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Abstract

We present three new algorithms for constructing differentially private synthetic data—a sanitized
version of a sensitive dataset that approximately preserves the answers to a large collection of statistical
queries. All three algorithms are oracle-efficient in the sense that they are computationally efficient
when given access to an optimization oracle. Such an oracle can be implemented using many existing
(non-private) optimization tools such as sophisticated integer program solvers. While the accuracy of the
synthetic data is contingent on the oracle’s optimization performance, the algorithms satisfy differential
privacy even in the worst case. For all three algorithms, we provide theoretical guarantees for both
accuracy and privacy. Through empirical evaluation, we demonstrate that our methods scale well with
both the dimensionality of the data and the number of queries. Compared to the state-of-the-art method
High-Dimensional Matrix Mechanism McKenna et al. (2018), our algorithms provide better accuracy in
the large workload and high privacy regime (corresponding to low privacy loss ε).

1 Introduction
The wide range of personal data collected from individuals has facilitated many studies and data analyses
that inform decisions related to science, commerce, and government policy. Since many of these rich datasets
also contain highly sensitive personal information, there is a tension between releasing useful information
about the population and compromising the privacy of individuals. In this work, we consider the problem of
answering a large collection of statistical (or linear) queries subject to the constraint of differential privacy.
Formally, we consider a data domain X = {0, 1}d of dimension d and a dataset D ∈ Xn consisting of the
data of n individuals. Our goal is to approximately answer a large class of statistical queries Q about
D. A statistical query is defined by a predicate φ : X → [0, 1], and the query qφ : Xn → [0, 1] is given by
qφ(D) = 1

n

∑n
i=1 φ(Di) and an approximate answer a ∈ [0, 1] must satisfy |a− qφ(D)| ≤ α for some accuracy

parameter α > 0. To preserve privacy we work under the constraint of differential privacy (Dwork et al.,
2006). Privately answering statistical queries is at the heart of the 2020 US Census release (Abowd, 2018)
and provides the basis for a wide range of private data analysis tasks. For example, many machine learning
algorithms can be simulated using statistical queries (Kearns, 1998).

An especially compelling way to perform private query release is to release private synthetic data – a
sanitized version of the dataset that approximates all of the queries in the class Q. Notable examples of
private synthetic data algorithms are the SmallDB algorithm (Blum et al., 2008) and the private multiplicative
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weights (PMW) mechanism (Hardt & Rothblum, 2010) (and its more practical variant the multiplicative
weights exponential mechanism MWEM (Hardt et al., 2012)), which can answer exponentially many queries
and achieves nearly optimal sample complexity (Bun et al., 2018). Unfortunately, both algorithms involve
maintaining a probability distribution over the data domain X = {0, 1}d, and hence suffer exponential
(in d) running time. Moreover, under standard cryptographic assumptions, this running time is necessary
in the worst case (Ullman, 2016; Ullman & Vadhan, 2011). However, there is hope that these worst-case
intractability results do not apply to real-world datasets.

To build more efficient solutions for constructing private synthetic data, we consider oracle efficient
algorithms that rely on a black-box optimization subroutine. The optimization problem is NP-hard in the
worst case. However, we invoke practical optimization heuristics for this subroutine (namely integer program
solvers such as CPLEX and Gurobi). These heuristics work well on many real-world instances. Thus the
algorithms we present are more practical than the worst-case hardness would suggest is possible. While the
efficiency and accuracy of our algorithms are contingent on the solver’s performance, differential privacy is
guaranteed even if the solver runs forever or fails to optimize correctly.

Overview of our results. To describe our algorithms, we will first revisit a formulation of the query
release problem as a zero-sum game between a data player who maintains a distribution D̂ over X and a
a query player who selects queries from Q (Hsu et al., 2013; Gaboardi et al., 2014). Intuitively, the data
player aims to approximate the private dataset D with D̂, while the query player tries to identify a query
which distinguishes between D and D̂. Prior work Hsu et al. (2013); Gaboardi et al. (2014) showed that any
(approximate) equilibrium for this game gives rise to an accurate synthetic dataset. To study the private
equilibrium computation within this game, we consider a primal framework and a dual framework that enable
us to unify and improve on existing algorithms.

In the primal framework, we perform the equilibrium computation via the following no-regret dynamics:
over rounds, the data player updates its distribution D̂ using a no-regret online learning algorithm, while
the query player plays an approximate best response. The algorithm MWEM in prior work falls under
the primal framework with the data player running the multiplicative weights (MW) method as the no-
regret algorithm, and the query player privately responding using the exponential mechanism (McSherry
& Talwar, 2007). However, since the MW method maintains an entire distribution over the domain X ,
MWEM runs in exponential time even in the best case. To overcome this intractability, we propose two
new algorithms FEM and sepFEM that follow the same no-regret dynamics, but importantly replace the
MW method with two variants of the follow-the-perturbed-leader (FTPL) algorithm (Kalai & Vempala,
2005)—Non-Convex-FTPL (Suggala & Netrapalli, 2019) and Separator-FTPL (Syrgkanis et al., 2016)—both
of which solve a perturbed optimization problem instead of maintaining an exponential-sized distribution.
FEM achieves an error rate of

α = Õ
(
d3/4 log1/2 |Q|/n1/2

)
,

and sepFEM achieves a slightly better rate of

α = Õ
(
d5/8 log1/2 |Q|/n1/2

)
,

although the latter requires the query class Q to have a structure called a small separator set. In contrast,
MWEM attains the error rate α = Õ

(
d1/4 log1/2 |Q|/n1/2

)
. Although the accuracy analysis requires repeated

sampling from the FTPL distribution (and thus repeatedly solving perturbed integer programs), our experi-
ments show that the algorithms remain accurate even with a much lower number of samples, which allows
much more practical running time.

We then consider the dual formulation and improve upon the existing algorithm DualQuery (Gaboardi
et al., 2014). Unlike MWEM, DualQuery has the query player running MW over the query class Q, which is
often significantly smaller than the data domain X , and has the data player playing best response, which
can be computed non-privately by solving an integer program. Since the query player’s MW distribution
is a function of the private data, DualQuery privately approximates this distribution with a collection of
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Table 1: Error bound Comparison

Algorithm α

MWEM O
(
d1/4 log1/2 |Q| log1/2(1/δ)

n1/2ε1/2

)
DualQuery O

(
d1/6 log1/2 |Q| log1/6(1/δ)

n1/3ε1/3

)
FEM O

(
d3/4 log1/2 |Q| log1/2(1/δ)

n1/2ε1/2

)
sepFEM O

(
d5/8 log1/2 |Q| log1/2(1/δ)

n1/2ε1/2

)
DQRS O

(
d1/5 log3/5 |Q| log1/5(1/δ)

n2/5ε2/5

)
Parameters: (ε, δ)-differential privacy, n data points of dimension d, query class Q, accuracy α.

samples drawn from it. Each draw from the MW distribution can be viewed as a single instantiation of the
exponential mechanism, which provides a bound on the privacy loss. We improve DualQuery by leveraging
the observation that the MW distribution changes slowly between rounds in the no-regret dynamics. Thus
can reuse previously drawn queries to approximate the current MW distribution via rejection sampling.
By using this technique, our algorithm DQRS (DualQuery with rejection sampling) reduces the number
of times we draw new samples from the MW distribution and also the privacy loss, and hence improves
the privacy-utility trade-off. We theoretically demonstrate that DQRS improves the accuracy guarantee of
DualQuery. Specifically DQRS attains accuracy

α = Õ

(
log(|X |/β) · log3(|Q|)

n2

)1/5

whereas DualQuery attains accuracy α = Õ
(

log(|X |/β)·log3(|Q|)
n2

)1/6

. Even though the dual algorithms
DualQuery and DQRS have worse accuracy performance than the primal algorithms FEM and sepFEM,
the dual algorithms run substantially faster, since they make many fewer oracle calls. Thus we observe a
tradeoff not only between privacy and utility but also with computational resources.

