Supplementary Material

A. Proof of Theorem 2

In the beginning, we define several auxiliary variables, which will be used in this proof.
Let $\overline{\mathbf{z}}(m)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}(m)$ and $\overline{\mathbf{g}}(m)=\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbf{g}}_{i}(m)$. Then, we define

$$
\bar{F}_{m+1}(\mathbf{x})=\eta \overline{\mathbf{z}}(m+1)^{\top} \mathbf{x}+\|\mathbf{x}\|_{2}^{2}
$$

and $\overline{\mathbf{x}}(m+1)=\underset{\mathbf{x} \in \mathcal{K}_{\delta}}{\operatorname{argmin}} \bar{F}_{m+1}(\mathbf{x})$. Similarly, let $\widehat{\mathbf{x}}_{i}(m)=\underset{\mathbf{x} \in \mathcal{K}_{\delta}}{\operatorname{argmin}} \eta \mathbf{z}_{i}(m)^{\top} \mathbf{x}+\|\mathbf{x}\|_{2}^{2}$.
Moreover, we introduce the following two lemmas with respect to the theoretical guarantees of δ-smoothed function.
Lemma 8 (Lemma 2.6 in Hazan (2016)) Let $f(\mathbf{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and G-Lipschitz over a convex and compact set $\mathcal{K} \subset \mathbb{R}^{d}$. Then, $\widehat{f}_{\delta}(\mathbf{x})$ is convex and G-Lipschitz over \mathcal{K}_{δ}, and it holds that $\left|\widehat{f}_{\delta}(\mathbf{x})-f(\mathbf{x})\right| \leq \delta G$ for any $\mathbf{x} \in \mathcal{K}_{\delta}$.

Lemma 9 (Lemma 4 in Garber \& Kretzu (2019)) Let $f(\mathbf{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and suppose that all subgradients of f are upper bounded by G in ℓ_{2}-norm over a convex and compact set $\mathcal{K} \subset \mathbb{R}^{d}$. For any $\mathbf{x} \in \mathcal{K}_{\delta},\left\|\nabla \widehat{f}_{\delta}(\mathbf{x})\right\|_{2} \leq G$.

We first assume that for all $i \in V$ and $m=1, \cdots, B$,

$$
\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq \beta
$$

Let $\mathbf{x}^{*} \in \underset{\mathbf{x} \in \mathcal{K}}{\operatorname{argmin}} \sum_{t=1}^{T} f_{t}(\mathbf{x})$ and $\widetilde{\mathbf{x}}^{*}=(1-\delta / r) \mathbf{x}^{*}$. For any $i, j \in V$, we have

$$
\begin{align*}
\sum_{t=1}^{T} f_{t, j}\left(\mathbf{y}_{i}(t)\right)-\sum_{t=1}^{T} f_{t, j}\left(\mathbf{x}^{*}\right) & =\sum_{t=1}^{T} f_{t, j}\left(\mathbf{x}_{i}\left(m_{t}\right)+\delta \mathbf{u}_{i}(t)\right)-\sum_{t=1}^{T} f_{t, j}\left(\mathbf{x}^{*}\right) \\
& \leq \sum_{t=1}^{T}\left(f_{t, j}\left(\mathbf{x}_{i}\left(m_{t}\right)\right)+G\left\|\delta \mathbf{u}_{i}(t)\right\|_{2}\right)-\sum_{t=1}^{T}\left(f_{t, j}\left(\widetilde{\mathbf{x}}^{*}\right)-G\left\|\widetilde{\mathbf{x}}^{*}-\mathbf{x}^{*}\right\|_{2}\right) \\
& \leq \sum_{t=1}^{T} f_{t, j}\left(\mathbf{x}_{i}\left(m_{t}\right)\right)-\sum_{t=1}^{T} f_{t, j}\left(\widetilde{\mathbf{x}}^{*}\right)+\delta G T+\frac{\delta G R T}{r} \tag{16}\\
& \leq \sum_{t=1}^{T}\left(\widehat{f}_{t, j, \delta}\left(\mathbf{x}_{i}\left(m_{t}\right)\right)+\delta G\right)-\sum_{t=1}^{T}\left(\widehat{f}_{t, j, \delta}\left(\widetilde{\mathbf{x}}^{*}\right)-\delta G\right)+\delta G T+\frac{\delta G R T}{r} \\
& \leq \sum_{t=1}^{T}\left(\widehat{f}_{t, j, \delta}\left(\mathbf{x}_{i}\left(m_{t}\right)\right)-\widehat{f}_{t, j, \delta}\left(\widetilde{\mathbf{x}}^{*}\right)\right)+3 \delta G T+\frac{\delta G R T}{r}
\end{align*}
$$

