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Abstract and optimal control problems have variables lying in a possi-

We propose two novel conditional gradient-based 
methods for solving structured stochastic convex 
optimization problems with a large number of 
linear constraints. Instances of this template natu-
rally arise from SDP-relaxations of combinatorial 
problems, which involve a number of constraints 
that is polynomial in the problem dimension. The 
most important feature of our framework is that 
only a subset of the constraints is processed at 
each iteration, thus gaining a computational ad-
vantage over prior works that require full passes. 
Our algorithms rely on variance reduction and 
smoothing used in conjunction with conditional 
gradient steps, and are accompanied by rigorous 
convergence guarantees. Preliminary numerical 
experiments are provided for illustrating the prac-
tical performance of the methods. 

1. Introduction 
We study the following optimization template: 

min f(x) := E [f(x, ξ)] 
x∈X 

A(ξ)x ∈ b(ξ) almost surely, (1) 

where f(x, ξ) : Rd → R are random convex functions with 
Lf -Lipschitz gradient, X is a convex and compact set of 
Rd , A(ξ) is an m × d matrix-valued random variable, and 
b(ξ) is a closed and projectable random convex set in Rm . 

Stochastically constrained convex optimization problems 
have recently gained interest in the machine learning com-
munity, as they provide a convenient and powerful frame-
work for handling instances subject to a large, or even infi-
nite number of constraints. For example, convex feasibility 
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bly infinite intersection of stochastic, projectable constraint 
sets, and hence are tackled through this lens by Patrascu & 
Necoara (2017). Xu (2018) also studies the minimization of 
a stochastic objective controlled by a very large number of 
stochastic functional constraints, with application to stochas-
tic linear programming. Finally, put forth by Fercoq et al. 
(2019), extensions to situations where the number of con-
straints is unknown (e.g. online settings) can be modeled by 
a template highly similar to (1), thus addressing important 
applications such as online portfolio optimization. 

In this paper, we are interested in a class of applications 
which can benefit from being cast under template (1), 
namely semidefinite programs (SDPs) with a large num-
ber of linear constraints, such as arise in combinatorial 
optimization. A prominent example in machine learning 
is the k-means clustering problem, whose SDP relaxation � � 
comprises O d2 linear constraints where d is the number 
of data samples (Peng & Wei, 2007). Maximum a posteri-
ori estimation (Huang et al., 2014), quadratic assignment 
(Burer & Monteiro, 2005), k-nearest neighbor classifica-
tion (Weinberger & Saul, 2009) and Sparsest cut (Arora 
et al., 2009) are other relevant SDP instances with linear � � � � 
constraints of order O d2 or O d3 . Coupled with large 
input dimensions, such SDPs become problematic for most 
existing methods, due to the high cost of processing the 
constraints in-full during optimization. 

In contrast, casting such SDPs into (1) suggests a simple 
solution: treat the linear constraints stochastically by only 
accessing a random subset at each iteration, then solve (1) 
using cheap gradient methods. However, the bottleneck in 
executing this idea is that existing methods require the con-
straint X to posses an efficient projection oracle, whereas 
projecting onto the semidefinite cone amounts to full singu-
lar value decompositions, an operation that is prohibitively 
expensive even when the problem dimension is moderate. 
We hence ask: 

Does a scalable method exist for solving (1) when 
the set X does not have an efficient projection 
oracle? 

The present work resolves the above challenge in the pos-
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itive. To this end, we borrow tools from the conditional 
gradient methods (CGM) (Frank & Wolfe, 1956; Jaggi, 
2013), which rely on the generally cheaper linear minimiza-
tion oracles (lmo), rather than their projection counterparts. 
In particular, as the Lanczos method enables an efficient 
lmo computation for the spectrahedron (Arora et al., 2005), 
CGMs have already been proposed for solving SDPs (Jaggi, 
2013; Garber & Hazan, 2016; Yurtsever et al., 2018; Lo-
catello et al., 2019). However, none of these methods can 
handle the constraints stochastically. 

In a nutshell, our approach relies on homotopy smoothing 
of the stochastic constraints in conjunction with CGM steps 
and a carefully chosen variance reduction procedure. Our 
analysis gives rise to two fully stochastic algorithms for 
solving problem (1) without projections onto X . The first 
of the methods, H-SFW1, relies on a single sample (or fixed 
batch size) for computing the variance-reduced gradient and 
converges at a cost of O(�−6) lmo calls and O(�−6) stochas-
tic first-order oracle (sfo) calls. The second, H-SPIDERFW, 
uses batches of increasing size under the SPIDER variance 
reduction scheme (Fang et al., 2018) and attains a theoretical 
complexity of O(�−2) lmo calls and O(�−4) sfo calls. The 
difference in convergence rates emphasizes the trade-off 
between between the computational cost per-iteration and 
the number of iterations required to reach the constrained 
optimum. 