In addition to our theoretical guarantees, we perform a comprehensive experimental evaluation of our algo-
rithms. As a benchmark, we use the state-of-the-art High-Dimensional Matrix Mechanism (HDMM) (McKenna
et al., 2018); HDMM is being deployed in practice by the US Census Bureau (Kifer, 2019). We perform our
experiments with the standard ADULT and LOANS datasets and use k-way conjunctions as a query workload.
We compare both algorithms on different workload sizes and different privacy levels. Our experiments show
that as we increase the workload size FEM performs better compared to HDMM. Similarly, FEM does better
when we increase the privacy level. These results support our theoretical analysis.

1.1 Additional related work
Aside from the aforementioned DualQuery algorithm (Gaboardi et al., 2014), several works on differentially
private query release and synthetic data generation are described in, or can be placed in, the framework of
oracle-efficient algorithms. One example is the Projection Mechanism (Nikolov et al., 2013) and extensions
thereof (Nikolov, 2015; Dwork et al., 2015; Błasiok et al., 2019) in which each projection step can be
approximately implemented via a non-private optimization subroutine. This line of work focuses on the
average error over the queries, rather than the maximum error as we do.

The notion of oracle-efficiency for differential privacy was formalized in a recent work of Neel et al. (2019)
who introduced techniques for oracle-efficient private synthetic data generation even for exponentially large
classes of queries. A more recent work by Neel et al. (2020) provides oracle-efficient methods for privately
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solving certain classes of non-convex optimization problems. In both Neel et al. (2019) and Neel et al. (2020),
the privacy guarantees of their algorithms either rely on the exact optimality or certifiability of the oracle. All
of our algorithms satisfy differential privacy even if we implement the optimization oracles with a heuristic
that satisfies neither condition.

In Section 6, we compare the performance of our algorithms against other practical algorithms for synthetic
data generation. The benchmark we use is the High-Dimensional Matrix Mechanism (McKenna et al., 2018)
which itself builds on the Matrix Mechanism (Li et al., 2015) but is more efficient and scalable. Given a
workload of queries Q, this algorithm uses optimization routines (in a significantly different way than ours) to
select a different set of “strategy queries” which can be answered with Laplace noise. Answers to the original
queries in Q can then be reconstructed by combining the noisy answers to these strategy queries.

The study of oracle-efficiency also has a rich history in machine learning and optimization outside of
differential privacy (Beygelzimer et al., 2005; Balcan et al., 2008; Beygelzimer et al., 2016; Ben-Tal et al.,
2015; Hazan & Koren, 2016). In particular, a number of works have sought to design oracle-efficient fair
algorithms (Agarwal et al., 2018; Alabi et al., 2018; Kearns et al., 2018).

2 Preliminaries
Definition 2.1 (Differential Privacy (DP)). A randomized algorithmM : X ∗ → R satisfies (ε, δ)-differential
privacy (DP) if for all databases x, x′ differing in at most one entry, and every measurable subset S ⊆ R, we
have

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ.

If δ = 0, we say thatM satisifies ε-diffrential privacy.

To facilitate our privacy analysis, we will rely on the privacy notion of zero-concentrated differential
privacy (zCDP), which provides a simpler composition theorem.

Definition 2.2 (Zero Concentrated Differential Privacy(zCDP) Bun & Steinke (2016)). A mechanism
M : X → R is (ρ)-zero-concentrated differentially private if for all neighboring datasets x, x′ ∈ X ∗, and all
α ∈ (0,∞) the following holds

Dα (M(x)||M(x′)) ≤ ρα

where Dα is the α-Rényi divergence between the distribution M(x) and the distribution M(x′).

We can relate guarantees of DP and zCDP using the following lemmas.

Lemma 1 (DP to zCDP Bun & Steinke (2016)). If M satisfies ε-differential privacy, then M satisfies(
1
2ε

2
)
-zCDP.

Lemma 2 (zCDP to DP Bun & Steinke (2016)). IfM provides ρ-zCDP, thenM is
(
ρ+ 2

√
ρ log(1/δ), δ

)
-DP

for δ > 0.

Lemma 3 (zCDP composition Bun & Steinke (2016)). LetM : X ∗ → Y and M ′ : X ∗ → Z be randomized
algorithm. Suppose that M satisfies ρ-zCDP and M′ satisfies ρ′-zCDP. Define M′′ : X → Y × Z by
M′′(x) = (M(x),M′(x)). ThenM′′ satisfies (ρ+ ρ′)-zCDP.

We will use the exponential mechanism as a key component in our design of private algorithms.

Definition 2.3 (Exponential Mechanism McSherry & Talwar (2007)). Given some database x, arbitrary
range R, and score function S : X ∗×R → R, the exponential mechanismME(x, S,R, ρ) selects and outputs
an element r ∈ R with probability proportional to

exp

(
ρS(x, r)

2∆S

)
,
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where ∆S is the sensitivity of S, defined as

∆S = max
D,D′:|D4D′|=1,r∈R

|S(D, r)− S(D′, r)|.

Lemma 4 (McSherry & Talwar (2007)). The exponential mechanismME(x, S,R, ρ) is
(
ρ2

2

)
-zCDP.

Theorem 5 (Exponential Mechanism Utility McSherry & Talwar (2007)). . Fixing a database x, let OPTS(x)
denote the max score of function S. Then, with probability 1− β the error is bounded by:

OPTS(x)− S(x,ME(x, u,R, ρ)) ≤ 2∆S

ρ
(ln |R|/β)

We are interested in privately releasing statistical linear queries, formally defined as follows.

Definition 2.4 (Statistical linear queries). Given as predicate a linear threshold function φ, the linear query
qφ : Xn → [0, 1] is defined by

qφ(D) =

∑
x∈D φ(x)

|D|

The main query class we consider in our empirical evaluations is 3-way marginals and 5-way marginals.
We give the definition here

Definition 2.5. Let the data universe with d categorical features be X = (X1 × . . .×Xd), where each Xi is
the discrete domain of the ith feature. We write xi ∈ Xi to mean the ith feature of record x ∈ X . A 3-way
marginal query is a linear query specified by 3 features a 6= b 6= c ∈ [d], and a target y ∈ (Xa × Xb × Xc),
given by

qabc,y(x) =

{
1 : xa = y1 ∧ xb = y2 ∧ xc = y3

0 : otherwise.

