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Appendices

A. Definitions
We repeat the relevant definitions in our paper.

A1. Safe Space: For more details, see Turchetta et al. (2016).

Set of the states identified as safe up to some confidence level of εg:

Rsafe
εg (X) = X ∪ {s ∈ S | ∃s′ ∈ X : g(s′)− εg − Ld(s, s′) ≥ h}.

Set of states with reachability from X:

Rreach(X) = X ∪ {s ∈ S | ∃s′ ∈ X, a ∈ A(s′) : s = f(s′, a)}.

Set of states with returnability to X:

Rret(X, X̄) = X̄ ∪ {s ∈ X | ∃a ∈ A : f(s, a) ∈ X̄},
Rnret(X, X̄) = Rret(X,R

n−1
ret (X, X̄)),with R1

ret(X, X̄) = Rret(X, X̄),

R̄ret(X, X̄) = lim
n→∞

Rnret(X, X̄).

Set of safe states with reachability and returnability:

Rεg (X) = Rsafe
εg (X) ∩Rreach(X) ∩Rret(R

safe
εg (X), X),

Rεg (X) = Rεg (Rn−1
εg (X)),with R1

εg (X) = Rεg (X),

R̄εg (X) = lim
n→∞

Rnεg (X).

Pessimistic safe space:

S−t = {s ∈ S | ∃s′ ∈ X−t−1 : lt(s
′)− L · d(s, s′) ≥ h},

X−t = {s ∈ S−t | s ∈ Rreach(X−t−1) ∩ R̄ret(S
−
t ,X−t−1)}.

Optimistic safe space:

S+
t = {s ∈ S | ∃s′ ∈ X+

t−1 : ut(s
′)− L · d(s, s′) ≥ h},

X+
t = {s ∈ S+

t | s ∈ Rreach(X+
t−1) ∩ R̄ret(S

+
t ,X+

t−1)}.

A2. Optimization of Cumulative Reward

For optimal policy:

V ∗M(st) = max
st+1∈Rεg (S0)

[ r(st+1) + γV ∗M(st+1) ] .

For balancing exploration and exploitation (neither ES2 nor P-ES2 is used):

Ut(s) = µrt (s) + α
1/2
t+1 · σrt (s),

J∗X (st, b
r
t , b

g
t ) = max

st+1∈X−
t∗

[
Ut(st+1) + γJ∗X (st+1, b

r
t , b

g
t )
]
.
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A3. ES2 Algorithm

For checking whether the termination condition is satisfied:

VMy (st) = max
st+1∈X+

t

[ r′(st+1) + γVMy (st+1) ],

Yt = {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗y(a | s))},
Yt ⊆ X−t .

For balancing exploration and exploitation in terms of reward:

J∗Y(st, b
r
t , b

g
t ) = max

st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
.

A4. P-ES2 Algorithm

For checking whether the termination condition is satisfied:

VMz
(st) = max

st+1∈X+
t

[ P z · {r′(st+1) + γVMz
(st+1)} ],

Zt = {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗z(a | s))},
Zt ⊆ X−t .

For balancing exploration and exploitation in terms of the reward:

J∗Z(st, b
r
t , b

g
t ) = max

st+1∈Zt

[
Ut(st+1) + γJ∗Z(st+1, b

r
t , b

g
t )
]
.

B. Preliminary Lemma
Lemma 3. For two arbitrary functions f1(x) and f2(x), the following inequality holds:

max
x

f1(x)−max
x

f2(x) ≥ min
x

(f1(x)− f2(x)).

Proof. For two arbitrary functions f4(x) and f5(x), the following inequality holds:

max
x

f4(x) + max
x

f5(x) ≥ max
x
{f4(x) + f5(x)}.

Let f2(x) = f4(x) + f5(x) and f3(x) = −f4(x). Then,

max
x
{−f3(x)}+ max

x
{f2(x) + f3(x)} ≥ max

x
f2(x),

max
x
{f2(x) + f3(x)} −max

x
f2(x) ≥ −max

x
{−f3(x)},

max
x
{f2(x) + f3(x)} −max

x
f2(x) = min

x
f3(x).

Finally, let f1(x) = f2(x) + f3(x). Then, the desired lemma is obtained.

C. Near-optimality
Lemma 4. Let J∗X (st, b

r
t , b

g
t ) be the value function calculated by SNO-MDP without the ES2 algorithm. Then,

J∗X (st, b
r
t , b

g
t ) satisfies the following inequality:

J∗X (st, b
r
t , b

g
t ) ≥ V ∗(st).