where the first inequality is due to Assumption 1 and the third inequality is due to Lemma 8.
Then, similar to the proof of Theorem 1, we derive an upper bound of $\left\|\mathbf{x}_{i}(m)-\overline{\mathbf{x}}(m)\right\|_{2}$ by further introducing the following lemma.

Lemma $10 \operatorname{Let} \widehat{\mathbf{x}}_{i}(m)=\underset{\mathbf{x} \in \mathcal{K}_{\delta}}{\operatorname{argmin}} F_{m, i}(\mathbf{x})$, for $m \in[B]$. Assume $\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq \beta$ for any $i \in V$ and $m \in[B]$, Algorithm 3 with $\epsilon \leq 8 R^{2}$ and $L=\frac{16 R^{2}}{\epsilon^{2}}\left(\eta \alpha \beta \sqrt{\epsilon}+\eta^{2} \alpha^{2} \beta^{2}\right)$ has

$$
F_{m, i}\left(\mathbf{x}_{i}(m)\right)-F_{m, i}\left(\widehat{\mathbf{x}}_{i}(m)\right) \leq \epsilon
$$

for any $i \in V$ and $m \in[B]$, where $\alpha=\frac{1+\sigma_{2}(P)}{1-\sigma_{2}(P)} \sqrt{n}+1$.
Applying Lemma 2 with $\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq \beta$, we have

$$
\begin{equation*}
\left\|\mathbf{z}_{i}(m)-\overline{\mathbf{z}}(m)\right\|_{2} \leq \alpha^{\prime} \beta \tag{17}
\end{equation*}
$$

where $\alpha^{\prime}=\frac{\sqrt{n}}{1-\sigma_{2}(P)}$.
Furthermore, applying Lemma 3 with (17), we have

$$
\left\|\widehat{\mathbf{x}}_{i}(m)-\overline{\mathbf{x}}(m)\right\|_{2} \leq \eta\left\|\mathbf{z}_{i}(m)-\overline{\mathbf{z}}(m)\right\|_{2} \leq \eta \alpha^{\prime} \beta
$$

which implies that

$$
\begin{align*}
\left\|\mathbf{x}_{i}(m)-\overline{\mathbf{x}}(m)\right\|_{2} & \leq\left\|\mathbf{x}_{i}(m)-\widehat{\mathbf{x}}_{i}(m)\right\|_{2}+\left\|\widehat{\mathbf{x}}_{i}(m)-\overline{\mathbf{x}}(m)\right\|_{2} \\
& \leq \sqrt{F_{m, i}\left(\mathbf{x}_{i}(m)\right)-F_{m, i}\left(\widehat{\mathbf{x}}_{i}(m)\right)}+\eta \alpha^{\prime} \beta \tag{18}\\
& \leq \sqrt{\epsilon}+\eta \alpha^{\prime} \beta
\end{align*}
$$

where the second inequality is due to the fact $F_{m, i}(\mathbf{x})$ is 2-strongly convex and (5), and the last inequality is due to Lemma 10.