Furthermore, its negation is given by

q̄abc,y(x) =

{
0 : xa = y1 ∧ xb = y2 ∧ xc = y3

1 : otherwise.

Note that for each marginal (a, b, c) there are |Xa||Xb||Xc| queries.

Finally, our algorithm will be using the following form of linear optimization oracle. In our experiments,
we implement this oracle via an integer program solver.

Definition 2.6 (Linear Optimization Oracle). Given as input a set of n statistical linear queries {qi} and a
d-dimensional vector σ, a linear optimization oracle outputs

x̂ ∈ arg min
x∈{0,1}d

{
n∑
i=1

qi(x)− 〈x, σ〉

}

3 Query Release Game

Given a class of queries Q over a database D, we want to output a differentially private synthetic dataset D̂
such that for any query q ∈ Q we have low error:

error(D̂) = max
q∈Q
|q(D)− q(D̂)| ≤ α.

We revisit a zero-sum game formulation between a data-player and a query player for this problem Hsu et al.
(2013); Gaboardi et al. (2014). The data player has action set equal to the data universe X and the query
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player has action set equal to the query class Q. We make the assumption that Q is closed under negation.
That is, for every query q ∈ Q there is a negated query q̄ ∈ Q where q̄(D) = 1 − q(D). If Q is not closed
under negation, we can simply add negated queries to Q. Since Q is closed under negations, we can write the
error as

|q(D)− q(D̂)| = max{q(D)− q(D̂),¬q(D)− ¬q(D̂)}

This allows us to define a payoff function that captures the error of D̂ without the absolute value. In particular,
the payoff for actions x ∈ X and q ∈ Q is given by:

A(x, q) := q(D)− q(x) (1)

The data player wants minimizes the payoff A(x, q) while the query player maximizes it. Intuitively, the data
player would like to find a distribution with low error, while the query player is trying to identify the query
with the worst error. Each player chooses a mixed strategy, that is a distribution over their action set. Let
∆(X ) and ∆(Q) denote the sets of distributions ove X and Q. For any D̂ ∈ ∆(X ) and Q̂ ∈ ∆(Q), the payoff
is defined as

A(D̂, ·) = Ex∼D̂ [A(x, ·)] , A(·, Q̂) = Eq∼Q̂ [A(·, q)] .

A pair of mixed strategies (D̂, Q̂) ∈ ∆(X )×∆(Q) forms an α-approximate equilibrium of the game if

max
q∈Q

A(D̂, q)− α ≤ A(D̂, Q̂) ≤ min
x∈X

A(x, Q̂) + α, (2)

The following result allows us to reduce the problem of query release to the problem of computing an
equilibrium in the game.

Theorem 6 (Gaboardi et al. (2014)). Let (D̂, Q̂) be any α-approximate equilibrium of the query release
game, then the data player’s strategy D̂ is 2α-accurate, error(D̂) = maxq∈Q |q(D)− q(D̂)| ≤ 2α.

3.1 No-Regret Dynamics
To compute such an equilibrium privately, we will simulate no-regret dynamics between the two players. Over
rounds t = 1, . . . , T , the two players will generate a sequence of plays (D1, Q1), . . . , (DT , QT ) ∈ ∆(X )×∆(Q).
The regrets of the two players are defined as

Rdata(T ) =
1

T

(
T∑
t=1

A(Dt, Qt)−min
x∈X

T∑
t=1

A(x,Qt)

)

Rqry(T ) =
1

T

(
max
q∈Q

T∑
t=1

A(Dt, q)−
T∑
t=1

A(Dt, Qt)

)

Theorem 7 (Follows from Freund & Schapire (1997)). The average play (D,Q) given by D = 1
T

∑T
t=1D

t

and Q = 1
T

∑T
t=1Q

t from the no-regret dynamics above is an α-approximate equilibrium with

α = Rdata(T ) +Rqry(T ).

We will now provide two frameworks to obtain regret bounds for the two players.

4 Primal Oracle-Efficient Framework
In the primal framework, we will have the data player run a online learning algorithm to update the
distributions D1, . . . , DT over rounds and have the query player play an approximate best response Qt against
Dt in each round. The algorithm MWEM falls under this framework, but the no-regret algorithm (MW)
runs in exponential time even in the best case since it maintains a distribution over the entire domain X .
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We replace the MW method with two variants of the follow-the-perturbed-leader (FTPL) algorithm Kalai
& Vempala (2005)—Non-Convex-FTPL Suggala & Netrapalli (2019) and Separator-FTPL Syrgkanis et al.
(2016). Both of these algorithms can generate a sample from their FTPL distributions by relying an oracle
to solve a perturbed optimization problem. (In our experiments, we instantiate this oracle with an integer
program solver.) For both algorithms, the query player selects a query qt ∈ Q (that is Qt is point mass
distribution on qt) using the exponential mechanism, denoted byME . We present this primal framework in
Algorithm 1.

Algorithm 1: Primal Framework of No-Regret Dynamics
Require: FTPL algorithm A
input A dataset D ∈ Xn, query class Q, number of rounds T , target privacy ρ.
Initialize ρ0 = ρ/T . Get initial sample q0 ∈ Q uniformly at random.
for t = 1 to T do
Data Player Generate D̂t with online learner A with queries q0, . . . , qt−1.
Query player: Define score function St. For each query q ∈ Q, set St(D, q) = q(D)− q(D̂t).
Sample qt ∼ME(D,St,Q,

√
2ρ0) {such that EM satisfies ρ0-zCDP}

end for
output 1

T

∑T
t=1 D̂

t

Now we instantiate the primal framework above with two no-regret learners, which yield two algorithms
FEM ((Non-Convex)-FTPL with Exponential Mechanism) and sepFEM (Separator-FTPL with Exponential
Mechanism). First, the FEM algorithm at each round t computes a distribution Dt by solving a perturbed
linear optimization problem polynomially many times. The optimization objective is given by the payoff
against the previous queries and a linear perturbation

arg min
x∈X

t−1∑
i=0

A(x, qi) + 〈x, σ〉

where σ is a random vector drawn from the exponential distribution. Observe that the first term qi(D) in
A(x, qi) = qi(D)− qi(x) does not depend on x. Thus, we can further simplify the objective as

arg max
x∈X

{
t−1∑
i=0

qi(x)− 〈x, σ〉

}
To solve this problem above, we will use an linear optimization oracle (definition 2.6), which we will implement
using an integer program solver.

The second algorithm is less general, but as we will show it achieves a better error rate for important
classes of queries. Algorithm sepFEM relies on the assumption that the query class Q has a small separator
set sep(Q).

