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Supplementary Material

A. Proof of Theorem 2
In the beginning, we define several auxiliary variables, which will be used in this proof.

Let z̄(m) = 1
n

∑n
i=1 zi(m) and ḡ(m) = 1

n

∑n
i=1 ĝi(m). Then, we define

F̄m+1(x) = ηz̄(m+ 1)>x + ‖x‖22

and x̄(m+ 1) = argmin
x∈Kδ

F̄m+1(x). Similarly, let x̂i(m) = argmin
x∈Kδ

ηzi(m)>x + ‖x‖22.

Moreover, we introduce the following two lemmas with respect to the theoretical guarantees of δ-smoothed function.

Lemma 8 (Lemma 2.6 in Hazan (2016)) Let f(x) : Rd → R be convex and G-Lipschitz over a convex and compact set
K ⊂ Rd. Then, f̂δ(x) is convex and G-Lipschitz over Kδ , and it holds that |f̂δ(x)− f(x)| ≤ δG for any x ∈ Kδ .

Lemma 9 (Lemma 4 in Garber & Kretzu (2019)) Let f(x) : Rd → R be convex and suppose that all subgradients of f are
upper bounded by G in `2-norm over a convex and compact set K ⊂ Rd. For any x ∈ Kδ , ‖∇f̂δ(x)‖2 ≤ G.

We first assume that for all i ∈ V and m = 1, · · · , B,

‖ĝi(m)‖2 ≤ β.

Let x∗ ∈ argmin
x∈K

∑T
t=1 ft(x) and x̃∗ = (1− δ/r)x∗. For any i, j ∈ V , we have

T∑
t=1

ft,j(yi(t))−
T∑
t=1

ft,j(x
∗) =

T∑
t=1

ft,j(xi(mt) + δui(t))−
T∑
t=1

ft,j(x
∗)

≤
T∑
t=1

(ft,j(xi(mt)) +G‖δui(t)‖2)−
T∑
t=1

(ft,j(x̃
∗)−G‖x̃∗ − x∗‖2)

≤
T∑
t=1

ft,j(xi(mt))−
T∑
t=1

ft,j(x̃
∗) + δGT +

δGRT

r

≤
T∑
t=1

(f̂t,j,δ(xi(mt)) + δG)−
T∑
t=1

(f̂t,j,δ(x̃
∗)− δG) + δGT +

δGRT

r

≤
T∑
t=1

(f̂t,j,δ(xi(mt))− f̂t,j,δ(x̃∗)) + 3δGT +
δGRT

r

(16)

where the first inequality is due to Assumption 1 and the third inequality is due to Lemma 8.

Then, similar to the proof of Theorem 1, we derive an upper bound of ‖xi(m)− x̄(m)‖2 by further introducing the following
lemma.

Lemma 10 Let x̂i(m) = argmin
x∈Kδ

Fm,i(x), for m ∈ [B]. Assume ‖ĝi(m)‖2 ≤ β for any i ∈ V and m ∈ [B], Algorithm 3

with ε ≤ 8R2 and L = 16R2

ε2 (ηαβ
√
ε+ η2α2β2) has

Fm,i(xi(m))− Fm,i(x̂i(m)) ≤ ε

for any i ∈ V and m ∈ [B], where α = 1+σ2(P )
1−σ2(P )

√
n+ 1.

Applying Lemma 2 with ‖ĝi(m)‖2 ≤ β, we have

‖zi(m)− z̄(m)‖2 ≤ α′β (17)
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where α′ =
√
n

1−σ2(P ) .

Furthermore, applying Lemma 3 with (17), we have

‖x̂i(m)− x̄(m)‖2 ≤ η‖zi(m)− z̄(m)‖2 ≤ ηα′β

which implies that

‖xi(m)− x̄(m)‖2 ≤‖xi(m)− x̂i(m)‖2 + ‖x̂i(m)− x̄(m)‖2

≤
√
Fm,i(xi(m))− Fm,i(x̂i(m)) + ηα′β

≤
√
ε+ ηα′β

(18)

where the second inequality is due to the fact Fm,i(x) is 2-strongly convex and (5), and the last inequality is due to Lemma
10.