Proof. Consider a state st and beliefs brt and bgt . Also, let I denote the following safety indicator function:

I(s) :=

{
1 if s ∈ R̄εg (S0),
0 otherwise. (5)
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Then, the following chain of equations and inequalities holds:

J∗X (st, b
r
t , b

g
t )− V ∗(st)

= max
st+1∈X−

t∗

[ Ut(st+1) + γJ∗X (st+1, b
r
t , b

g
t ) ]− max

st+1∈R̄εg (S0)
[ r(st+1) + γV ∗M(st+1) ]

≥ max
st+1∈R̄εg (S0)

[ Ut(st+1) + γJ∗X (st+1, b
r
t , b

g
t ) ]− max

st+1∈R̄εg (S0)
[ r(st+1) + γV ∗M(st+1) ]

= max
at

[ I(st+1) · {Ut(st+1) + γJ∗X (st+1, b
r
t , b

g
t )} ]−max

at
[ I(st+1) · {r(st+1) + γV ∗M(st+1)} ]

≥ min
at

[ I(st+1) · {Ut(st+1)− r(st+1)}+ γI(st+1)J∗X (st+1, b
r
t , b

g
t )− γI(st+1)V ∗(st+1) ]

= min
at

[ I(st+1) · {Ut(st+1)− r(st+1)}+ γI(st+1){J∗X (st+1, b
r
t , b

g
t )− V ∗(st+1)} ] .

The third line follows from X−t∗ ⊇ R̄εg (S0) in Theorem 1. Also, the fourth line follows from the definition of I , and the
fifth line follows from Lemma 3. Because s is arbitrary in the above derivation, we have

min
st

[ J∗X (st, b
r
t , b

g
t )− V ∗(st) ] ≥ min

st+1

[ I(st+1){Ut(st+1)− r(st+1)}+ γI(st+1){J∗(st+1, b
r
t , b

g
t )− V ∗(st+1)} ] .

By Lemma 2, the following equation holds with probability at least 1−∆r:

min
st

[ J∗X (st, b
r
t , b

g
t )− V ∗(st, brt , b

g
t ) ] ≥ γ ·min

st+1

[I(st+1){J∗X (st+1, b
r
t , b

g
t )− V ∗(st+1)} ]

Repeatedly applying this equation proves the desired lemma. Therefore, we have

J∗X (st, b
r
t , b

g
t ) ≥ V ∗(st)

with high probability.

Lemma 5. (Generalized induced inequality) Let br, bg, r and b̂r, b̂g, r̂ be the beliefs (over reward and safety, respectively)
and reward functions (including the exploration bonus) that are identical on some set of states Ω — i.e., br = b̂r, bg = b̂g ,
and r = r̂ for all s ∈ Ω. Let P (AΩ) be the probability that a state not in Ω is generated when starting from state s and
following a policy π. If the value is bound in [0, Vmax], then

V π(s, br, bg, r) ≥ V π(s, b̂r, b̂g, r̂)− VmaxP (AΩ),

where we now make explicit the dependence of the value function on the reward.

Proof. The lemma follows from Lemma 8 in Strehl & Littman (2005).

Lemma 6. Assume that the reward function r satisfies ‖r‖2k ≤ Br, and that the noise nrt is σr-sub-Gaussian. If αt =
Br + σr

√
2(Γrt−1 + 1 + log(1/∆r)) and Cr = 8/ log(1 + σ−2

r ), then the following holds:

1

2

√
Crαt∗Γrt∗

t∗
≥ α1/2

t∗ σrt∗(s),

with probability at least 1−∆r.

Proof. The lemma follows from Lemma 4 in Chowdhury & Gopalan (2017).

D. ES2 algorithm
Lemma 7. Assume that Yt ⊆ X−t holds. Suppose that we obtain the optimal policy, π∗y on the basis of J∗Y(st, b

r
t , b

g
t ) =

maxst+1∈Yt
[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
. Then, for all t, the following holds:

st ∈ Yt =⇒ st+1 ∈ Yt.
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Proof. When Yt ⊆ X−t holds, we have

{s′ ∈ S+ | ∀s ∈ Yt : s′ = f(s, π∗y(a | s))} ⊆ {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗y(a | s))}
= Yt.

This means that the next state st+1 will be within Yt if the agent is in Yt and decides the action based on π∗y . Therefore, we
have the desired lemma.