Definition 4.1 (Separator Set). A queries class Q has a small separator set sep(Q) if for any two distinct
records x, x′ ∈ X , there exist a query q : X → {0, 1} in sep(Q) such that q(x) 6= q(x′).

Many classes of statistical queries defined over the boolean hypercube have separator sets of size pro-
portional to their VC-dimension or the dimension of the input data. For example, boolean conjunctions,
disjunctions, halfspaces defined over the {0, 1}d, and parity functions all have separator sets of size d.

Algorithm sepFEM then perturbs the data player’s optimization problem by inserting “fake” queries from
the separator set:

arg max
x∈X


t−1∑
i=1

qi(x) +
∑

q̃j∈sep(Q)

σj q̃j(x)

 ,
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Algorithm 2: Data player update in FEM
input Queries q0, . . . , qt−1 ∈ Q, exponential distribution scale η, number of samples s.
for j ← 1 to s do
Let σj ∈ Rd be a random vector such that each coordinate of σj is drawn from the exponential
distribution Exp(η). Obtain a FTPL sample xtj by solving

xtj ∈ arg max
x∈X

{
t−1∑
i=0

qi(x)− 〈x, σj〉

}

end for
output D̂t as the uniform distribution over {xt1, . . . , xts}

where each σj ∈ R is sampled from the Laplace distribution. This problem can be viewed as a simple special
case of the linear optimization problem in definition 2.6 with no linear perturbation term.

Algorithm 3: Data player update in sepFEM
input Queries q0, . . . , qt−1 ∈ Q, Laplace noise scale η, number of samples s.
Let sep(Q) = {q̃1, . . . , q̃M} be the serparator set for Q.
for j = 1 to s do
Let σj ∈ RM be a fresh random vector such that each coordinate of σj is drawn from the Laplace
distribution Lap(η). Obtain a FTPL sample xtj by solving

xtj ∈ arg max
x∈X

{
t−1∑
i=0

qi(x) +

M∑
i=1

σj,iq̃i(x)

}

end for
output D̂t be a uniform distribution over {xt1, . . . , xts}

To derive the privacy guarantee of these two algorithms, we observe that the data player’s update does
not directly use the private dataset D. Thus, the privacy guarantee directly follows from the composition of
T exponential mechanisms.

Theorem 8 (Privacy). Algorithm 1 satisfies ρ-zCDP for any instantiated with any no-regret algorithm then
it

Proof. The algorithm 1 executes T = ρ/ρ0 runs of of the exponential mechanism M(x, S,R,
√

2ρ0) with
parameter

√
2ρ0. Then by Lemma 4, we have thatM(x, S,R,

√
2ρ0) satisfies ρ0-zCDP. Finally Lemma 3

states that the composition of T = ρ
ρ0
ρ0-mechanims satisfies ρ-zCDP.

To derive the accuracy guarantee of the two algorithms, we first bound the regret of the two players.
Note that the regret guarantee of the data player follow from the regret bounds on the two FTPL algorithms
Suggala & Netrapalli (2019) and Syrgkanis et al. (2016). The regret guarantee of the query player directly
follows from the utility guarantee of the exponential mechanism McSherry & Talwar (2007). We defer the
details to the appendix.

Corollary 8.1 (FEM Accuracy). Let d = log(X ). For any dataset D ∈ Xn, query class Q and privacy
parameter ρ > 0, there exists T, η and s so that with probability at least 1 − β, the algorithm FEM finds a
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synthetic database D̂ that answers all queries in Q with error

max
q∈Q
|q(D)− q(D̂)| ≤ Õ

d
3/4

√
log
(
|Q|
β

)
ρ1/4n1/2


By Lemma 2, algorithm 2 satisfies (ε, δ)-differential privacy with ε = ρ+ 2

√
ρ log(1/δ). If ε < 1 then FEM

has error

max
q∈Q
|q(D)− q(D̂)| ≤ Õ

d3/4 log1/2 |Q| ·
√

log( 1
δ ) log( 1

β )

ε1/2n1/2


Corollary 8.2 (sepFEM Accuracy). Let d = log(X ). For any dataset D ∈ Xn and query class Q with a
separator set sep(Q) and privacy parameter ρ > 0, there exist T, η and s so that with probability at least 1−β,
algorithm sepFEM finds a synthetic database D̂ that answers all queries in Q with error

max
q∈Q
|q(D)− q(D̂)| ≤ Õ

 | sep(Q)|3/8d1/4

√
log
(
|Q|
β

)
ρ1/4n1/2


By Lemma 2, algorithm 1 satisfies (ε, δ)-differential privacy with ε = ρ+ 2

√
ρ ln(1/δ). If ε < 1 then sepFEM

has error

max
q∈Q
|q(D)− q(D̂)| ≤ Õ

 | sep(Q)|3/8d1/4

√
log
(
|Q|
β

)
log
(

1
δ

)
ε1/2n1/2


Note that if the query class Q has a separator set of size O(d), which is the case for boolean conjunctions,

disjunctions, halfspaces defined over the {0, 1}d, and parity functions, then the bound above becomes

max
q∈Q
|q(D)− q(D̂)| ≤ Õ

(
d5/8 log1/2 |Q| · log1/2(1/δ) log1/2(1/β)

ε1/2n1/2

)
Remark. Non-convex FEM and Separator FEM exhibit a better tradeoff between α and n than DualQuery,
but a slightly worse dependence on d compared to DualQuery and MWEM.

5 DQRS: DualQuery with Rejection Sampling
In this section, we present an algorithm DQRS that builds on the DualQuery algorithm Gaboardi et al. (2014)
and achieves better provable sample complexity. In DualQuery, we employ the dual framework of the query
release game – the query player maintains a distribution over queries using the Multiplicative Weights (MW)
no-regret learning algorithm and the data player best responds. However, the query player cannot directly
use the distribution Qt proposed by MW during round t because it depends on the private data. Instead,
for each round t, it takes s samples from Qt to form an estimate distribution Q̂t. The data player then
best-responds against Q̂t. Sampling from the MW distribution Qt can be interpreted as a sample from the
exponential mechanism. The sampling step incurs a significant privacy cost.

Our algorithm DQRS improves the sampling step of DualQuery in order to reduce the privacy cost (and
the runtime). The basic idea of our algorithm DQRS is to apply the rejection sampling technique to “recycle”
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samples from prior rounds. Namely, we generate some samples from Qt using the samples obtained from the
distribution in the previous round, i.e., Qt−1. This is possible because Qt is close to Qt−1. We show that by
taking fewer samples from Qt for each round t, we consume less of the privacy budget. The result is that the
algorithm operates for more iterations and obtains lower regret (i.e., better accuracy).

Theorem 9. DualQuery with rejection sampling (Algorithm 4) takes in a private dataset D ∈ Xn and makes
T = O

(
log |Q|
α2

)
queries to an optimization oracle and outputs a dataset D̃ = (x1, · · · , xT ) ∈ X T such that,

with probability at least 1− β, for all q ∈ Q we have |q(D̃)− q(D)| ≤ α. The algorithm is (ε, δ)-differentially
private and attains accuracy

α = O

(
log(|X |T/β) · log3(|Q|) · log(1/δ)

n2ε2

)1/5

.