For brevity, let ε′ =
√
ε+ ηα′β. Then, we can use (18) to bound the first term in the right side of (16) as

T∑
t=1

(f̂t,j,δ(xi(mt))− f̂t,j,δ(x̃∗))

≤
T∑
t=1

(f̂t,j,δ(x̄(mt))− f̂t,j,δ(x̃∗)) +

T∑
t=1

G‖x̄(mt)− xi(mt)‖2

≤
T∑
t=1

(f̂t,j,δ(xj(mt))− f̂t,j,δ(x̃∗)) +

T∑
t=1

G‖x̄(mt)− xj(mt)‖2 +GTε′

≤
T∑
t=1

∇f̂t,j,δ(xj(mt))
>(xj(mt)− x̃∗) + 2GTε′

=

T∑
t=1

∇f̂t,j,δ(xj(mt))
>(xj(mt)− x̄(mt)) +

T∑
t=1

∇f̂t,j,δ(xj(mt))
>(x̄(mt)− x̃∗) + 2GTε′

≤
T∑
t=1

‖∇f̂t,j,δ(xj(mt))‖2‖xj(mt)− x̄(mt)‖2 +

T∑
t=1

∇f̂t,j,δ(xj(mt))
>(x̄(mt)− x̃∗) + 2GTε′

≤
T∑
t=1

∇f̂t,j,δ(xj(mt))
>(x̄(mt)− x̃∗) +

T∑
t=1

G‖x̄(mt)− xj(mt)‖2 + 2GTε′

≤
T∑
t=1

∇f̂t,j,δ(xj(mt))
>(x̄(mt)− x̃∗) + 3GTε′

(19)

where the third inequality is due to the convexity of f̂t,j,δ(x) and the fifth inequality is due to Lemma 9.

Combining (16), (19) and ε′ =
√
ε+ ηα′β, for any i ∈ V , we have

T∑
t=1

n∑
j=1

ft,j(yi(t))−
T∑
t=1

n∑
j=1

ft,j(x
∗)

≤
T∑
t=1

n∑
j=1

∇f̂t,j,δ(xj(mt))
>(x̄(mt)− x̃∗) + 3δnGT +

δnGRT

r
+ 3nGT

(√
ε+ ηα′β

)
.

Moreover, to bound
∑T
t=1

∑n
j=1∇f̂t,j,δ(xj(mt))

>(x̄(mt)− x̃∗), we introduce the following lemma.

Lemma 11 Let z̄(m) = 1
n

∑n
i=1 zi(m) and ḡ(m) = 1

n

∑n
i=1 ĝi(m). Moreover, we define

F̄m+1(x) = ηz̄(m+ 1)>x + ‖x‖22
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and x̄(m + 1) = argmin
x∈Kδ

F̄m+1(x). Assume ‖ĝi(m)‖2 ≤ β for any i ∈ V and m ∈ [B], with probability at least 1 − γ,

Algorithm 3 has

T∑
t=1

n∑
j=1

∇f̂t,j,δ(xj(mt))
>(x̄(mt)− x̃∗) ≤ 2nR(KG+ β)

√
2B ln

1

γ
+
nR2

η
+ nηBβ2

where x̃∗ = (1− δ/r)x∗ and x∗ ∈ argmin
x∈K

∑T
t=1 ft(x).

According to Lemma 11, assume that ‖ĝi(m)‖2 ≤ β for any i ∈ V and m ∈ [B], with probability at least 1− γ, we have

T∑
t=1

n∑
j=1

ft,j(yi(t))−
T∑
t=1

n∑
j=1

ft,j(x
∗)

≤2nR(KG+ β)

√
2B ln

1

γ
+
nR2

η
+ nηBβ2 + 3δnGT +

δnGRT

r
+ 3nGT

(√
ε+ ηα′β

)
.

Substituting η = cR
αT dM

T−3/4, δ = cT−1/4, ε = 4R2T−1/2, β = αT
dM
√
K

δ + KG and K = T 1/2 into the above
inequality, we have

RT,i ≤2nR

(
2G+

αT dM

c

)√
2 ln

1

γ
T 3/4 +

αTndMR

c
T 3/4

+ n

(
R+

cRG

αT dM

)(
αT dM

c
+G

)
T 3/4

+ 3cnGT 3/4 +
cnGR

r
T 3/4 + 6nGRT 3/4

+ 3α′nG

(
R+

cRG

αT dM

)
T 3/4

≤O
(
αTT

3/4
)
.

Let A denote the event of ‖ĝi(m)‖2 ≤ β,∀i ∈ V,m ∈ [B]. Because we have used the event A as a fact, the above result
should be formulated as

Pr
(
RT,i ≤ O

(
αTT

3/4
)∣∣∣A) ≥ 1− γ. (20)

Furthermore, we introduce the following lemma with respect to the probability of the event A.