For brevity, let $\epsilon^{\prime}=\sqrt{\epsilon}+\eta \alpha^{\prime} \beta$. Then, we can use (18) to bound the first term in the right side of (16) as

$$
\begin{align*}
& \sum_{t=1}^{T}\left(\widehat{f}_{t, j, \delta}\left(\mathbf{x}_{i}\left(m_{t}\right)\right)-\widehat{f}_{t, j, \delta}\left(\widetilde{\mathbf{x}}^{*}\right)\right) \\
\leq & \sum_{t=1}^{T}\left(\widehat{f}_{t, j, \delta}\left(\overline{\mathbf{x}}\left(m_{t}\right)\right)-\widehat{f}_{t, j, \delta}\left(\widetilde{\mathbf{x}}^{*}\right)\right)+\sum_{t=1}^{T} G\left\|\overline{\mathbf{x}}\left(m_{t}\right)-\mathbf{x}_{i}\left(m_{t}\right)\right\|_{2} \\
\leq & \sum_{t=1}^{T}\left(\widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)-\widehat{f}_{t, j, \delta}\left(\widetilde{\mathbf{x}}^{*}\right)\right)+\sum_{t=1}^{T} G\left\|\overline{\mathbf{x}}\left(m_{t}\right)-\mathbf{x}_{j}\left(m_{t}\right)\right\|_{2}+G T \epsilon^{\prime} \\
\leq & \sum_{t=1}^{T} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\mathbf{x}_{j}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right)+2 G T \epsilon^{\prime} \tag{19}\\
= & \sum_{t=1}^{T} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\mathbf{x}_{j}\left(m_{t}\right)-\overline{\mathbf{x}}\left(m_{t}\right)\right)+\sum_{t=1}^{T} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\overline{\mathbf{x}}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right)+2 G T \epsilon^{\prime} \\
\leq & \sum_{t=1}^{T}\left\|\nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)\right\|_{2}\left\|\mathbf{x}_{j}\left(m_{t}\right)-\overline{\mathbf{x}}\left(m_{t}\right)\right\|_{2}+\sum_{t=1}^{T} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\overline{\mathbf{x}}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right)+2 G T \epsilon^{\prime} \\
\leq & \sum_{t=1}^{T} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\overline{\mathbf{x}}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right)+\sum_{t=1}^{T} G\left\|\overline{\mathbf{x}}\left(m_{t}\right)-\mathbf{x}_{j}\left(m_{t}\right)\right\|_{2}+2 G T \epsilon^{\prime} \\
\leq & \sum_{t=1}^{T} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\overline{\mathbf{x}}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right)+3 G T \epsilon^{\prime}
\end{align*}
$$

where the third inequality is due to the convexity of $\widehat{f}_{t, j, \delta}(\mathbf{x})$ and the fifth inequality is due to Lemma 9.
Combining (16), (19) and $\epsilon^{\prime}=\sqrt{\epsilon}+\eta \alpha^{\prime} \beta$, for any $i \in V$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} \sum_{j=1}^{n} f_{t, j}\left(\mathbf{y}_{i}(t)\right)-\sum_{t=1}^{T} \sum_{j=1}^{n} f_{t, j}\left(\mathbf{x}^{*}\right) \\
\leq & \sum_{t=1}^{T} \sum_{j=1}^{n} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\overline{\mathbf{x}}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right)+3 \delta n G T+\frac{\delta n G R T}{r}+3 n G T\left(\sqrt{\epsilon}+\eta \alpha^{\prime} \beta\right) .
\end{aligned}
$$