In contrast, DualQuery (without rejection sampling) obtains the same result except with

α = O

(
log(|X |T/β) · log3(|Q|) · log(1/δ)

n2ε2

)1/6

.

In other words, DQRS attains strictly better accuracy than DualQuery for the same setting of other parameters.

Algorithm 4: Rejection Sampling Dualquery
Require: Target accuracy α ∈ (0, 1), target failure probability β ∈ (0, 1)
input dataset D, and linear queries q1, . . . , qk ∈ Q
Set T = 16 log |Q|

α2 , η = α
4

s = 48 log(3|X |T/β)
α2

Construct sample S1 of s queries {qi} from Q according to Q1 = Uniform(Q)
for t← 1 to T do
Let q̃ = 1

s

∑
q∈St

q;
Find xt with AD(xt, q̃) ≥ maxxAD(x, q̃)− α/4;
Let γt = 1

2t2/3

for all q ∈ Q do
Q̂t+1
q := e−η−γt · exp (−ηAD(xt, q))Qtq;

end for
Normalize Q̂t+1 to obtain Qt+1

Construct St+1 as follows
Let s̃t = (2γt + 4η)s and add s̃t independent fresh samples from Qt+1 to St+1

for all q ∈ St do
Add q to St+1 with probability Q̂q

t+1
/Qtq

If |St+1| > s, discard elements at random so that |St+1| = s
end for

end for
output Sample y1, . . . , ys

The analysis of DQRS largely follows that of DualQuery. The key difference is the analysis of the rejection
sampling step, which is summarized by the following two lemmas. The first one shows that taking samples
drawn from Q = Qt and performing rejection sampling yields samples from P = Qt+1; thus St+1 is distributed
exactly as if it were drawn from Qt+1. The second lemma gives a bound on the privacy loss of the rejection
sampling step.
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Lemma 10 (Rejection Sampling Accuracy). Let P and Q be probability distributions over Q, and let
M ≥ maxq∈Q Pq/Qq. Sample an element of Q as follows. Sample q according to Q, and accept it with
probability Pq/(M ·Qq). If q is not accepted, sample q according to P . Then the resulting element is distributed
according to P .

Lemma 11 (Rejection Sampling Privacy). The subroutine which accepts q with probability Q̂t+1
q /Qtq =

e−η−γt · exp(−ηAD(xt, q)) is ε-differentially private for ε = max {η/n, η/γtn}.

6 Experiments on the Adult dataset
We evaluate the algorithms presented in this paper on two different datasets: the ADULT dataset from the
UCI repository Dua & Graff (2017) and the LOANS dataset. The datasets used in our experiments are
summarized in table 2. For the experiments in this section, we focus on answering 3-way marginal and 5-way
marginal queries. We ran two sets of experiments. One looks into how well the algorithms scale with the
privacy budget, and we test for privacy budget ε taking value in 0.1, 0.15, 0.2, 0.25, 0.5, and 1. The second
one looks into how the algorithms’ performance degrades when we rapidly increase the number of marginals
workload to answer. To measure the accuracy of a synthetic dataset D̂ produced by the algorithm, we used
the max additive error over a set of queries Q: error(D̂) = maxq∈Q |q(D)− q(D̂)|.

Table 2: Datasets

Data set Records Attributes

ADULT 48842 15
LOANS 42535 48

Our first set of experiments (fig. 1) fix the number of queries and evaluate the performance on different
privacy levels. From the first result, we observe that FEM’s max error rate increases more slowly than
HDMM’s as we increase the privacy level (decrease ε value). Our second set of experiments (fig. 2) fix the
privacy parameters and evaluates performance on increasing workload size (or the number of marginals).
The results from this section, show that FEM’s max error rate increases much more slowly than HDMM’s.
From the experiments, we can conclude that at least of the case of k-way marginals and dataset ADULT
and LOANS, FEM scales better to both the high privacy regime (low ε value) and the large workload regime
(high number of queries) than the state-of-the-art HDMM method.

Hyper-Parameter Selection In our implementation, algorithm FEM has hyperparameters ε0 and η.
Both the accuracy and the run time of the algorithm depend on how we choose these hyperparameters. For
FEM , we ran grid-search on different hyperparameter combinations and reported the one with the smallest
error. The table 3 summarizes the range of hyperparameters used for the first set of experiments in fig. 1.
Then table 4 summarizes the range of hyperparameters used for the second set of experiments in fig. 2.

However, in real-life scenarios, we may not have access to an optimization procedure to select the best set
of hyperparameters since every time we run the algorithm, we are consuming our privacy budget. Therefore,
selecting the right combination of hyperparameters can be challenging. We briefly discuss how each parameter
affects FEM’s performance. The η parameter is the scale of the random objective perturbation term. The
data player samples a synthetic dataset D̂ from the Follow The Perturbed Leader distribution with parameter
η as in algorithm 2. The perturbation scale η controls the rate of convergence of the algorithm. Setting this
value too low can make the algorithm unstable and leads to bad performance. If set too high, the solver in
FTPL focuses too much on optimizing over the noise term.

11



(a) ADULT dataset on 3-way marginal
queries.

(b) LOANS dataset on 3-way marginal
queries.

(c) ADULT dataset on 5-way marginal
queries.

(d) LOANS dataset on 5-way marginal
queries.

Figure 1: Max-error for 3 and 5-way marginal queries on different privacy levels. The number of marginals is
fixed at 64. We enumerate all queries for each marginal.(see definition 2.5)

The parameter ε0 corresponds to the privacy consumed on each round by the exponential mechanism
parameterized with ε0. The goal is to find a query that maximizes the error on D̂. Thus, the parameter ε0

controls the number of iterations. Again we face a trade-off in choosing ε0, since setting this value too high
can lead to too few iterations giving the algorithm no chance to converge to a good solution. If ε0 is too
low, it can make the algorithm run too slow, and also it makes it hard for the query player’s exponential
mechanism to find queries with large errors.

Table 3: First FEM hyperparameters for fig. 1.

Param Description Range

ε0 Privacy budget used per round 0.003, 0.005, 0.007, 0.009, 0.011, 0.015, 0.017,
0.019

η Scale of noise for objective perturbation 1, 2, 3, 4

Data discretization We discretize ADULT and LOANS datasets into binary attributes by mapping each
possible value of a discrete attribute to a new binary feature. We bucket continuous attributes, mapping each
bucket to a new binary feature.
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(a) ADULT dataset on 3-way marginal
queries.

(b) LOANS dataset on 3-way marginal
queries.

(c) ADULT dataset on 5-way marginal
queries.

(d) LOANS dataset on 5-way marginal
queries.

Figure 2: Max-error for increasing number of 3 and 5-way marginals. We enumerate all queries for each
marginal (see definition 2.5). The privacy parameter ε is fixed at 0.1 and δ is 1

n2 , where n is the size of the
dataset. .

