj |+ 1) (1)

|SREGION| =
p∏

j=1

(|Hj |+ 1)(|Hj |+ 2)

2
. (2)

Moreover, Theorem 2 gives initial bounds on the size of the
born-again decision tree.

Theorem 2 The depth of an optimal born-again tree T
satisfies Φ(T ) ≤

∑
t∈T Φ(t), where Φ(t) represents the

depth of a tree t. This bound is tight.

This bound corresponds to a worst case behavior which is
usually attained only on purposely-designed pathological
cases. As highlighted in our computational experiments,
the average tree depth remains generally lower than this
analytical worst case. Beyond interpretability benefits, the
tree depth represents the number of sequential operations
(hyperplane comparisons) needed to determine the class of a
given sample during the test stage. Therefore, an optimized
born-again tree is not only more interpretable, but it also
requires less test effort, with useful applications for clas-
sification in embarked systems, typically occurring within
limited time and processing budgets.

3. Methodology
In this section, we introduce a dynamic programming (DP)
algorithm which optimally solves Problem 1 for many data
sets of practical interest. Let Φ(zL, zR) be the depth of an
optimal born-again decision tree for a region (zL, zR) ∈
SREGION. We can then limit the search to optimal born-again
trees whose left and right sub-trees represent optimal born-
again trees for the respective sub-regions. Hence, we can
recursively decompose a larger problem into subproblems
using

Φ(zL, zR) = (3)
0 if ID(zL, zR)

min
1≤j≤p

{
min

zL
j≤l<zR

j

{
1 + max{Φ(zL, zR

jl),Φ(zL
jl, z

R)}
}}

,

in which ID(zL, zR) takes value TRUE if and only if all cells
z such that zL ≤ z ≤ zR admit the same weighted majority
class. In this equation, zR

jl = zR + ej(l − zR
j ) represents

the “top right” corner of the left region obtained in the

subdivision, and zL
jl = zL + ej(l + 1− zL

j ) is the “bottom
left” corner of the right region obtained in the subdivision.

While Equation (3) bears the main rationale of our algo-
rithm, it suffers in its basic state from two main weaknesses
that prevent its translation into an efficient algorithm: firstly,
each verification of the first condition (i.e., the base case) re-
quires evaluating whether ID(zL, zR) is true and possibly re-
quires the evaluation of the majority class on an exponential
number of cells if done brute force. Secondly, the recursive
call considers all possible hyperplanes within the region to
find the minimum over j ∈ {1, . . . , p} and zL

j ≤ l < zR
j .

In the following, we propose strategies to mitigate both
drawbacks.

To avoid the evaluation of ID(zL, zR) by inspection, we
integrate this evaluation within the recursion to profit from
the memory structures of the DP algorithm. With these
changes, the recursion becomes:

Φ(zL, zR) = (4)

min
j

{
min

zL
j≤l<zR

j

{
1jl(z

L, zR) + max{Φ(zL, zR
jl),Φ(zL

jl, z
R)}
}}

where 1jl(z
L, zR) =

0
if Φ(zL, zR

jl) = Φ(zL
jl, z

R) = 0
and FT (zL) = FT (zR);

1 otherwise.

To limit the number of recursive calls, we can filter out for
each dimension j any hyperplane l ∈ {1, . . . , |Hj |} such
that FT (z) = FT (z + ej) for all z such that zj = l, and
exploit two additional properties of the problem.

Theorem 3 Let (zL, zR) and (z̄L, z̄R) be two regions such
that zL ≤ z̄L ≤ z̄R ≤ zR, then Φ(z̄L, z̄R) ≤ Φ(zL, zR).