Moreover, to bound $\sum_{t=1}^{T} \sum_{j=1}^{n} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\overline{\mathbf{x}}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right)$, we introduce the following lemma.
Lemma 11 Let $\overline{\mathbf{z}}(m)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}(m)$ and $\overline{\mathbf{g}}(m)=\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbf{g}}_{i}(m)$. Moreover, we define

$$
\bar{F}_{m+1}(\mathbf{x})=\eta \overline{\mathbf{z}}(m+1)^{\top} \mathbf{x}+\|\mathbf{x}\|_{2}^{2}
$$

and $\overline{\mathbf{x}}(m+1)=\underset{\mathbf{x} \in \mathcal{K}_{\delta}}{\operatorname{argmin}} \bar{F}_{m+1}(\mathbf{x})$. Assume $\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq \beta$ for any $i \in V$ and $m \in[B]$, with probability at least $1-\gamma$, Algorithm 3 has

$$
\sum_{t=1}^{T} \sum_{j=1}^{n} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\overline{\mathbf{x}}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right) \leq 2 n R(K G+\beta) \sqrt{2 B \ln \frac{1}{\gamma}}+\frac{n R^{2}}{\eta}+n \eta B \beta^{2}
$$

where $\widetilde{\mathbf{x}}^{*}=(1-\delta / r) \mathbf{x}^{*}$ and $\mathbf{x}^{*} \in \underset{\mathbf{x} \in \mathcal{K}}{\operatorname{argmin}} \sum_{t=1}^{T} f_{t}(\mathbf{x})$.
According to Lemma 11 , assume that $\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq \beta$ for any $i \in V$ and $m \in[B]$, with probability at least $1-\gamma$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} \sum_{j=1}^{n} f_{t, j}\left(\mathbf{y}_{i}(t)\right)-\sum_{t=1}^{T} \sum_{j=1}^{n} f_{t, j}\left(\mathbf{x}^{*}\right) \\
\leq & 2 n R(K G+\beta) \sqrt{2 B \ln \frac{1}{\gamma}}+\frac{n R^{2}}{\eta}+n \eta B \beta^{2}+3 \delta n G T+\frac{\delta n G R T}{r}+3 n G T\left(\sqrt{\epsilon}+\eta \alpha^{\prime} \beta\right) .
\end{aligned}
$$

Substituting $\eta=\frac{c R}{\alpha_{T} d M} T^{-3 / 4}, \delta=c T^{-1 / 4}, \epsilon=4 R^{2} T^{-1 / 2}, \beta=\alpha_{T} \frac{d M \sqrt{K}}{\delta}+K G$ and $K=T^{1 / 2}$ into the above inequality, we have

$$
\begin{aligned}
R_{T, i} \leq & 2 n R\left(2 G+\frac{\alpha_{T} d M}{c}\right) \sqrt{2 \ln \frac{1}{\gamma}} T^{3 / 4}+\frac{\alpha_{T} n d M R}{c} T^{3 / 4} \\
& +n\left(R+\frac{c R G}{\alpha_{T} d M}\right)\left(\frac{\alpha_{T} d M}{c}+G\right) T^{3 / 4} \\
& +3 c n G T^{3 / 4}+\frac{c n G R}{r} T^{3 / 4}+6 n G R T^{3 / 4} \\
& +3 \alpha^{\prime} n G\left(R+\frac{c R G}{\alpha_{T} d M}\right) T^{3 / 4} \\
\leq & O\left(\alpha_{T} T^{3 / 4}\right)
\end{aligned}
$$

Let \mathcal{A} denote the event of $\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq \beta, \forall i \in V, m \in[B]$. Because we have used the event \mathcal{A} as a fact, the above result should be formulated as

$$
\begin{equation*}
\operatorname{Pr}\left(R_{T, i} \leq O\left(\alpha_{T} T^{3 / 4}\right) \mid \mathcal{A}\right) \geq 1-\gamma \tag{20}
\end{equation*}
$$

Furthermore, we introduce the following lemma with respect to the probability of the event \mathcal{A}.
Lemma 12 For all $i \in V$ and $m \in[B]$, Algorithm 3 has

$$
\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq\left(1+\sqrt{8 \ln \frac{n B}{\gamma}}\right) \frac{d M \sqrt{K}}{\delta}+K G
$$

with probability at least $1-\gamma$.
Then, applying Lemma 12 with $B=T / K=\sqrt{T}$, we have

$$
\begin{equation*}
\operatorname{Pr}(\mathcal{A}) \geq 1-\gamma \tag{21}
\end{equation*}
$$

Combining (20) with (21), we complete the proof.