Optimizing over k-way Marginals We represent a data record by its one-hot binary encoding with
dimension d, thus X = {0, 1}d is the data domain. On each round t the algorithm FEM takes as input a
sequence of t queries

(
q(1), . . . , q(t)

)
and a random perturbation term σ ∼ Lap(η)d and solves the following

optimization problem

arg max
x∈{0,1}d

{
t−1∑
i=1

q(i)(x)− 〈x, σ〉

}
(3)

Let Qk be the set of k-way marginal queries. We can represent any k-way marginal query q ∈ Qk for X
in vector form with a d-dimensional binary vector ~q such that ~q ∈ {0, 1}d and ‖~q‖1 = k. Then we can define
q ∈ Qk as

q(x) =

{
1 if k = 〈x, ~q〉
0 otherwise

Let Q̄k be the set of negated k-way marginals. Then for any q ∈ Q̄k

q(x) =

{
0 if k = 〈x, ~q〉
1 otherwise
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Table 4: Second FEM hyperparameters for fig. 2.

Param Description Range

ε0 Privacy budget used per round 0.0025, 0.003, 0.0035
η Scale of noise for objective perturbation 0.75, 1, 1.25

Next we formulate the optimization problem eq. (3) as an integer program. Given a sequence of t queries(
q(1), . . . , q(t)

)
and a random perturbation term σ ∼ Lap(η)d. Let ci ∈ {0, 1} be a binary variable encoding

whether the query q(i) is satisfied.

max
x∈{0,1}d

t∑
i=1

ci − 〈x, σ〉

s.t. for all i ∈ {1, . . . .t}〈
x, ~q(i)

〉
≥ kci if q(i) ∈ Qk〈

~1d − x, ~q(i)
〉
≥ ci if q(i) ∈ Q̄k

Finally, we used the Gurobi solver for mixed-integer-programming to implement FEM’s optimization
oracle.

The implementation We ran the experiments on a machine with a 4-core Opteron processor and 192
Gb of ram. We made publicly available the see the exact implementations used for these experiments via
GitHub. For HDMM’s implementation see https://github.com/ryan112358/private-pgm/blob/master/
examples/hdmm.py and for FEM’s implementation see https://github.com/giusevtr/fem.

7 Conclusion and Future Work
In this paper, we have studied the pressing problem of efficiently generating private synthetic data. We
have presented three new algorithms for this task that sidestep known worst-case hardness results by using
heuristic solvers for NP-complete subroutines. All of our algorithms are equipped with formal privacy and
utility guarantees and they are oracle-efficient – i.e., our algorithms are efficient as long as the heuristic
solvers are efficient.

There is a very real need for practical private synthetic data generation tools and a dearth of solutions
available; the scientific literature offers mostly exponential-time algorithms and negative intractability results.
This work explores one avenue for solving this conundrum and we hope that there is further work both
extending this line of work and exploring entirely new approaches. Our experimental evaluation demonstrates
that our algorithms are promising and supports our theoretical results. However, our experiments are
relatively rudimentary. In particular, we invested most time into optimizing the most promising algorithm
FEM. An immediate question is whether further optimization of the other two algorithms could yield better
results.
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A Missing Proofs in Section 4
.

This section describes the accuracy analysis of FEM and sepFEM in detail. The accuracy proof proceeds
in two steps. First we show that the sample distribution D̂t played by the data player is close the true
distribution Dt. Then we show that both the query player and and data player are following no-regret
strategies. Then, by Theorem 7, we show that algorithms FEM and sepFEM find an approximate equilibrium
of the game dynamics described in section 3.

To bound the deviation error in our sampling from the FTPL distribution, we use the following Chernoff
bound.

Lemma 12 (Chernoff Bound). Let X1, . . . , Xm be i.i.d random variables such that 0 ≤ Xi ≤ 1 for all i. Let
S = 1

m

∑m
i=1Xi denote their mean and let µ = E[S] denote their expected mean. Then,

Pr
[
|S − µ| > t] ≤ 2 exp (−2mt2)

]
Lemma 13. Let β ∈ (0, 1) and let Dt be the true distribution over X . Suppose we draw

s =
8 log (4T |Q|/β)

α2

samples {xti} from Dt to form D̂t. Then for all q ∈ Q, with probability at least 1− β/2, we have∣∣∣∣∣1s
s∑
i=1

q(xti)− q(Dt)

∣∣∣∣∣ < α

4
for all 0 ≤ t ≤ T

Proof. For any fixed t, note that 1
s

∑s
i=1 q(x

t
i) is the average of the random variables q(xt1), q(xt2), . . . , q(xts).

Also E[q(xt)] = q(Dt) for all 0 ≤ t ≤ T . Thus by the Chernoff bound and our choice of s,

Pr

[∣∣∣∣∣1s
s∑
i=1

q(xti)− q(Dt)

∣∣∣∣∣ > α

4

]
≤ 2 exp (−sα2/8) =

β

2T |Q|

A union bound over all T rounds and all |Q| queries gives a total fail probability of at most β/2 as desired.

The query player following the Exponential Mechanism has bounded regret with high probability.

Lemma 14 (Query Player’s Regret). Let n be the dataset size. For any ρ > 0, query class Q, round T ,
and any sequence of actions D1, . . . , DT by the data player, with probability 1− β/2 the query player from
algorithm 1 achieves an average regret bound of

Rqry(T ) ≤ 1

n

√
2T

ρ
log
(

2T |Q|
β

)
Proof. On each round the query player calls the exponential mechanism with parameter

√
2ρ0. Since the

sensitivity of the query player’s score function ∆S is 1/n, then with probability 1− β/2T the error for each is
round is at most 2/n√

2ρ0
log (2T |Q|/β) by theorem 5. Applying union bound over T rounds, with probability

1− β/2 the query player’s average regret for T rounds is

max
q∈Q

1

T

T∑
t=1

A(D̂t, q)− 1

T

T∑
t=1

A(D̂t, qt) ≤ 1

T

T∑
t=1

2/n√
2ρ0

log (2T |Q|/β) ≤ 1

n

√
2T

ρ
log (2T |Q|/β)

where the last inequality follows from ρ0 = ρ
T .
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Now we will provide the accuracy guarantees for FEM and sepFEM by analyzing data player’s regret in
the two algorithms.