Lemma 8. Assume that Yt ⊆ X−t holds, and let J∗Y(st, b
r
t , b

g
t ) be the value function calculated by SNO-MDP with the

ES2 algorithm. Then, for all st ∈ X−t , J∗Y(st, b
r
t , b

g
t ) satisfies the following equation:

J∗Y(st, b
r
t , b

g
t ) ≥ V ∗(st).

Proof. Consider a state st ∈ X−t and beliefs br and bg . Also, we define the function I as in (5). Then, the following chain
of the equations and inequalities holds:

J∗Y(st, b
r
t , b

g
t )− V ∗(st)

= max
st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
−max

at
[ I(st+1) · {r(st+1) + γV ∗M(st+1)} ]

= max
st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
− max
st+1∈X+

t

[ I(st+1) · {r(st+1) + γV ∗M(st+1)} ]

= max
st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
− max
st+1∈Yt

[ I(st+1) · {r(st+1) + γV ∗M(st+1)} ]

≥ min
st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )− I(st+1) · {r(st+1) + γV ∗M(st+1)}

]
≥ min

st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )− {r(st+1) + γV ∗M(st+1)}

]
= min

st+1∈Yt

[
Ut(st+1)− r(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )− γV ∗M(st+1)

]
.

The second and third lines follow from the definitions of I and V ∗M. The forth line follows from the definition of Y and the
assumption of Yt ⊆ X−t . The fifth line follows from Lemma 3.

Then, by Lemma 2, the following equation holds with probability at least 1−∆r:

min
st∈X−

t

[
J∗Y(st, b

r
t , b

g
t )− V ∗(st)}

]
≥ γ · min

st+1∈Yt

[
J∗Y(st+1, b

r
t , b

g
t )− V ∗M(st+1)

]
≥ γ2 · min

st+2∈Yt

[
J∗Y(st+2, b

r
t , b

g
t )− V ∗M(st+2)

]
.

The second line follows from Lemma 7. Repeatedly applying this equation proves the desired lemma. Therefore, for all
st ∈ X−t , we have

J∗Y(st, b
r
t , b

g
t ) ≥ V ∗(st).

E. Main Theoretical Results
Theorem 1. Assume that the safety function g satisfies ‖g‖2k ≤ Bg and is L-Lipschitz continuous. Also, assume that S0 6= ∅
and g(s) ≥ h for all s ∈ S0. Fix any εg > 0 and ∆g ∈ (0, 1). Suppose that we conduct the stage of “exploration of safety”

with the noise ngt being σg-sub-Gaussian, and that βt = Bg + σg

√
2(Γgt−1 + 1 + log(1/∆g)) until maxs∈Gt wt(s) < εg

is achieved. Finally, let t∗ be the smallest integer satisfying

t∗

βt∗Γgt∗
≥ Cg|R̄0(S0)|

ε2g
·D(M),

with Cg = 8/ log(1 + σ−2
g ). Then, the following statements jointly hold with probability at least 1−∆g:
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• ∀t ≥ 1, g(st) ≥ h,

• ∃t0 ≤ t∗, R̄εg (S0) ⊆ X−t0 ⊆ R̄0(S0).

Proof. This is an extension of Theorem 1 in Turchetta et al. (2016) to our settings, where t represents not the number of
samples but the number of actions.

Theorem 2. Assume that the reward function r satisfies ‖r‖2k ≤ Br, and that the noise is σr-sub-Gaussian. Let πt denote
the policy followed by SNO-MDP at time t, and let st and brt , b

g
t be the corresponding state and beliefs, respectively.

Let t∗ be the smallest integer satisfying t∗

βt∗Γg
t∗
≥ Cg|R̄0(S0)|

ε2g
D(M), and fix any ∆r ∈ (0, 1). Finally, set αt = Br +

σr
√

2(Γrt−1 + 1 + log(1/∆r)) and
ε∗V = Vmax · (∆g + Σrt∗/Rmax),

with Σrt∗ = 1
2

√
Crαt∗Γr

t∗
t∗ . Then, with high probability,

V πt(st, b
r
t , b

g
t ) ≥ V ∗(st)− ε∗V

— i.e., the algorithm is ε∗V -close to the optimal policy — for all but t∗ time steps, while guaranteeing safety with probability
at least 1−∆g .