B. Proof of Lemma 10

For $m=1$, because $\mathbf{x}_{i}(1)=\widehat{\mathbf{x}}_{i}(1)=\underset{\mathbf{x} \in \mathcal{K}_{\delta}}{\operatorname{argmin}}\|\mathbf{x}\|_{2}^{2}$, we have

$$
\begin{equation*}
F_{1, i}\left(\mathbf{x}_{i}(1)\right)-F_{1, i}\left(\widehat{\mathbf{x}}_{i}(1)\right)=0 \leq \epsilon . \tag{22}
\end{equation*}
$$

Then, for $m=2$, we have

$$
\begin{align*}
& F_{m, i}\left(\mathbf{x}_{i}(m-1)\right)-F_{m, i}\left(\widehat{\mathbf{x}}_{i}(m)\right) \\
= & F_{m-1, i}\left(\mathbf{x}_{i}(m-1)\right)+\eta\left(\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right)^{\top} \mathbf{x}_{i}(m-1) \\
& -F_{m-1, i}\left(\widehat{\mathbf{x}}_{i}(m)\right)-\eta\left(\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right)^{\top} \widehat{\mathbf{x}}_{i}(m) \\
\leq & F_{m-1, i}\left(\mathbf{x}_{i}(m-1)\right)-F_{m-1, i}\left(\widehat{\mathbf{x}}_{i}(m-1)\right) \\
& +\eta\left(\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right)^{\top}\left(\mathbf{x}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right) \\
\leq & \epsilon+\eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2}\left\|\mathbf{x}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right\|_{2} \tag{23}\\
\leq & \epsilon+\eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2}\left\|\mathbf{x}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m-1)\right\|_{2} \\
& +\eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2}\left\|\widehat{\mathbf{x}}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right\|_{2} \\
\leq & \epsilon+\eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2} \sqrt{F_{m-1, i}\left(\mathbf{x}_{i}(m-1)\right)-F_{m-1, i}\left(\widehat{\mathbf{x}}_{i}(m-1)\right)} \\
& +\eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2}\left\|\widehat{\mathbf{x}}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right\|_{2} \\
\leq & \epsilon+\eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2} \sqrt{\epsilon}+\eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2}\left\|\widehat{\mathbf{x}}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right\|_{2}
\end{align*}
$$

where the first inequality is due to $\widehat{\mathbf{x}}_{i}(m-1)=\underset{\mathbf{x} \in \mathcal{K}_{\delta}}{\operatorname{argmin}} F_{m-1, i}(\mathbf{x})$ and the fourth inequality is due to that $F_{m-1}(\mathbf{x})$ is 2 -strongly convex and (5).

Moreover, because for each $m=1, \cdots, B, F_{m, i}(\mathbf{x})$ is 2-strongly convex, we also have

$$
\begin{aligned}
\left\|\widehat{\mathbf{x}}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right\|_{2}^{2} \leq & F_{m, i}\left(\widehat{\mathbf{x}}_{i}(m-1)\right)-F_{m, i}\left(\widehat{\mathbf{x}}_{i}(m)\right) \\
= & F_{m-1, i}\left(\widehat{\mathbf{x}}_{i}(m-1)\right)+\eta\left(\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right)^{\top} \widehat{\mathbf{x}}_{i}(m-1) \\
& -F_{m-1, i}\left(\widehat{\mathbf{x}}_{i}(m)\right)-\eta\left(\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right)^{\top} \widehat{\mathbf{x}}_{i}(m) \\
= & F_{m-1, i}\left(\widehat{\mathbf{x}}_{i}(m-1)\right)-F_{m-1, i}\left(\widehat{\mathbf{x}}_{i}(m)\right) \\
& +\eta\left(\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right)^{\top}\left(\widehat{\mathbf{x}}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right) \\
\leq & \eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2}\left\|\widehat{\mathbf{x}}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right\|_{2}
\end{aligned}
$$