Theorem 3 follows from the fact that any feasible tree satis-
fying FT (x) = FT (x) on a region (zL, zR) also satisfies this
condition for any subregion (z̄L, z̄R). Therefore, Φ(z̄L, z̄R)
constitutes a lower bound of Φ(zL, zR). Combining this
bound with Equation (4), we get

max{Φ(zL, zR
jl),Φ(zL

jl, z
R)}

≤ Φ(zL, zR)

≤ 1jl(z
L, zR) + max{Φ(zL, zR

jl),Φ(zL
jl, z

R)}

for each j ∈ {1, . . . , p} and zL
j ≤ l < zR

j .

This result will be fundamental to use bounding techniques
and therefore save numerous recursions during the DP algo-
rithm. With Theorem 4, we can further reduce the number
of candidates in each recursion.

Theorem 4 Let j ∈ {1, . . . , p} and l ∈ {zL
j , . . . , z

R
j − 1}.
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• If Φ(zL, zR
jl) ≥ Φ(zL

jl, z
R) then ∀l′ > l

1jl(z
L, zR) + max{Φ(zL, zR

jl),Φ(zL
jl, z

R)}
≤ 1jl′(z

L, zR) + max{Φ(zL, zR
jl′),Φ(zL

jl′ , z
R)}

• If Φ(zL, zR
jl) ≤ Φ(zL

jl, z
R) then ∀l′ < l

1jl(z
L, zR) + max{Φ(zL, zR

jl),Φ(zL
jl, z

R)}
≤ 1jl′(z

L, zR) + max{Φ(zL, zR
jl′),Φ(zL

jl′ , z
R)}.

Based on Theorem 4, we can discard all hyperplane levels
l′ > l in Equation (4) if Φ(zL, zR

jl) ≥ Φ(zL
jl, z

R). The
same argument holds when Φ(zL, zR

jl) ≤ Φ(zL
jl, z

R) with
l′ < l. We note that the two cases of Theorem 4 are not
mutually exclusive. No other recursive call is needed for
the considered feature when an equality occurs. Otherwise,
at least one case holds, allowing us to search the range
l ∈ {zL

j , . . . , z
R
j − 1} in Equation (4) by binary search with

only O(log(zR
j − zL

j )) subproblem calls.

General algorithm structure. The DP algorithm pre-
sented in Algorithm 1 capitalizes upon all the aforemen-
tioned properties. It is initially launched on the region
representing the complete feature space, by calling BORN-
AGAIN(zL, zR) with zL = (1, . . . , 1)ᵀ and zR = (|H1| +
1, . . . , |Hp|+ 1)ᵀ.

Firstly, the algorithm checks whether it attained a base case
in which the region (zL, zR) is restricted to a single cell
(Line 1). If this is the case, it returns an optimal depth
of zero corresponding to a single leaf, otherwise it tests
whether the result of the current subproblem defined by
region (zL, zR) is not yet in the DP memory (Line 2). If this
is the case, it directly returns the known result.

Past these conditions, the algorithm starts enumerating pos-
sible splits and opening recursions to find the minimum of
Equation (4). By Theorem 4 and the related discussions,
it can use a binary search for each feature to save many
possible evaluations (Lines 9 and 10). By Theorem 3, the
exploitation of lower and upper bounds on the optimal solu-
tion value (Lines 7, 9, 20, and 21) allows to stop the iterative
search whenever no improving solution can exist. Finally,
the special case of Lines 13 and 14 covers the case in which
Φ(zL, zR

jl) = Φ(zL
jl, z

R) = 0 and FT (zL) = FT (zR), corre-
sponding to a homogeneous region in which all cells have
the same majority class. As usual in DP approaches, our
algorithm memorizes the solutions of sub-problems and
reuses them in future calls (Lines 15, 17, and 26).

We observe that this algorithm maintains the optimal solu-
tion of each subproblem in memory, but not the solution
itself in order to reduce memory consumption. Retrieving
the solution after completing the DP can be done with a sim-
ple inspection of the final states and solutions, as detailed in
the supplementary material.