2. Related Work 
The present work lies at the intersection of several lines 
of research, whose relevant literature we describe in the 
following sections. 

Proximal Methods for Almost Sure Constraints. Prob-
lems of similar formulation to (1) have been addressed in 
prior literature under the assumption of an efficient projec-
tion oracle over X . Works such as (Patrascu & Necoara, 
2017; Xu, 2018; Fercoq et al., 2019) solve these problems 
via stochastic proximal methods and attain a complexity of 
O(�−2) sfo calls, which is known to be optimal even for un-
constrained stochastic optimization. In particular, Patrascu 
& Necoara (2017) study convex constrained optimization, 
where the constraints are expressed as a (possibly infinite) 
intersection of stochastic, closed, convex and projectable 
sets Xξ. Problem (1) can be partly cast to this template, 
with A(ξ)X ∈ b(ξ) being the homologue of Xξ. However, 
our additional set X does not allow for efficient projections, 
making this framework inapplicable. 

Xu (2018) solves a convex constrained optimization prob-
lem over a convex set X , subject to a large number of convex 
functional constraints fj , j = 1 . . .M . The functions fj are 
sampled uniformly at random during optimization, which 
corresponds to a finitely sampled instance of problem (1) for 

affine fj . However, we meet again with the limiting condi-
tion that projections onto X are computationally expensive 
in our setting. 

Finally, Fercoq et al. (2019) study convex problems subject 
to a possibly infinite number of almost sure linear inclusion 
constraints, a template which closely resembles ours. The 
limitation, however, lies in their inclusion of a proximal-
friendly component in the objective used to perform stochas-
tic proximal gradient steps. This assumption does not hold 
for our problem formulation. 

Conditional Gradient Methods for Constrained Opti-
mization. CGM was first proposed in the seminal work 
of Frank & Wolfe (1956) and its academic interest has wit-
nessed a resurgence in the past decade. The advantage of 
CGMs lies in the low per-iteration cost of the lmo, along-
side their ability to produce sparse solutions. In compari-
son to projection-based approaches, the lmo is cheaper to 
compute for several important domains, amongst which the 
spectrahedron, polytopes emerging from combinatorial opti-
mization, and ` p norm-induced balls (Garber, 2016). Conse-
quently, CG-type methods have been studied under varying 
assumptions in (Hazan, 2008; Clarkson, 2010; Hazan & 
Kale, 2012; Jaggi, 2013; Lan, 2013; Balasubramanian & 
Ghadimi, 2018), and have been incorporated as cheaper sub-
solvers into algorithms which originally relied on projection 
oracles (Lan & Zhou, 2016; Liu et al., 2019). 

CGMs have been further extended to the setting of con-
vex composite minimization via the Augmented Lagrangian 
framework in (Gidel et al., 2018; Silveti-Falls et al., 2019; 
Yurtsever et al., 2019a). Most relevant to our work, CGM-
based quadratic penalty methods have been studied for con-
vex problems with constraints of the form Ax − b ∈ K, 
where K is a closed, convex set (Yurtsever et al., 2018; 
Locatello et al., 2019). We compare our methods against 
the latter two in Section 4.5. 

Variance Reduction. Stochastic variance reduction (VR) 
methods have gained popularity in recent years follow-
ing their initial study by (Roux et al., 2012; Johnson & 
Zhang, 2013; Mahdavi et al., 2013). The VR technique 
relies on averaging schemes to reduce the variance in-
herent to stochastic gradients, with several different fla-
vors having emerged in the past decade: SAG (Schmidt 
et al., 2017), SVRG (Johnson & Zhang, 2013), SAGA (De-
fazio et al., 2014), SVRRG++ (Allen-Zhu & Yuan, 2016), 
SARAH (Nguyen et al., 2017) and SPIDER (Fang et al., 
2018). Such methods outperform the classical SGD under 
the finite sum model, a fact which led to their widespread 
use in large-scale applications and their further inclusion 
into other stochastic optimization algorithms (see for exam-
ple (Xiao & Zhang, 2014; Hazan & Luo, 2016)). 
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Relevant to our setting, VR has been studied in the con-
text of CGMs for convex minimization by (Mokhtari et al., 
2018; Hazan & Luo, 2016; Locatello et al., 2019; Yurtsever 
et al., 2019b; Zhang et al., 2019). The sfo complexity of 
these methods varies depending on the VR scheme, with the 
best guarantee being of order O(�−2) (Zhang et al., 2019; 
Yurtsever et al., 2019b). For a thorough comparison of the 
complexities, we refer the reader to Section 6 of (Yurtsever 
et al., 2019b). 