Lemma 12 For all i ∈ V and m ∈ [B], Algorithm 3 has

‖ĝi(m)‖2 ≤

(
1 +

√
8 ln

nB

γ

)
dM
√
K

δ
+KG

with probability at least 1− γ.

Then, applying Lemma 12 with B = T/K =
√
T , we have

Pr (A) ≥ 1− γ. (21)

Combining (20) with (21), we complete the proof.

B. Proof of Lemma 10
For m = 1, because xi(1) = x̂i(1) = argmin

x∈Kδ
‖x‖22, we have

F1,i(xi(1))− F1,i(x̂i(1)) = 0 ≤ ε. (22)



Projection-free Distributed Online Convex Optimization with Sublinear Communication Complexity

Then, for m = 2, we have

Fm,i(xi(m− 1))− Fm,i(x̂i(m))

=Fm−1,i(xi(m− 1)) + η(zi(m)− zi(m− 1))>xi(m− 1)

− Fm−1,i(x̂i(m))− η(zi(m)− zi(m− 1))>x̂i(m)

≤Fm−1,i(xi(m− 1))− Fm−1,i(x̂i(m− 1))

+ η(zi(m)− zi(m− 1))>(xi(m− 1)− x̂i(m))

≤ε+ η‖zi(m)− zi(m− 1)‖2‖xi(m− 1)− x̂i(m)‖2
≤ε+ η‖zi(m)− zi(m− 1)‖2‖xi(m− 1)− x̂i(m− 1)‖2

+ η‖zi(m)− zi(m− 1)‖2‖x̂i(m− 1)− x̂i(m)‖2

≤ε+ η‖zi(m)− zi(m− 1)‖2
√
Fm−1,i(xi(m− 1))− Fm−1,i(x̂i(m− 1))

+ η‖zi(m)− zi(m− 1)‖2‖x̂i(m− 1)− x̂i(m)‖2
≤ε+ η‖zi(m)− zi(m− 1)‖2

√
ε+ η‖zi(m)− zi(m− 1)‖2‖x̂i(m− 1)− x̂i(m)‖2

(23)

where the first inequality is due to x̂i(m − 1) = argmin
x∈Kδ

Fm−1,i(x) and the fourth inequality is due to that Fm−1(x) is

2-strongly convex and (5).

Moreover, because for each m = 1, · · · , B, Fm,i(x) is 2-strongly convex, we also have

‖x̂i(m− 1)− x̂i(m)‖22 ≤Fm,i(x̂i(m− 1))− Fm,i(x̂i(m))

=Fm−1,i(x̂i(m− 1)) + η(zi(m)− zi(m− 1))>x̂i(m− 1)

− Fm−1,i(x̂i(m))− η(zi(m)− zi(m− 1))>x̂i(m)

=Fm−1,i(x̂i(m− 1))− Fm−1,i(x̂i(m))

+ η(zi(m)− zi(m− 1))>(x̂i(m− 1)− x̂i(m))

≤η‖zi(m)− zi(m− 1)‖2‖x̂i(m− 1)− x̂i(m)‖2

which further implies that

‖x̂i(m− 1)− x̂i(m)‖2 ≤ η‖zi(m)− zi(m− 1)‖2. (24)

For m ∈ [B], applying Lemma 6 with ‖ĝi(m)‖2 ≤ β, we have

‖zi(m+ 1)− zi(m)‖2 ≤ αβ. (25)

Substituting (24) and (25) into (23), we have

Fm,i(xi(m− 1))− Fm,i(x̂i(m)) ≤ε+ η‖zi(m)− zi(m− 1)‖2
√
ε+ η2‖zi(m)− zi(m− 1)‖22

≤ε+ ηαβ
√
ε+ η2α2β2.

According to Algorithm 3, we have xi(m) = CGSC(Kδ, ε, L, Fm,i(x),xi(m − 1)). Because Fm,i(x) is 2-smooth and
2-strongly convex, ε ≤ 8R2 and L = 16R2

ε2 (ηαβ
√
ε+ η2α2β2), applying Lemma 7 with K′ = Kδ , we have

Fm,i(xi(m))− Fm,i(x̂i(m)) ≤ ε

for m = 2. By induction, we can complete the proof for m = 1, · · · , B.