The maximum number of possible regions is |SREGION| =∏
j

(|Hj |+1)(|Hj |+2)
2 (Equation 2) and each call to BORN-

AGAIN takes up to O(
∑

j log |Hj |) elementary operations
due to Theorem 4, leading to a worst-case complexity of
O(|SREGION|

∑
j log |Hj |) time for the overall recursive al-

gorithm. Such an exponential complexity is expectable for
an NP-hard problem. Still, as observed in our experiments,
the number of regions explored with the bounding strategies
is much smaller in practice than the theoretical worst case.

Algorithm 1 BORN-AGAIN(zL, zR)

1: if (zL = zR) return 0
2: if (zL, zR) exists in memory then
3: return MEMORY(zL, zR)
4: end if
5: UB ←∞
6: LB ← 0
7: for j = 1 to p and LB < UB do
8: (LOW, UP)← (zL

j , z
R
j )

9: while LOW < UP and LB < UB do
10: l← b(LOW + UP)/2c
11: Φ1 ← BORN-AGAIN(zL, zR + ej(l − zR

j ))
12: Φ2 ← BORN-AGAIN(zL + ej(l + 1− zL

j ), zR)
13: if (Φ1 = 0) and (Φ2 = 0) then
14: if f(zL, T ) = f(zR, T ) then
15: MEMORIZE((zL, zR), 0) and return 0
16: else
17: MEMORIZE((zL, zR), 1) and return 1
18: end if
19: end if
20: UB ← min{UB, 1 + max{Φ1,Φ2}}
21: LB ← max{LB,max{Φ1,Φ2}}
22: if (Φ1 ≥ Φ2) then UP ← l
23: if (Φ1 ≤ Φ2) then LOW ← l + 1
24: end while
25: end for
26: MEMORIZE((zL, zR), UB) and return UB

4. Computational Experiments
The goal of our computational experiments is fourfold:

1. Evaluating the computational performance of the pro-
posed DP algorithm as a function of the data set charac-
teristics, e.g., the size metric in use, the number of trees
in the original ensemble, and the number of samples
and features in the datasets.

2. Studying the structure and complexity of the born-
again trees for different size metrics.

3. Measuring the impact of a simple pruning strategy
applied on the resulting born-again trees.

4. Proposing and evaluating a fast heuristic algorithm to
find faithful born-again trees.
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The DP algorithm was implemented in C++ and compiled
with GCC 9.2.0 using flag -O3, whereas the original ran-
dom forests were generated in Python (using scikit-learn
v0.22.1). All our experiments were run on a single thread
of an Intel(R) Xeon(R) CPU E5-2620v4 2.10GHz, with
128GB of available RAM, running CentOS v7.7. In the
remainder of this section, we discuss the preparation of
the data and then describe each experiment. Detailed com-
putational results, data, and source codes are available in
the supplementary material and at the following address:
https://github.com/vidalt/BA-Trees.

4.1. Data Preparation

We focus on a set of six datasets from the UCI machine
learning repository [UCI] and from previous work by Smith
et al. (1988) [SmithEtAl] and Hu et al. (2019) [HuEtAl]
for which using random forests (with ten trees) showed
a significant improvement upon stand-alone CART. The
characteristics of these datasets are summarized in Table 1:
number of samples n, number of features p, number of
classes K and class distribution CD. To obtain discrete
numerical features, we used one-hot encoding on categorical
data and binned continuous features into ten ordinal scales.
Then, we generated training and test samples for all data
sets using a ten-fold cross validation. Finally, for each fold
and each dataset, we generated a random forest composed
of ten trees with a maximum depth of three (i.e., eight leaves
at most), considering p/2 random candidate features at each
split. This random forest constitutes the input to our DP
algorithm.

Table 1. Characteristics of the data sets
Data set n p K CD Src.