3. Preliminaries 
Notation. We use k · k to express the Euclidean norm 
and h·, ·i to denote the corresponding inner product. The 
distance between a point x and a set X is defined as 
dist(x, X ) := infy∈X ky − xk. The indicator function of a 
set X is given by δX (x) = 0, if x ∈ X , and δX (x) = +∞ 
otherwise. We denote by DX := max(x,y)∈X ×X kx − yk 
the diameter of a compact set X . 

For the probabilistic setting, we denote by ξ an element 
of our sample space and by P (ξ) its probability measure. 
Unless stated otherwise, expectations will be taken with 
respect to ξ. We use [n] to denote {1, 2, . . . n}. 

Given a function f : Rd → R and L > 0, we say that f is 
L-smooth if rf is Lipschitz continuous, which is defined 
as krf(x) −rf(y)k ≤ Lkx − yk, ∀x, y ∈ Rd . 

Following the same setup as in (Fercoq et al., 2019), the 
space of random variables used in this work is n h i o 

2H = y(ξ)ξ ∈ Rm | ξ ∈ Rn , E ky(ξ)ξk < +∞ , 

where the associated scalar product is given by� � R 
hx, zi := E x(ξ)T z(ξ) = x(ξ)T z(ξ)dP (ξ). 

Smoothing. Nesterov (2005) proposes a technique for ob-
taining smooth approximations parametrized by β, of a 
non-smooth and convex function g. The resulting smoothed 
approximations take the following form: 

β 
gβ (x) = maxhy, xi − g ∗ (y) − kyk2 

, 
y 2 

where g ∗(y) = sup hz, yi − g(z) is the Fenchel conjugate z 
of g. Note that gβ is convex and 1 -smooth. The present β 

work focuses on the case when g(·, ξ) = δb(ξ)(·). Smooth-
ing the indicator function is studied in the context of proxi-
mal methods by Tran-Dinh et al. (2018); Fercoq et al. (2019) 
and for deterministic CGM by Yurtsever et al. (2018). Of 
particular note is that when g(x) = δX (x), the smoothed 

1function becomes gβ (x) = dist(x, X )2 .2β 

∗Optimality Conditions. We denote by x a solution to 
problem (1) and say that x is an �-solution for (1) if it 

satisfies 

E [|f(x, ξ) − f(x ∗ )|] ≤ �, 
p
E [dist(A(ξ)x, b(ξ))2] ≤ �. 

(2) 

Oracles. Our complexity results are given relative to the 
following oracles: 

• Stochastic first order oracle (sfo): For a stochastic 
function E [f(·, ξ)] with ξ ∼ P , the sfo returns a pair 
(f(x, ξ), rf(x, ξ)) where ξ is an i.i.d. sample from 
P (Nemirovsky & Yudin, 1983). 

• Incremental first order oracle (ifo): For finite-sum 
problems, the ifo takes an index i ∈ [n] and returns a 
pair (fi(x), rfi(x)). 

• Linear minimization oracle (lmo): The linear min-
imization oracle of set X is given by lmoX (y) = 
arg minx∈X hx, yi and is assumed to be efficient to 
compute throughout this paper. This is the main 
projection-free oracle model for CGM-type methods. 

4. Algorithms & Convergence 
We now describe our proposed methods for solving (1), H-
1SFW and H-SPIDER-FW, and provide their theoretical 
convergence guarantees. 

4.1. Challenges and High-Level Ideas 

Problem (1) can be rewritten equivalently as: � � 
min F (x) := E f(x, ξ) + δb(ξ)(A(ξ)x) . (3) 
x∈X 

Note that, in this form, our objective is non-smooth due to 
the indicator function. In order to leverage the conditional 
gradient framework, we smooth δb(ξ)(A(ξ)x) through the 
technique described in Section 3, thus obtaining a surrogate 
objective Fβ . For notational simplicity, we refer to the 
smoothed stochastic indicator as: 

gβ (A(ξ)x) = 
1 

dist(A(ξ)x, b(ξ))2 . (4)
2β 

The minimization problem in terms of the smoothed objec-
tive thus becomes: 

min Fβ (x) := E [f(x, ξ) + gβ (A(ξ)x)] , (5) 
x∈X 

with lim Fβ (x) = F (x). A natural idea is to optimize
β→0 

smooth approximations Fβ which are progressively more 
accurate representations of F . To this end, we apply con-
ditional gradient steps in conjunction with decreasing the 
smoothness parameter β, practically emulating a homotopy 
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transformation. As the iterations unfold our algorithms in 
fact approach the optimum of the original objective F (x), 
as stated theoretically in Sections 4.3.2 and 4.4.2. 

However, the aforementioned idea faces a technical chal-
lenge: decreasing the smoothing parameter β impacts the 
variance of the stochastic gradients rxgβ (A(ξ)x), which 
increases proportionally. This issue has previously been sig-
naled in the work of (Fercoq et al., 2019), where the authors 
address a similar setting using stochastic proximal gradient 
steps. Here, the problem is further aggravated by the use 
of lmo calls over X , as it is well-known that CGMs are 
sensitive to non-vanishing gradient noise (Mokhtari et al., 
2018). 