Lemma 15 (Data Player’s Regret in FEM). Let d = log(X ). For any round T and target accuracy α > 0,
there exist a parameters η and s such that if data player from algorithm FEM (2) plays the sequence of
distributions approximations D̂1, D̂2 . . . D̂T , and the query player plays any adversarially chosen sequence
of queries q1, . . . , qT ∈ Q, then the data player, with probability at least 1− β/2, achieves an average regret
bound of

RFEM
data (T ) ≤ α

4 + 5
2d

3/2

√
1

T

Proof. For the data player, we use the Non-Convex-FTPL algorithm for non-convex losses due to Suggala &
Netrapalli (2019). Recall that, given a sequence of queries q1, . . . , qT the data player in algorithm 1 wants to
choose actions x1, . . . , xT to maximize the objective

T∑
t=1

qi(xt)

thus, the regret of the data player can be writen as

RFEM
data (T ) =

1

T
max
x∈X

T∑
t=1

qi(x)− 1

T

T∑
t=1

qi(xt)

The results from Suggala & Netrapalli (2019) say that if an online learner chooses an action from some
decision space with `∞ diameter D, the loss functions are L-Lipschitz for `1 norm, and the learner has access
to an (α, β)-approximate optimization oracle then the learner has expected average regret of the learner
bounded by

E [R(T )] = 125ηLd2D +
βd

20ηL
+ 2βd+

α

20L
(4)

Suppose that the data player chooses one action on each round by solving the following optimization problem

xt ∈ arg min
x∈{0,1}d

{
t−1∑
i=1

qi(x)− 〈x, σt〉

}
(5)

where each σt ∈ Rd is sampled from the exponential distribution, and each qi ∈ Q is chosen by adversarially.
We assume that on each round t, the data player plays a single record xt ∈ X from the data space X = {0, 1}d
which as `∞ diameter of 1. Furthermore, each qi is 1-Lipschitz, this follows because each query is bounded in
[0, 1] and the input are 0-1 vectors from the set {0, 1}d. Therefore if x 6= y then at last one coordinate in x
and y differ by one, hence ‖x− y‖1 ≥ 1. Then the following holds for all x, y ∈ X such that x 6= y and all
q ∈ Q:

|q(x)− q(y)| ≤ 1 ≤ ‖x− y‖1

We assume that our oracle is a perfect optimizer so α′ = 0 and β = 0. Therefore, we replace constants D = 1
and L = 1 in equation 4 and expected regret of the data player is bounded by

E [R(x1, . . . , xT )] = Ex1,...,xT

[
1

T
max
x∈X

T∑
t=1

qi(x)− 1

T

T∑
t=1

qi(xt)

]
≤ 125ηd2 +

d

20ηT
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Each xt is a random variable sampled from its true distribution Dt ∈ ∆X , which is given by eq. (5). Now
suppose that on each round we could play the true distribution Dt instead of xt, then we can write the regret
without the expectation

1

T
max
D∈∆X

T∑
t=1

qi(D)− 1

T

T∑
t=1

qi(D
t) ≤ 125ηd2 +

d

20ηT

We want to approximate Dt. To that end, the algorithm creates a set D̂t of s samples from the distribution Dt

by repeatedly calling the optimization oracle with different perturbation values sampled from the exponential
distribution with parameter η. From Lemma 13, we know that there exist a sample size s such that with
probability at least 1− β/2, the average error per round of sample D̂t from the true distribution Dt is α/4.
Hence, with probability at least 1− β/2, the average regret per round for the data player playing the sample
distribution D̂t is

1

T
max
D∈∆X

T∑
t=1

qi(D)− 1

T

T∑
t=1

qi(D
t) ≤ α

4 + 125ηd2 +
d

20ηT

Setting η =
√

1
2500Td , we have

1

T
max
D∈∆X

T∑
t=1

qi(D)− 1

T

T∑
t=1

qi(D
t) ≤ α

4 +

√
(125d2)

(
d

20T

)
= α

4 + d3/2

√
125

20

1

T

Lemma 16 (Data Player’s Regret in sepFEM). Let d = log(X ) and M = | sep(Q)|. For any round T and
target accuracy α > 0, there exist a parameters η and s such that if data player from algorithm sepFEM 3
plays the sequence of distributions approximations D̂1, D̂2 . . . D̂T , and the query player plays any adversarially
chosen sequence of queries q1, . . . , qT ∈ Q, then the data player, with probability at least 1− β/2, achieves an
average expected regret bound of

RsepFEM
data (T ) ≤ α

4 +M3/4d1/2

√
40

T

Proof. Let M = | sep(Q)| be the size of the separator set of the query class and d = log(|X |) is the dimension
of the data domain. We use the contextual bandits algorithm on the small separator setting from Syrgkanis
et al. (2016) which achieves expected regret

4ηM + 10
η M

1/2 log(N)
1

T

where N is the size of the policy space of the learner.
Suppose that the data player chooses xt on each round t, following algorithm 3 due to Syrgkanis et al.

(2016). In our setting we regard any datum xt ∈ X = {0, 1}d as the policy played by the data player which
maps queries to the set {0, 1}. Therefore the policy space has size 2d = |X |. Then according to Syrgkanis
et al. (2016) and replacing N by 2d we get that the data player achieves expected regret bounded by

Ex1,...,xT

[
1

T
max
x∈X

T∑
t=1

qi(x)− 1

T

T∑
t=1

qi(xt)

]
≤ 4ηM + 10

η M
1/2 d

T

Each xt is a random variable sampled from its true distribution Dt ∈ ∆X . Now suppose that on each round
we could play the true distribution Dt instead of xt, then we can write the regret without the expectation

1

T
max
D∈∆X

T∑
t=1

qi(D)− 1

T

T∑
t=1

qi(D
t) ≤ 4ηM + 10

η M
1/2 d

T
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We want to approximate Dt. To that end, the algorithm creates a set D̂t of s samples from the distribution
Dt by repeatedly calling the optimization oracle with different perturbation values.

From Lemma 13, we know that with probability at least 1− β/2, the average error per round of sample
distribution D̂t from the true distribution Dt is α/4. Hence, with probability at least 1− β/2, the average
regret per round for the data player playing the sample distribution D̂t is

1

T
max
D∈∆X

T∑
t=1

qi(D)− 1

T

T∑
t=1

qi(D
t) ≤ α

4 + 4ηM + 10
η M

1/2d
1

T

Setting η =
√

5d
2M1/2T

. Then the regret of the data player is

RsepFEM
data (T ) =

α

4
+M3/4d1/2

√
40

T

Proof of Corollary 8.1.

Proof. From Lemma 15 and Lemma 14, let RFEM
data (T ) and Rqry(T ) be the upper bounds for the average error

of the data and query player respectively with probability at least 1− β/2. Then, with probability at least
1− β due to the union bound over 2 events, α is the average regret for all rounds by Theorem 7:

α = RFEM
data (T ) +Rqry(T )

=
α

4
+ 5

2d
3/2

√
1

T
+

1

n

√
2T

ρ
log (2T |Q|/β)

To solve for α we first move the first term from the right hand side. Then we minimize the expression
on the left side by setting the two terms equal to each other. We ignore the log(T ) term and minimize

5
2d

3/2
√

1
T + 1

n

√
2T
ρ log(|Q|) by selecting the correct choice of

√
T . That is, setting T =

5d3/2

2√
2
ρn2 log(|Q|)

we get

3α
4 ≤

√(
5d3/2

2

)(√ 2

ρn2
log(|Q|)

)
log(2T/β)

=
d3/4

ρ1/4n1/2

√
5
2

4
√

2 log(2T |Q|/β)

Proof of Corollary 8.2.