which further implies that

$$
\begin{equation*}
\left\|\widehat{\mathbf{x}}_{i}(m-1)-\widehat{\mathbf{x}}_{i}(m)\right\|_{2} \leq \eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2} \tag{24}
\end{equation*}
$$

For $m \in[B]$, applying Lemma 6 with $\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq \beta$, we have

$$
\begin{equation*}
\left\|\mathbf{z}_{i}(m+1)-\mathbf{z}_{i}(m)\right\|_{2} \leq \alpha \beta \tag{25}
\end{equation*}
$$

Substituting (24) and (25) into (23), we have

$$
\begin{aligned}
F_{m, i}\left(\mathbf{x}_{i}(m-1)\right)-F_{m, i}\left(\widehat{\mathbf{x}}_{i}(m)\right) & \leq \epsilon+\eta\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2} \sqrt{\epsilon}+\eta^{2}\left\|\mathbf{z}_{i}(m)-\mathbf{z}_{i}(m-1)\right\|_{2}^{2} \\
& \leq \epsilon+\eta \alpha \beta \sqrt{\epsilon}+\eta^{2} \alpha^{2} \beta^{2} .
\end{aligned}
$$

According to Algorithm 3, we have $\mathbf{x}_{i}(m)=\operatorname{CGSC}\left(\mathcal{K}_{\delta}, \epsilon, L, F_{m, i}(\mathbf{x}), \mathbf{x}_{i}(m-1)\right)$. Because $F_{m, i}(\mathbf{x})$ is 2-smooth and 2-strongly convex, $\epsilon \leq 8 R^{2}$ and $L=\frac{16 R^{2}}{\epsilon^{2}}\left(\eta \alpha \beta \sqrt{\epsilon}+\eta^{2} \alpha^{2} \beta^{2}\right)$, applying Lemma 7 with $\mathcal{K}^{\prime}=\mathcal{K}_{\delta}$, we have

$$
F_{m, i}\left(\mathbf{x}_{i}(m)\right)-F_{m, i}\left(\widehat{\mathbf{x}}_{i}(m)\right) \leq \epsilon
$$

for $m=2$. By induction, we can complete the proof for $m=1, \cdots, B$.

C. Proof of Lemma 11

We first introduce the classical Azuma's inequality (Azuma, 1967) for martingales in the following lemma.

Lemma 13 Suppose D_{1}, \cdots, D_{r} is a martingale difference sequence and

$$
\left|D_{j}\right| \leq c_{j}
$$

almost surely. Then, we have

$$
\operatorname{Pr}\left(\sum_{j=1}^{r} D_{j} \geq \Delta\right) \leq \exp \left(\frac{-\Delta^{2}}{2 \sum_{j=1}^{r} c_{j}^{2}}\right) .
$$

To apply Lemma 13 , with $\mathcal{T}_{m}=\{(m-1) K+1, \cdots, m K\}$, we define

$$
\begin{align*}
D_{m} & =\sum_{t \in \mathcal{T}_{m}} \sum_{j=1}^{n}\left(\nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}(m)\right)-\mathbf{g}_{j}(t)\right)^{\top}\left(\overline{\mathbf{x}}(m)-\widetilde{\mathbf{x}}^{*}\right) \\
& =\sum_{j=1}^{n}\left(\sum_{t \in \mathcal{T}_{m}} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}(m)\right)-\widehat{\mathbf{g}}_{j}(m)\right)^{\top}\left(\overline{\mathbf{x}}(m)-\widetilde{\mathbf{x}}^{*}\right) . \tag{26}
\end{align*}
$$