Our solution is to simply perform VR on the stochastic 
gradients and theoretically establish a rate for β → 0 in 
order to counteract the exploding variance. Precisely, we 
show how two different VR schemes can be successfully 
used within the homotopy framework: 

• H-1SFW uses one stochastic sample to update a gradi-
ent estimator at every iteration, following the technique 
introduced in (Mokhtari et al., 2018). Depending on 
computational resources, the single-sample model can 
be extended to a fixed batch size with the same conver-
gence guarantees. 

• H-SPIDER-FW uses stochastic mini-batches of in-
creasing size to compute the gradient estimator, using 
the technique proposed in (Fang et al., 2018). 

The theoretical results characterizing our algorithms are 
presented in sections refsec:h1sfw and 4.4. First, we state 
the rate at which the β-dependent stochastic gradient noise 
vanishes under each VR scheme in lemmas 4.1 and 4.2. 
The main convergence theorems 4.1 and 4.2 then describe 
the performance of our algorithms in terms of the quan-
tity E [Sβk (xk, ξ)] := E [Fβk (xk, ξ) − f(x ∗)], called the 
smoothed gap. Finally, in corollaries 4.1 and 4.2 we trans-
late the aforementioned results into guarantees over the 
objective residual and constraint feasibility. All proofs are 
deferred to the appendix due to lack of space. 

4.2. Technical Assumptions 

Assumption 4.1. The stochastic functions f(·, ξ) are con-
vex and Lf -smooth. This further implies that f(x) is Lf -
smooth. 

Assumption 4.2. The stochastic gradients rf(x, ξ) are 
unbiased and have a uniform variance bound σf 

2 . Formally, 

E [rf(x, ξ)] = rf(x)h i 
2E krf(x, ξ) −rf(x)k ≤ σ2 < +∞. (6)f 

Algorithm 1 H-1SFW 
Input: x1 ∈ X , β0 > 0, P (ξ) 

for k = 1, 2, . . . , do 
Set ρk, βk and γk; sample ξk ∼ P (ξ) 

dk = (1 − ρk)dk−1 + ρkrxFβk (xk, ξk) 

wk = lmoX (dk) 

xk+1 = xk + γk(wk − xk). 

end for 

Assumption 4.3. The domain X is convex and compact, 
with diameter DX . 

Assumption 4.4. Slater’s condition holds for problem (3). 
Specifically, letting G : H → R ∪ {∞}, G(Ax) :=� � 
E δb(ξ)(A(ξ)x) , with the linear operator A : Rd → H 
defined as (Ax)(ξ) := A(ξ)x, ∀x, we require that 

0 ∈ sri (dom(G) − A dom(f)) , 

where sri is the strong relative interior of the set (Bauschke 
et al.). 

Assumption 4.5. The spectral norm of the stochastic linear 
operator A(ξ) is uniformly bounded by a constant LA: 

2
LA := supkA(ξ)k < +∞. 

ξ 

This assumption is also made in (Fercoq et al., 2019). 

4.3. H(omotopy)-1SFW 

We now describe our first algorithm which relies on the 
VR scheme proposed in (Mokhtari et al., 2018), and whose 
advantage lies in a simple update rule and single-loop struc-
ture. 

4.3.1. GRADIENT ESTIMATOR MODEL 

We denote the gradient estimator by dk, and remark that it 
is biased with respect to the true gradient rFβ (xk) and ex-
hibits a vanishing variance. This scheme achieves VR while 
conveniently considering only one stochastic constraint at a 
time. The estimator update rule is given by 

dk = (1 − ρk)dk−1 + ρkrFβk (xk, ξk), 

where rFβk (xk, ξk) = rf(xk, ξk) + rgβk (A(ξk)Xk), 
and ρk is a decaying convex combination parameter. The 
proposed method is provided via pseudocode in Algo-
rithm 1. 

4.3.2. CONVERGENCE RESULTS 

Before stating the results, we remark that Lemma 4.1 is the 
counterpart of Lemma 1 in (Mokhtari et al., 2018) and its 
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proof follows a similar route, up to bounding β-dependent 
quantities. It is worth noting that in our case, handling 
the stochastic linear inclusion constraints results in a rate� � 

k1/3surcharge factor of O . 