BC: Breast-Cancer 683 9 2 65-35 UCI
CP: COMPAS 6907 12 2 54-46 HuEtAl
FI: FICO 10459 17 2 52-48 HuEtAl
HT: HTRU2 17898 8 2 91-9 UCI
PD: Pima-Diabetes 768 8 2 65-35 SmithEtAl
SE: Seeds 210 7 3 33-33-33 UCI

4.2. Computational Effort

In a first analysis, we evaluate the computational time of
Algorithm 1 for different data sets and size metrics. Figure 2
reports the results of this experiment as a box-whisker plot,
in which each box corresponds to ten runs (one for each
fold) and the whiskers extend to 1.5 times the interquartile
range. Any sample beyond this limit is reported as outlier
and noted with a “◦”. D denotes a depth-minimization objec-
tive, whereas L refers to the minimization of the number of
leaves, and DL refers to the hierarchical objective which pri-
oritizes the smallest depth, and then the smallest number of
leaves. As can be seen, constructing a born-again tree with
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Figure 2. Computational times to construct a born-again tree from
a random forest with 10 trees and depth 3, for each objective
(D/L/DL) and data set

objective D yields significantly lower computational times
compared to using objectives L and DL. Indeed, the binary
search technique resulting from Theorem 4 only applies to
objective D, leading to a reduced number of recursive calls
in this case compared to the other algorithms.

In our second analysis, we focus on the FICO case
and randomly extract subsets of samples and features to
produce smaller data sets. We then measure the com-
putational effort of Algorithm 1 for metric D (depth
optimization) as a function of the number of features
(p ∈ {2, 3, 5, 7, 10, 12, 15, 17}), the number of samples
(n ∈ {250, 500, 750, 1000, 2500, 5000, 7500, 10459}), and
the number of trees in the original random forest (T ∈
{3, 5, 7, 10, 12, 15, 17, 20}). Figure 3 reports the results of
this experiment. Each boxplot corresponds to ten runs, one
for each fold.

We observe that the computational time of the DP algorithm
is strongly driven by the number of features, with an expo-
nential growth relative to this parameter. This result is in
line with the complexity analysis of Section 3. The number
of trees influences the computational time significantly less.
Surprisingly, the computational effort of the algorithm actu-
ally decreases with the number of samples. This is due to
the fact that with more sample information, the decisions
of the individual trees of the random forest are less varied,
leading to fewer distinct hyperplanes and therefore to fewer
possible states in the DP.

4.3. Complexity of the Born-Again Trees

We now analyze the depth and number of leaves of the born-
again trees for different objective functions and datasets in
Table 2.

As can be seen, the different objectives can significantly

https://github.com/vidalt/BA-Trees
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Figure 3. Growth of the computational time (in milliseconds) of Algorithm 1 as a function of the number of samples, features and trees. In
each experiment, the parameters which are not under scrutiny are fixed to their baseline values of n = 2.5× 103, p = 10 and T = 10.

Table 2. Depth and number of leaves of the born-again trees
D L DL

Data set Depth # Leaves Depth # Leaves Depth # Leaves

BC 12.5 2279.4 18.0 890.1 12.5 1042.3
CP 8.9 119.9 8.9 37.1 8.9 37.1
FI 8.6 71.3 8.6 39.2 8.6 39.2
HT 6.0 20.2 6.3 11.9 6.0 12.0
PD 9.6 460.1 15.0 169.7 9.6 206.7
SE 10.2 450.9 13.8 214.6 10.2 261.0

Avg. 9.3 567.0 11.8 227.1 9.3 266.4

influence the outcome of the algorithm. For several data sets,
the optimal depth of the born-again tree is reached with any
objective, as an indirect consequence of the minimization of
the number of leaves. In other cases, however, prioritizing
the minimization of the number of leaves may generate 50%
deeper trees for some data sets (e.g., PD). The hierarchical
objective DL succeeds in combining the benefits of both
objectives. It generates a tree with minimum depth and with
a number of leaves which is usually close to the optimal one
from objective L.