Proof. From lemma 16 we have that the data player’s average regret for round T is RsepFEM
data (T ) =

M3/4d1/2
√

40T−1/2 and the average regret for the query player is Rqry(T ) given by lemma 14. Then,
by union bound and by Theorem 7, with probability at least 1− β, the accuracy of sepFEM is:

α = RsepFEM
data (T ) +Rqry(T )

=
α

4
+M3/4d1/2

√
40T−1/2 +

1

n

√
2T

ρ
log (2T |Q|/β)
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Now to choose T optimally we ignore the log term and set T = M3/4d1/2
√

40√
2/ρn2 log(|Q|)

to get

3

4
α ≤ 2

4
√

5
M3/8d1/4

√
log(|Q|)

n1/2ρ1/4

B DQRS: DualQuery with Rejection Sampling
Theorem 17. DualQuery with rejection sampling (Algorithm 4) takes in a private dataset D ∈ Xn and
makes T = O

(
log |Q|
α2

)
queries to an optimization oracle and outputs a dataset D̃ = (x1, · · · , xT ) ∈ X T such

that, with probability at least 1− β, for all q ∈ Q we have |q(D̃)− q(D)| ≤ α. The algorithm is ρ-CDP for

ρ = O

(
log(|X |T/β) · log3(|Q|)

n2α5

)
.

In contrast, DualQuery (without rejection sampling) obtains the same result except with

ρ = O

(
log(|X |T/β) · log3(|Q|)

n2α7

)
.

To obtain (ε, δ)-differential privacy, it suffices to have ρ-CDP for ρ = Θ(ε2/ log(1/δ). Thus the guarantee
of Theorem 17 can be rephrased as the sample complexity bound

n = O

(
log1.5(|Q|) ·

√
log(|X |T/β) · log(1/δ)

α2.5ε

)

to obtain α-accurate synthetic data with probability 1− β under (ε, δ)-differential privacy.

Lemma 18. The subroutine which accepts q with probability Q̂t+1
q /Qtq = e−η−γt · exp(−ηAD(xt, q)) is

ε-differentially private for ε = max {η/n, η/γtn}.

Proof. Note that 0 < p := Q̂t+1
q /Qtq = e−η−γt · exp(−ηAD(xt, q)) ≤ e−γt < 1. In particular, the probability

is well-defined.
We compute the ratio between the probabilities that q is accepted under executions of the algorithm on

neighboring datasets D,D′ for fixed choices of the best responses x1, . . . , xt. This ratio is given by

p

p′
=
Q̂t+1
q [D]

Qtq[D]
·
Qtq[D

′]

Q̂t+1
q [D′]

=
exp(−ηAD(xt, q))

exp(−ηAD′(xt, q))
≤ eη/n.

Similarly, we evaluate the ratio of the probabilities that q is not accepted under executions of the algorithm
on D and D′: Since p′ ≤ e−γt and p/p′ ≥ e−η/n, we have

1− p
1− p′

= 1 +
1

1/p′ − 1

(
1− p

p′

)
≤ 1 +

1− e−η/n

eγt − 1
≤ 1 +

η/n

γt
≤ eη/γtn,

as required.

Bad samples also incur privacy loss from sampling from the distribution Qt. Just as in Gaboardi et al.
(2014), we use the fact that this step can be viewed as an instantiation of the exponential mechanism with
score function

∑t−1
i=1(q(D)− q(xi)) to obtain:

Lemma 19. Sampling from Qt is ε-differentially private for ε = 2η(t− 1)/n.
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Proof of Privacy for Theorem 17.

Proof. Each round t incurs privacy loss from s invocations of a (η/γtn)-differentially private algorithm
(rejection sampling, Lemma 18), and s̃t invocations of a (2η(t − 1)/n)-differentially private algorithm
(Lemma 19). Since ε-differential privacy implies 1

2ε
2-CDP Bun & Steinke (2016), we have (by composition)

that round t is ρt-CDP for

ρt =
η2

2γ2
t n

2
s+

2η2(t− 1)2

n2
s̃t =

η2s

n2

(
1

2γ2
t

+ 2(t− 1)2 · (2γt + 4η)

)
≤ η2s

n2

(
4t4/3 + 8ηt2

)
.

Composing over rounds t = 1 · · ·T yields ρ = O
(

log(|X |T/β)·log2+1/3(|Q|)
n2α4+2/3 + log(|X |T/β)·log3(|Q|)

n2α5

)
, as required.

Accuracy
The accuracy analysis follows that of of DualQuery, together with the following claims showing that the
rejection sampling process simulates the collection of independent samples in the DualQuery algorithm.

Lemma 20. Let P and Q be probability distributions over Q, and let M ≥ maxq∈Q Pq/Qq. Sample an
element of Q as follows. Sample q according to Q, and accept it with probability Pq/(M · Qq). If q is not
accepted, sample q according to P . Then the resulting element is distributed according to P .

Proof. The total probability of sampling q according to this procedure is given by

Qq ·
Pq

M ·Qq
+ Pq ·

∑
q′∈Q

Qq′ ·
(

1− Pq′

M ·Qq′

)
= Pq ·

 1

M
+
∑
q′∈Q

(
Qq′ −

Pq′

M

)
= Pq ·

(
1

M
+

(
1− 1

M

))
= Pq.

Lemma 21. For any given round t, the probability that more than s̃t samples are rejected is at most
(e/4)s̃t ≤ β

3T .

Proof. The probability that any given sample is rejected is 1− Q̂t+1
q /Qtq = 1− e−η−γt · exp(−ηAD(xt, q)) ≤

1 − e−2η−γt ≤ 2η + γt = s̃t
2s . (In particular, s̃t is at least twice the expected number of rejected samples.)

The set of s samples is rejected independently. By a multiplicative Chernoff bound, the probability that
more than s̃t samples are rejected is at most (e/4)s̃t . Note that s̃t ≥ 4ηs = 48

α log
(

3|X |T
β

)
. Thus (e/4)s̃t ≤(

β
3|X |T

)18/α

≤ β
3T .

Together Lemmas 20 and 21 show that, with high probability, at each round t, the set St is distributed as
s independent samples from Qt. Given this, the rest of the proof follows that of the original DualQuery.

Proof of Accuracy for Theorem 17.

Proof. For each round t, by Hoeffding’s bound and Lemma 21 and a union bound over X , with probability at
least 1− β

T , we have

∀x ∈ X

∣∣∣∣∣∣1s
∑
q∈St

q(x)− E
q←Qt

[q(x)]

∣∣∣∣∣∣ ≤ α

4
.
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By a union bound over the T rounds we have that the above holds for all t ∈ [T ] with probability at least
1− β.

By assumption, in each round t, our oracle returns xt that is an α/4-approximate best response to the
uniform distribution over St. Thus, with high probability, the sequence x1, · · · , xT are α/2-approximate best
responses to the distributions Q1, · · · , Qt. Since the distributions are generated by multiplicative weights,
we have that this is an α-approximate equilibrium. Hence the uniform distribution over x1, · · · , xT is an
α-accurate synthetic database for D.
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