3 2Lemma 4.1. Let ρk = γk = , βk = 
(k+5)2/3 , k+1 

β0 

(k+1)1/6 , β0 > 0 in Algorithm 1. Then, for all k, 

� � C1E krFβk (xk) − dkk2 ≤ ,
(k + 5)1/3 

( 

where C1 = max 61/3krFβ0 (x0) − d0k2 , 

� �) 
522L2 

ADX 
2 

2 18σf 
2 + 112Lf 

2 DX 
2 + 

β2 
0 

Theorem 4.1. Consider Algorithm 1 with parameters ρk = 
3 2 β0γk = βk = > 0 (identical

(k+5)2/3 , k+1 , (k+1)1/6 , β0 

to Lemma 4.1). Then, for all k, 

C2E [Sβk (xk+1)] ≤ ,
k1/6 n � �o√ 

LAwhere C2 = max S0(x1), b = 2DX C1 + 2D2 
X Lf + β0 

and C1 is defined in Lemma 4.1. 

Corollary 4.1. The expected convergence in terms of objec-
tive suboptimality and feasibility of Algorithm 1 is, respec-
tively, � � 

k−1/6E [|f(xk, ξ) − f(x ∗ )|] ∈ O p � � 
k−1/6E [dist(A(ξ)xk, b(ξ))2] ∈ O . 

� � 
�−6Consequently, the oracle complexity is #(sfo) ∈ O � � 

�−6and #(lmo) ∈ O . 

4.4. H(omotopy)-SPIDER-FW 

Our second algorithm presents a more complex VR scheme, 
which improves on the complexity of H-1SFW. The method 
relies on the SPIDER estimator originally proposed under 
the framework of Normalized Gradient Descent in (Fang 
et al., 2018) and further studied for CGMs in (Yurtsever 
et al., 2019b). Different from Section 4.3.2, the results 
that follow distinguish two scenarios: the first is customary 
to VR methods such as SVRG (Johnson & Zhang, 2013) 
or SARAH (Nguyen et al., 2017) and assumes a finite-
sum form of f ; the second, different from most other VR 
schemes, caters to objectives of the form f(x) = E [f(x, ξ)] 
where ξ ∼ P (ξ), and can handle a potentially infinite num-
ber of stochastic functions of (1). 

Algorithm 2 H-SPIDER-FW 
Input: x̄ 1 ∈ X , β0 > 0, P (ξ) 

for t = 1, 2, . . . , T do 
xt,1 = x̄ t 

i.i.dCompute γt,1, βt,1,Kt; sample ξQt ∼ P (ξ) 
˜vt,1 = rFβt,1 (xt,1, ξQt ) 

wt,1 ∈ lmoX (vt,1) 

xt,2 = xt,1 + γt,1(wt,1 − xt,1) 

for k = 2, . . . ,Kt do 
i.i.dCompute γt,k, βt,k; sample ξSt,k ∼ P (ξ) 

vt,k = vt,k−1 − r̃ Fβt,k−1 (xt,k−1, ξSt,k ) 

+ r̃ Fβt,k (xt,k, ξSt,k ) 
wt,k ∈ lmoX (vt,k) 

xt,k+1 = xt,k + γt,k(wt,k − xt,k) 

end for 
Set x̄ t+1 = xt,Kt+1 

end for 

4.4.1. GRADIENT ESTIMATOR MODEL 

We denote the SPIDER gradient estimator by vt,k, and re-
mark that it is also biased relative to rFβk (xk) and exhibits 
a vanishing variance. This scheme achieves VR through the 
use of increasing-size mini-batches. The estimator update 
rule is given by 

vt,k = vt,k−1 − r̃ Fβt,k−1 (xt,k−1, ξSt,k ) 

+ r̃ Fβt,k (xt,k, ξSt,k ), (7) 

where ˜ )rFβt,k (xt,k, ξSt,k = r̃f(xk, ξSt,k ) + 
r̃gβt,k (A(ξSt,k )xt,k) defines the averaged gradient 
over a mini-batch of size |St,k|. 

The double indexing used in (7) hints at the double-loop 
structure of the algorithm, a format similar to most VR-
based methods. The method is structured similarly to 
SPIDER-FW from (Yurtsever et al., 2019b), and proceeds 
in two steps: the outer loop computes an accurate gradient 
estimator and sets the batch size for the inner iterations. 
The inner-loop then iteratively ‘refreshes’ this gradient ac-
cording to (7) and performs homotopy steps on β using a 
theoretically-determined schedule. The proposed method is 
provided via pseudocode in Algorithm 2. 

4.4.2. CONVERGENCE RESULTS 

Again, we remark that Lemma 4.2 is the counterpart of 
Lemma 4, Appendix C in (Yurtsever et al., 2019b). However 
in this case, our proof takes a different, more tedious route, 
as the latter result does not accommodate homotopy steps. 
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In comparison, the bound we obtain depends linearly on the 
total iteration count, whereas the lemma of (Yurtsever et al., 
2019b) depends only on the outer loop counter Kt. 