C. Proof of Lemma 11
We first introduce the classical Azuma’s inequality (Azuma, 1967) for martingales in the following lemma.
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Lemma 13 Suppose D1, · · · , Dr is a martingale difference sequence and

|Dj | ≤ cj

almost surely. Then, we have

Pr

 r∑
j=1

Dj ≥ ∆

 ≤ exp

(
−∆2

2
∑r
j=1 c

2
j

)
.

To apply Lemma 13, with Tm = {(m− 1)K + 1, · · · ,mK}, we define

Dm =
∑
t∈Tm

n∑
j=1

(
∇f̂t,j,δ(xj(m))− gj(t)

)>
(x̄(m)− x̃∗)

=

n∑
j=1

(∑
t∈Tm

∇f̂t,j,δ(xj(m))− ĝj(m)

)>
(x̄(m)− x̃∗).

(26)

According to Algorithm 3 and Lemma 1, we have

E [Dm|x1(m), · · · ,xn(m), x̄(m)] = 0

which further implies that D1, · · · , DB is a martingale difference sequence with

|Dm| =

∣∣∣∣∣∣
n∑
j=1

(∑
t∈Tm

∇f̂t,j,δ(xj(m))− ĝj(m)

)>
(x̄(m)− x̃∗)

∣∣∣∣∣∣
≤

n∑
j=1

∥∥∥∥∥∑
t∈Tm

∇f̂t,j,δ(xj(m))− ĝj(m)

∥∥∥∥∥
2

‖(x̄(m)− x̃∗)‖2

≤ 2R

n∑
j=1

∥∥∥∥∥∑
t∈Tm

∇f̂t,j,δ(xj(m))

∥∥∥∥∥
2

+ ‖ĝj(m)‖2


≤ 2R

n∑
j=1

∑
t∈Tm

∥∥∥∇f̂t,j,δ(xj(m))
∥∥∥
2

+ 2nRβ

≤ 2nRKG+ 2nRβ

where the last inequality is due to Lemma 9.

Then, applying Lemma 13 with ∆ = 2nR(KG+ β)
√

2B ln 1
γ , with probability at least 1− γ, we have

B∑
m=1

Dm ≤ ∆ = 2nR(KG+ β)

√
2B ln

1

γ
. (27)

Additionally, combining (26) with ḡ(m) = 1
n

∑n
i=1 ĝi(m), we further have

T∑
t=1

n∑
j=1

∇f̂t,j,δ(xj(mt))
>(x̄(mt)− x̃∗) =

B∑
m=1

Dm + n

B∑
m=1

ḡ(m)>(x̄(m)− x̃∗). (28)

Therefore, we still need to bound
∑B
m=1 ḡ(m)>(x̄(m)− x̃∗). According to Assumption 4, it is easy to verify that

z̄(m+ 1) =
1

n

n∑
i=1

zi(m+ 1) =
1

n

n∑
i=1

∑
j∈Ni

Pijzj(m) + ĝi(m)

 = z̄(m) + ḡ(m).
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Moreover, according to the definition, we have

x̄(m+ 1) = argmin
x∈Kδ

F̄m+1(x) = argmin
x∈Kδ

ηz̄(m+ 1)>x + ‖x‖22.

So, applying Lemma 5 with the linear loss functions
{
ḡ(m)>x

}B
m=1

, the decision set K = Kδ and the regularizer

R(x) =
‖x‖22
η , we have

B∑
m=1

ḡ(m)>(x̄(m)− x̃∗) ≤ ‖x̃
∗‖22
η
− 0 +

B∑
m=1

ḡ(m)>(x̄(m)− x̄(m+ 1))

≤ R2

η
+

B∑
m=1

‖ḡ(m)‖2‖x̄(m)− x̄(m+ 1)‖2.

(29)

Then, it is easy to verify that F̄m+1(x) is 2-strongly convex, which implies that

‖x̄(m)− x̄(m+ 1)‖22 ≤ F̄m+1(x̄(m))− F̄m+1(x̄(m+ 1))

= F̄m(x̄(m)) + ηḡ(m)>x̄(m)− F̄m(x̄(m+ 1))− ηḡ(m)>x̄(m+ 1)

= F̄m(x̄(m))− F̄m(x̄(m+ 1)) + ηḡ(m)> (x̄(m)− x̄(m+ 1))

≤ η‖ḡ(m)‖2‖x̄(m)− x̄(m+ 1)‖2.