4.4. Post-Pruned Born-Again Trees

Per definition, the born-again tree reproduces the same ex-
act behavior as the majority class of the original ensemble
classifier on all regions of the feature space X . Yet, some
regions of X may not contain any training sample, either
due to data scarcity or simply due to incompatible feature
values (e.g., “sex = MALE” and “pregnancy = TRUE”). These
regions may also have non-homogeneous majority classes
from the tree ensemble viewpoint due to the combinations of
decisions from multiple trees. The born-again tree, however,
is agnostic to this situation and imitates the original classifi-

cation within all the regions, leading to some splits which
are mere artifacts of the ensemble’s behavior but never used
for classification.

To circumvent this issue, we suggest to apply a simple post-
pruning step to eliminate inexpressive tree sub-regions. We
therefore verify, from bottom to top, whether both sides of
each split contain at least one training sample. Any split
which does not fulfill this condition is pruned and replaced
by the child node of the branch that contains samples. The
complete generation process, from the original random for-
est to the pruned born-again tree is illustrated in Figure 4. In
this simple example, it is noteworthy that the born-again tree
uses an optimal split at the root node which is different from
all root splits in the ensemble. We also clearly observe the
role of the post-pruning step, which contributes to eliminate
a significant part of the tree.

To observe the impact of the post-pruning on a larger range
of datasets, Table 3 reports the total number of leaves of the
random forests, as well as the average depth and number of
leaves of the born-again trees before and after post-pruning.
As previously, the results are averaged over the ten folds.
As can be seen, post-pruning significantly reduces the size
of the born-again trees, leading to a final number of leaves
which is, on average, smaller than the total number of leaves
in the original tree ensemble. This indicates a significant
gain of simplicity and interpretability.

However, post-pruning could cause a difference of behavior
between the original tree ensemble classifier and the final
pruned born-again tree. To evaluate whether this filtering
had any significant impact on the classification performance
of the born-again tree, we finally compare the out-of-sample
accuracy (Acc.) and F1 score of the three classifiers in
Table 4.
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Figure 4. Example of a post-pruned born-again tree on the Seeds data set

Table 3. Comparison of depth and number of leaves
Random Forest Born-Again BA + Pruning

Data set # Leaves Depth # Leaves Depth # Leaves

BC 61.1 12.5 2279.4 9.1 35.9
CP 46.7 8.9 119.9 7.0 31.2
FI 47.3 8.6 71.3 6.5 15.8
HT 42.6 6.0 20.2 5.1 13.2
PD 53.7 9.6 460.1 9.4 79.0
SE 55.7 10.2 450.9 7.5 21.5

Avg. 51.2 9.3 567.0 7.4 32.8

Table 4. Accuracy and F1 score comparison
Random Forest Born-Again BA + Pruning

Data set Acc. F1 Acc. F1 Acc. F1

BC 0.953 0.949 0.953 0.949 0.946 0.941
CP 0.660 0.650 0.660 0.650 0.660 0.650
FI 0.697 0.690 0.697 0.690 0.697 0.690
HT 0.977 0.909 0.977 0.909 0.977 0.909
PD 0.746 0.692 0.746 0.692 0.750 0.700
SE 0.790 0.479 0.790 0.479 0.790 0.481

Avg. 0.804 0.728 0.804 0.728 0.803 0.729

First of all, the results of Table 4 confirm the faithfulness of
our algorithm, as they verify that the prediction quality of
the random forests and the born-again tree ensembles are
identical. This was expected per definition of Problem 1.
Furthermore, only marginal differences were observed be-
tween the out-of-sample performance of the born-again tree
with pruning and the other classifiers. For the considered
datasets, pruning contributed to eliminate inexpressive re-
gions of the tree without much impact on classification
performance.

4.5. Heuristic Born-Again Trees

As Problem 1 is NP-hard, the computational time of our
algorithm will eventually increase exponentially with the
number of features (see Figure 3). This is due to the increas-
ing number of recursions, and to the challenge of testing
homogeneity for regions without exploring all cells. Indeed,
even proving that a given region is homogeneous (i.e., that it
contains cells of the same class) remains NP-hard, although
it is solvable in practice using integer programming tech-
niques. Accordingly, we take a first step towards scalable
heuristic algorithms in the following. We therefore explain
how our born-again tree construction algorithm can be mod-
ified to preserve the faithfulness guarantee while achieving
only a heuristic solution in terms of size.