Lemma 4.2 (Estimator variance for finite-sum problems). 
Consider Algorithm 2, and let ξ be finitely sampled from 

= 2t−1set [n], ξQt = [n] and ξSt,k , such that |St,k| = Kt . 
2 β0Also, let γt,k = Kt+k , βt,k = √ , β0 > 0. Then, for a 

Kt+k 
fixed t and for all k ≤ Kt, h i 

2 C1E krFβt,k (xt,k) − vt,kk ≤ ,
Kt + k � � 

98L2 
Awhere C1 = 2D2 8L2 + .X f β2 

0 

Lemma 4.3 (Estimator variance for general expecta-
tion problems). Consider Algorithm 2 and let ξ ∼ 

d 2KtP (ξ) and ξQt such that |Qt| = e. Also, let
β2 
t,1 

= 2t−1 2ξSt,k , such that |St,k| = Kt , γt,k = Kt+k , βt,k = 
√ β0 , β0 > 0. Then, for a fixed t and for all k ≤ Kt,Kt+k h i 

E krFβt,k (xt,k) − vt,kk2 ≤ 
C2 

,
Kt + k � � 

D2 D2 98where C2 = 16L2 + 2L2 + 1 + 2β0
2σ2 

f X A X β2 f . 
0 

Theorem 4.2. Consider Algorithm 2 with parameters 
2 β0γt,k = , βt,k = √ , β0 > 0, andKt+k Kt+k 

= 2t−1ξSt,k , such that |St,k| = Kt . Then, 

• For ξ be finitely sampled from set [n], ξQt = [n] and 
∀t ∈ N, 1 ≤ k ≤ 2t−1 , � � C3E (xt,k+1) ≤ √ ,Sβt,k Kt + k + 1 ( 

where C3 = max Sβ1,0 (x1,1), s ) 
196L2 

A 2DX 
2 LA

2DX 
2 Lf + 2DX 

2 16L2 
f + 

β2 + ; 
0 β0 

d 2Kt• For ξ ∼ P (ξ), ξQt such that |Qt| = e and
β2 
t,1 

∀t ∈ N, 1 ≤ k ≤ 2t−1 , � � C4E Sβt,k (xt,k+1) ≤ √ , 
Kt + k + 1 ( 

X LAwhere C4 = max Sβ1,0 (x1,1), 2DX 
2 Lf +

2D2 

β0 s )� � 
98 

+ 2DX 16L2 D2 + 2L2 D2 + 1 + 2β2σ2 .f X A X 0 fβ2 
0 

Corollary 4.2. The expected convergence in terms of objec-
tive suboptimality and feasibility of Algorithm 2 is, respec-
tively, � � 

E [|f(xt,k) − f(x ∗ )|] ∈ O (Kt + k)−1/2 q � � 
E [dist(A(ξ)xt,k, b(ξ))2] ∈ O (Kt + k)−1/2 

for both the finite-sum and the general expectation set-
ting, up to constants. Consequently, the oracle complex-� � 
ities are given by #(ifo) ∈ O n log2(�

−2) + �−4 and� � 
#(lmo) ∈ O �−2 for the finite-sum setting, and by� � � � 

�−4 �−2#(sfo) ∈ O and #(lmo) ∈ O for the more 
general expectation setting. 

4.5. Discussion 

Rate Degradation in the Absence of Projection Oracles. 
Compared to proximal methods for solving (1), our algo-
rithms require O(�−2) times more sfo calls to reach an 
�-solution. This is well-known for CG-based methods: for 
instance, solving a fully deterministic version of (1) us-
ing the Augmented Lagrangian framework has a gradient 
complexity of O(�−1) (Xu, 2017), whereas the best known 
complexity for CG-based algorithms is O(�−2) (Yurtsever 
et al., 2018). 

Comparison with SHCGM (Locatello et al., 2019). 
The state-of-the-art for solving (1) is the half-stochastic 
method SHCGM (Locatello et al., 2019), in which stochas-
ticity is restricted to the objective function f , while the 
constraints are processed deterministically. This algorithm 
attains an O(�−3) sfo complexity and an O(�−3) lmo com-
plexity, by resorting to the same VR scheme as H-1SFW 
applied only to f(x, ξ). Since SHCGM handles the con-
straints deterministically, it does not face the challenge of 
exploding variance as β → 0. 

Our analysis shows that handling the β-dependence of the 
gradient noise comes at the price of H-1SFW being O(�−3) 
times more expensive in terms of both oracles. In con-
trast, owing to a more powerful variance-reduction scheme, 
H-SPIDER-FW attains only an O (�)-times worse sfo com-
plexity, while improving by an O (�) factor in terms of the 
lmo complexity. Given that an lmo call is generally more 
expensive than that of an sfo, we have in fact improved 
the complexity over the state-of-the-art, while being the 
first to process linear constraints stochastically. Moreover, 
we note that the lmo complexity of H-SPIDER-FW is on 
the same order as its fully deterministic counterpart, the 
HCGM (Yurtsever et al., 2018). 