Proof. Define r̃ as the reward function (including the exploration bonus) that is used by SNO-MDP. Let r̂ be a reward
function equal to r on Ω and equal to r̃ elsewhere. Furthermore, let π̃ be the policy followed by SNO-MDP at time t, that is,
the policy calculated on the basis of the current beliefs, (i.e., brt and bgt ) and the reward r̃. Finally, let AΩ be the event in
which π̃ escapes from Ω. Then,

V πt(r, st, b
r
t , b

g
t ) ≥ V π̃(r̂, st, b

r
t , b

g
t )− VmaxP (AΩ)

by Lemma 5. In addition, note that, for all t ≥ t∗, because r̂ and r̃ differ by at most α1/2
t∗ σrt∗ at each state,

|V π̃(r̂, st, b
r
t , b

g
t )− V π̃(r̃, st, b

r
t , b

g
t )| ≤

1

1− γ
· α1/2

t∗ σrt∗(s)

≤ Vmax/Rmax · Σrt∗ . (6)

For the above inequality, we used Lemma 6. Here, consider the case of Ω = X−t∗ . Once the safe region is fully explored,
P (AΩ) ≤ ∆g holds after t∗ time steps. Then, the following chain of equations and inequalities holds:

V πt(R, s, b) ≥ V π̃(R̂, s, b)− Vmax · P (AΩ)

= V π̃(R̂, s, b)− Vmax · P (AX−)

≥ V π̃(R̂, s, b)− Vmax ·∆g

≥ V π̃(R̃, s, b)− Vmax · (∆g + Σrt∗/Rmax)

= J∗X (R̃, s, b)− Vmax · (∆g + Σrt∗/Rmax)

≥ V ∗(R, s)− Vmax · (∆g + Σrt∗/Rmax).

In this derivation, the second line follows from the assumption of Ω = X−, the third line follows from P (AX−) ≤ ∆g , the
fourth line follows from (6), the fifth line follows from the fact that π̃ is precisely the optimal policy for R̃ and b, and the
final line follows from Lemma 4.

Theorem 3. Assume that the reward function r satisfies ‖r‖2k ≤ Br, and that the noise is σr-sub-Gaussian. Let πt
denote the policy followed by SNO-MDP with the the ES2 algorithm at time t, and let st and brt , b

g
t be the corresponding

state and beliefs, respectively. Let t̃ be the smallest integer for which (4) holds, and fix any ∆r ∈ (0, 1). Finally, set
αt = Br + σr

√
2(Γrt−1 + 1 + log(1/∆r)) and

ε̃V = Vmax · (∆g + Σrt̃/Rmax),
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with Σr
t̃

= 1
2

√
Crαt̃Γ

r
t̃

t̃
. Then, with high probability,

V πt(st, b
r
t , b

g
t ) ≥ V ∗(st)− ε̃V

— i.e., the algorithm is ε̃V -close to the optimal policy — for all but t̃ time steps while guaranteeing safety with probability at
least 1−∆g .

Proof. The proof of Theorem 3 is analogous to that of Theorem 2. Define r̃ as the reward function (including the exploration
bonus) that is used by SNO-MDP. Let r̂ be a reward function equal to r on Y and equal to r̃ elsewhere. Furthermore, let π̃
be the policy followed by SNO-MDP with the ES2 algorithm at time t, that is, the policy calculated on the basis of the
current beliefs, (i.e., brt and bgt ) and the reward r̃. Finally, let AY be the event in which π̃ escapes from Y . Then,

V πt(r, st, b
r
t , b

g
t ) ≥ V π̃(r̂, st, b

r
t , b

g
t )− VmaxP (AY)

by Lemma 5. In addition, note that, for all t ≥ t̃, because r̂ and r̃ differ by at most α1/2

t̃
σr
t̃

at each state,

|V π̃(r̂, st, b
r
t , b

g
t )− V π̃(r̃, st, b

r
t , b

g
t )| ≤

1

1− γ
· α1/2

t̃
σrt̃ (s)

≤ Vmax/Rmax · Σrt̃ . (7)

For the above inequalities, we used Lemma 6. Then, the following chain of equations and inequalities holds:

V πt(R, s, b) = V π̃(R̂, s, b)− Vmax · P (AY)

≥ V π̃(R̂, s, b)− Vmax ·∆g

≥ V π̃(R̃, s, b)− Vmax · (∆g + Σrt̃/Rmax)

= J∗Y(R̃, s, b)− Vmax · (∆g + Σrt̃/Rmax)

≥ V ∗(R, s)− Vmax · (∆g + Σrt̃/Rmax).

In this derivation, the second line follows from P (AY) ≤ ∆g, the third line follows from (7), the fourth line follows from
the fact that π̃ is precisely the optimal policy for R̃ and b, and the final line follows from Lemma 8.