We made the following adaptations to Algorithm 1 to de-
rive its heuristic counterpart. For each considered region
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(zL, zR), we proceed as follows.

1. Instead of evaluating all possible splits and opening
recursions, we randomly select Nc = 1000 cells in the
region and pick the splitting hyperplane that maximizes
the information gain.

2. If all these cells belong to the same class, we rely
on an integer programming solver to prove whether
the region is homogeneous or not. If the region is
homogeneous, we define a leaf. Otherwise, we have
detected a violating cell, and continue splitting until all
regions are homogeneous to guarantee faithfulness.

With these adaptations, the heuristic algorithm finds born-
again trees that are guaranteed to be faithful but not neces-
sarily minimal in size. Table 5 compares the computational
time of the optimal born-again tree algorithm using objec-
tive D “TD(s)”, objective L “TL(s)” with that of the heuristic
algorithm “TH(s)”. It also reports the percentage gap of
the heuristic tree depth “GapD(%)” and number of leaves
“GapL(%)” relative to the optimal solution values of each
objective.

Table 5. Computational time and optimality gap of the heuristic
born-again tree algorithm

Data set TD(s) TL(s) TH(s) GapD(%) GapL(%)

BC 39.09 1381.45 1.14 44.80 48.37
CP 0.01 0.10 0.04 0.00 4.85
FI 0.05 0.23 0.03 0.00 1.79
HT 0.01 0.01 0.01 8.33 10.92
PD 0.91 17.95 0.19 44.79 25.63
SE 0.37 5.96 0.24 37.25 29.03

Avg. 6.74 234.28 0.28 22.53 20.10

As visible in these experiments, the CPU time of the heuris-
tic algorithm is significantly smaller than that of the optimal
method, at the expense of an increase in tree depth and
number of leaves, by 22.53% and 20.10% on average, re-
spectively. To test the limits of this heuristic approach, we
also verified that it could run in a reasonable amount of time
(faster than a minute) on larger datasets such as Ionosphere,
Spambase, and Miniboone (the latter with over 130,000
samples and 50 features).

5. Conclusions
In this paper, we introduced an efficient algorithm to trans-
form a random forest into a single, smallest possible, deci-
sion tree. Our algorithm is optimal, and provably returns a
single tree with the same decision function as the original
tree ensemble. In brief, we obtain a different representation
of the same classifier, which helps us to analyze random
forests from a different angle. Interestingly, when investigat-
ing the structure of the results, we observed that born-again

decision trees contain many inexpressive regions designed
to faithfully reproduce the behavior of the original ensemble,
but which do not contribute to effectively classify samples.
It remains an interesting research question to properly un-
derstand the purpose of these regions and their contribution
to the generalization capabilities of random forests. In a
first simple experiment, we attempted to apply post-pruning
on the resulting tree. Based on our experiments on six struc-
turally different datasets, we observed that this pruning does
not diminish the quality of the predictions but significantly
simplifies the born-again trees. Overall, the final pruned
trees represent simple, interpretable, and high-performance
classifiers, which can be useful for a variety of application
areas.

As a perspective for future work, we recommend to progress
further on solution techniques for the born-again tree en-
sembles problem, proposing new optimal algorithms to ef-
fectively handle larger datasets as well as fast and accu-
rate heuristics. Heuristic upper bounds can also be jointly
exploited with mathematical programming techniques to
eliminate candidate hyperplanes and recursions. Another
interesting research line concerns the combination of the
dynamic programming algorithm for the construction of
the born-again tree with active pruning during construction,
leading to a different definition of the recursion and to differ-
ent base-case evaluations. Finally, we recommend to pursue
the investigation of the structural properties of tree ensem-
bles in light of this new born-again tree representation.
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