The Role of VR. The choice of VR technique dictates the 
worst-case convergence guarantees of our methods, a fact 
which is apparent from the discrepancy between the variance 
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bounds of Lemmas 4.1 and 4.2- 4.3, respectively: O(k−1/3) 
for dk vs. O(k−1) for vt,k. This signals the existence of 
a trade-off: a more intricate way of handling stochastic 
penalty-type constraints can ensure the better convergence 
guarantees of H-SPIDER-FW, while a simpler VR scheme 
comes at the cost of the rather pessimistic ones of H-1SFW. 
Fortunately, as shown in the Section 5, the simple H-1SFW 
greatly outperforms its worst-case guarantees. 

5. Numerical Experiments 
For demonstrating the empirical efficiency of our algorithms, 
we apply them to three problem instances: synthetically-
generated SDPs, the K-means clustering SDP relaxation and 
the Sparsest Cut-associated SDP. 

Evaluation Metrics: Our experiments subscribe to a finite-Pn1sum template, where we define f(x) := fi(x) andP i=1 
n2 gβ (Ax) = i=1 gi,β (Ai

T x). The objective convergence is 
recorded as |f(x)−f?|, with f? := f(x ∗). Due to imperfect 
feasibility, the value of f(x) can overshoot f? , since the 
constrained optimum is not the global one. This usually 
appears as the increase of |f(x) − f?| immediately after 
a significant drop when the quantity f(x) − f? becomes 
negative; then the decreasing trend restarts, as the objective 
and constraints re-balance. Such a phenomenon is common 
for homotopy-based methods, see for instance (Yurtsever 
et al., 2018). Lastly, the feasibility is recorded as kAx − bk. 

Baseline: To the best of our knowledge, the HCGM (Yurt-
sever et al., 2018) and the SHCGM (Locatello et al., 2019) 
are the only algorithms which tackle SDPs under the condi-
tional gradient framework. The latter represents the empiri-
cal state-of-the-art and we choose it as the baseline for our 
experiments. 

5.1. Synthetic SDP Problems 

This proof-of concept experiment aims to show the perfor-
mance of our fully stochastic methods, given a fixed problem 
dimension and an increasing set of constraints. We consider 
the synthetic SDP: 

min hC, Xi 
X∈Sd 

+ 

tr(X)≤ 1 
d 

subject to tr(AiX) = bi, i = 1 . . . n 

where the entries of Ai and C are generated from U(0, 1), 
and bi = hAi, X

∗i for a fixed X∗ . We perform uniform 
sampling on the pairs (Ai, bi) for computing their stochastic 
gradients in our algorithms. We fix the dimension to be 
d = 20 and vary the size of constraints with n = 5e2 and 
5e3. 

For a fair comparison, we sweep the parameter β0 for the 
three algorithms in the range [1e-7, 1e1]. We settle for 

1e-7, 1e-7 and 1e-5 for SHCGM, H-1SFW and H-
SPIDER-FW, respectively. For H-1SFW and SHCGM, we 
choose the batch size to be 1% of the data. 

Figure 1 illustrates the outcome of the experiments, where 
we observe a clear improvement of the stochastic algorithms 
over the baseline with a stable margin throughout the test 
cases. 

Interestingly, H-1SFW exhibits strong empirical perfor-
mance on the synthetic data, much better than its theoretical 
worst-case bound. A possible explanation is that the entries 
of C and Ai are generated from a “benign” distribution and 
concentrate around its mean (Ledoux, 2001). In such sce-
narios, even a small subset of constraints allows for effective 
variance reduction. For comparison, we provide an addi-
tional set of results for synthetic SDPs generated from a less 
well-behaved distribution in Appendix A.2. Nevertheless, 
we observe the same good performance of H-1SFW even 
with real data, in the next sections. 

Regarding H-SPIDER-FW, we observe that the subopti-
mality and feasibility decrease at the rate k− 1 

and k− 3 
2 4 , 

respectively, which is better than the worst-case bounds in 
Theorem 4.2. 

5.2. The K-means Clustering Relaxation 

We consider the unsupervised learning task of partitioning 
d data points into k clusters. We adopt the SDP formulation 
in (Peng & Wei, 2007), which amounts to solving: 

min hC, Xi 
X∈X 

subject to X~1 = ~1, 

Xi,j ≥ 0, 1 ≤ i, j ≤ d. (8) 

Here, C ∈ Rd×d is the Euclidean distance matrix of the 
d data points, X = {X ∈ Rd×d : X � 0, tr(X) ≤ k}, 
~1 is the all 1’s vector. Notice that the number of linear 
constraints in (8) is O(d2). 

In order to compare against existing work, we adopt the 
MNIST dataset (k = 10) (LeCun & Cortes, 2010) with 
d = 103 samples and perform data preprocessing as in 
(Mixon et al., 2016). The very same setup appeared in 
several works (Mixon et al., 2016; Yurtsever et al., 2018; 
Locatello et al., 2019), with SHCGM (Locatello et al., 2019) 
showing the best practical performance. 