The above inequality can be simplified as

‖x̄(m)− x̄(m+ 1)‖2 ≤ η‖ḡ(m)‖2. (30)

Substituting (30) into (29), we have

B∑
m=1

ḡ(m)>(x̄(m)− x̃∗) ≤ R2

η
+ η

B∑
m=1

‖ḡ(m)‖22

=
R2

η
+ η

B∑
m=1

∥∥∥∥∥ 1

n

n∑
i=1

ĝi(m)

∥∥∥∥∥
2

2

≤ R2

η
+
η

n

B∑
m=1

n∑
i=1

‖ĝi(m)‖22

=
R2

η
+ ηBβ2.

(31)

Finally, substituting (27) and (31) into (28), we complete the proof.

D. Proof of Lemma 12
According to Algorithm 3, for any i ∈ V and m = 1, · · · , B, conditioned on xi(m),

gi((m− 1)K + 1), · · · ,gi(mK)

are K independent random vectors.

For brevity, for j = 1, · · · ,K, let
Xj = gi(tj)

where tj = (m− 1)K + j, and let N =
∥∥∥∑K

j=1Xj

∥∥∥
2
, Ŝj =

∑
k 6=j Xk and X̂j be the set

{X1, · · · , Xj−1, Xj+1, · · · , XK}.
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To bound N by using Lemma 13, we define X0 = ∅, Xj = {X1, · · · , Xj} for j ≥ 1 and a sequence D1, · · · , DK as

Dj = E[N |Xj ]− E[N |Xj−1].

It is not hard to verify that
E[Dj |Xj−1] = E[(E[N |Xj ]− E[N |Xj−1])|Xj−1] = 0

which implies that D1, · · · , DK is a martingale difference sequence.

Moreover, we have
|Dj | = |E[N |Xj ]− E[N |Xj−1]| ≤ sup

X̂j

∣∣∣N − E[N |X̂j ]
∣∣∣ . (32)

Using the triangle inequality, we have

N ≤ ‖Ŝj‖2 + ‖Xj‖2 and N ≥ ‖Ŝj‖2 − ‖Xj‖2. (33)

According to the Algorithm 3, we have

‖Xj‖2 =

∥∥∥∥dδ ftj ,i(yi(tj))ui(tj)
∥∥∥∥
2

≤ dM

δ
.

Therefore, combining (32) with (33) and the above inequality, we further have

|Dj | ≤ ‖Xj‖2 + E[‖Xj‖2|X̂j ] ≤
2dM

δ
. (34)

Let ∆ =
√
KdM
δ

√
8 ln nB

γ . Then, applying Lemma 13, with probability at least 1− γ
nB , we have

N − E[N ] = E[N |XK ]− E[N |X0] =

K∑
j=1

Dj ≤
√
KdM

δ

√
8 ln

nB

γ

which implies that

‖ĝi(m)‖2 = N ≤
√
KdM

δ

√
8 ln

nB

γ
+ E[N ] ≤

√
KdM

δ

√
8 ln

nB

γ
+
√
E[N2]. (35)

It is easy to provide an upper bound of E[N2] by following the proof of Lemma 5 in Garber & Kretzu (2019). We include
the detailed proof for completeness.

According to the definition, we have

E[N2] = E

E
 K∑
j=1

X>j Xj

∣∣∣∣∣∣xi(m)

+ E

E
 K∑
j=1

∑
k∈[K]∩k 6=j

X>j Xk

∣∣∣∣∣∣xi(m)


= E

E
 K∑
j=1

‖Xj‖22

∣∣∣∣∣∣xi(m)

+ E

 K∑
j=1

∑
k∈[K]∩k 6=j

E [Xj |xi(m)]
> E [Xk|xi(m)]


≤ E

E
 K∑
j=1

‖Xj‖22

∣∣∣∣∣∣xi(m)

+ E

 K∑
j=1

∑
k∈[K]∩k 6=j

‖E [Xj |xi(m)] ‖2‖E [Xk|xi(m)] ‖2


≤ K

(
dM

δ

)2

+ E

 K∑
j=1

∑
k∈[K]∩k 6=j

‖E [Xj |xi(m)] ‖2‖E [Xk|xi(m)] ‖2


≤ K

(
dM

δ

)2

+ (K2 −K)G2

≤ K
(
dM

δ

)2

+K2G2
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where the third inequality is due to Lemmas 1 and 9.

Combining the above inequality with (35), with probability at least 1− γ
nB , we have

‖ĝi(m)‖2 ≤

(
1 +

√
8 ln

nB

γ

)
dM
√
K

δ
+KG.

Finally, using the union bound, we complete the proof for all i ∈ V and m = 1, · · · , B.