We perform parameter sweeping on β0 ∈ [1e-7, 1e2] 
for H-1SFW and H-SPIDER-FW, and settle for 5e-2 and 
6e0, respectively. For SHCGM, we adopt the same hyper-
parameter as in (Locatello et al., 2019). The batchsize for 
H-1SFW and SHCGM is set to 5%. 

The comparison of our algorithms against SHCGM is re-
ported in Figure 2. H-1SFW and H-SPIDER-FW converge 
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Figure 1. Synthetic SDPs, with each column showing the convergence in objective subopti- Figure 2. The K-means SDP relaxation, 
mality (top) and in feasibility (bottom) for a specific problem. The left hand-side column with convergence in objective suboptimality 
corresponds to a problem with 5e2 constraints, while the right hand-side one to a problem (top) and in feasibility (bottom). 
with 5e3 constraints. 
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Figure 3. The Sparsest Cut-associated SDP relaxation, where each column shows the convergence in objective suboptimality (top) and 
feasibility (bottom) for a specific problem. From left to right, the results correspond to graphs mammalia-primate-association-13, 
insecta-ant-colony1-day37 and insecta-ant-colony4-day10, sorted by increasing size. 
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Table 1. Details of the Network Repository (Rossi & Ahmed, 2015) graphs used in the experiments. 

Graph name |V | |E| 
Avg. 

node degree 
Max. 

node degree 
USC SDP 
dimension 

USC SDP 
# constraints 

mammalia-primate-association-13 25 181 14 19 X ∈ R25×25 ∼ 6.90e3 

insecta-ant-colony1-day37 55 1k 42 53 X ∈ R55×55 ∼ 7.87e4 

insecta-ant-colony4-day10 102 4k 79 99 X ∈ R102×102 ∼ 5.15e5 

at a comparable rate, with both clearly overtaking the base-
line with regards to objective suboptimality and feasibility 
convergence. 

5.3. Computing an `2 Embedding for the Uniform2 
Sparsest Cut Problem 

The Uniform Sparsest Cut problem (USC) aims to find a 
bipartition (S, S̄) of the nodes of a graph G = (V, E), 
|V | = d, which minimizes the quantity 

E(S, S̄) 
,

|S||S̄| 

where E(S, S̄) is the number of edges connecting S and 
S̄ . This problem is of broad interest, with applications 
in areas such as VLSI layout design, topological design 
of communication networks and image segmentation, to 
name a few. Relevant to machine learning, it appears as a 
subproblem in hierarchical clustering algorithms (Dasgupta, 
2016; Chatziafratis et al., 2018). 

Computing such a bipartition is NP-hard and intense re-
search has gone into designing efficient approximation algo-
rithms for this problem. In the seminal work of Arora et al.�√ � 
(2009) an O log d approximation algorithm is proposed 
for solving USC, which relies on finding a well-spread `2 

2 
geometric representation of G where each node i ∈ V is 
mapped to a vector vi in Rd . In this experimental section 
we focus on solving the SDP that computes this geomet-
ric embedding, as its high number of triangle inequality� � 
constraints (O d3 ) makes it a suitable candidate for our 
framework. The canonical formulation of the SDP is given 
below (for the original formulation, see Appendix A.3). 

min hL, Xi 
X∈X 

d2 

subject to d Tr(X) − Tr(1d×dX) = 
2 

Xi,j + Xj,k − Xi,k − Xj,j ≤ 0, ∀ i, j, k ∈ V 

Here, L represents the Laplacian of G, X = {X ∈ Rd×d : 
X � 0, tr(X) ≤ d} and Xi,j = hvi, vj i gives the geo-
metric embedding of the nodes. We run our algorithms on 
three graphs of different sizes from the Network Repository 

dataset (Rossi & Ahmed, 2015), whose details are summa-
rized in Table 1. Note the cubic dependence of the number 
of constraints relative to the number of nodes. We perform 
parameter sweeping on β0 ∈ [1e-5, 1e5] using the small-
est graph, mammalia-primate-association-13, and keep the 
same parameters for all the experiments. The values of β0 

for SHCGM, H-1SFW and H-SPIDER-FW are 1e2, 1e-2 
and 1e1 respectively, and the batch size for both H-1SFW 
and SHCGM is set to 5%. 

Figure 3 depicts the outcomes of the experiments, with 
both our algorithms consistently outperforming SHCGM 
and H-SPIDER-FW attaining the fastest convergence. A 
possible explanation is that, given the much larger number� � 

3of constraints relative to the problem dimension (O n v.s� � 
2O n ), H-SPIDER-FW’s increasing mini-batches readily 

reach an adequate balance between feasibility enforcement 
and objective minimization. 
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