According to Algorithm 3 and Lemma 1, we have

$$
\mathbb{E}\left[D_{m} \mid \mathbf{x}_{1}(m), \cdots, \mathbf{x}_{n}(m), \overline{\mathbf{x}}(m)\right]=0
$$

which further implies that D_{1}, \cdots, D_{B} is a martingale difference sequence with

$$
\begin{aligned}
\left|D_{m}\right| & =\left|\sum_{j=1}^{n}\left(\sum_{t \in \mathcal{T}_{m}} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}(m)\right)-\widehat{\mathbf{g}}_{j}(m)\right)^{\top}\left(\overline{\mathbf{x}}(m)-\widetilde{\mathbf{x}}^{*}\right)\right| \\
& \leq \sum_{j=1}^{n}\left\|\sum_{t \in \mathcal{T}_{m}} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}(m)\right)-\widehat{\mathbf{g}}_{j}(m)\right\|_{2}\left\|\left(\overline{\mathbf{x}}(m)-\widetilde{\mathbf{x}}^{*}\right)\right\|_{2} \\
& \leq 2 R \sum_{j=1}^{n}\left(\left\|\sum_{t \in \mathcal{T}_{m}} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}(m)\right)\right\|_{2}+\left\|\widehat{\mathbf{g}}_{j}(m)\right\|_{2}\right) \\
& \leq 2 R \sum_{j=1}^{n} \sum_{t \in \mathcal{T}_{m}}\left\|\nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}(m)\right)\right\|_{2}+2 n R \beta \\
& \leq 2 n R K G+2 n R \beta
\end{aligned}
$$

where the last inequality is due to Lemma 9 .
Then, applying Lemma 13 with $\Delta=2 n R(K G+\beta) \sqrt{2 B \ln \frac{1}{\gamma}}$, with probability at least $1-\gamma$, we have

$$
\begin{equation*}
\sum_{m=1}^{B} D_{m} \leq \Delta=2 n R(K G+\beta) \sqrt{2 B \ln \frac{1}{\gamma}} \tag{27}
\end{equation*}
$$

Additionally, combining (26) with $\overline{\mathbf{g}}(m)=\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbf{g}}_{i}(m)$, we further have

$$
\begin{equation*}
\sum_{t=1}^{T} \sum_{j=1}^{n} \nabla \widehat{f}_{t, j, \delta}\left(\mathbf{x}_{j}\left(m_{t}\right)\right)^{\top}\left(\overline{\mathbf{x}}\left(m_{t}\right)-\widetilde{\mathbf{x}}^{*}\right)=\sum_{m=1}^{B} D_{m}+n \sum_{m=1}^{B} \overline{\mathbf{g}}(m)^{\top}\left(\overline{\mathbf{x}}(m)-\widetilde{\mathbf{x}}^{*}\right) . \tag{28}
\end{equation*}
$$

Therefore, we still need to bound $\sum_{m=1}^{B} \overline{\mathbf{g}}(m)^{\top}\left(\overline{\mathbf{x}}(m)-\widetilde{\mathbf{x}}^{*}\right)$. According to Assumption 4, it is easy to verify that

$$
\overline{\mathbf{z}}(m+1)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}(m+1)=\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j \in N_{i}} P_{i j} \mathbf{z}_{j}(m)+\widehat{\mathbf{g}}_{i}(m)\right)=\overline{\mathbf{z}}(m)+\overline{\mathbf{g}}(m) .
$$

Moreover, according to the definition, we have

$$
\overline{\mathbf{x}}(m+1)=\underset{\mathbf{x} \in \mathcal{K}_{\delta}}{\operatorname{argmin}} \bar{F}_{m+1}(\mathbf{x})=\underset{\mathbf{x} \in \mathcal{K}_{\delta}}{\operatorname{argmin}} \eta \overline{\mathbf{z}}(m+1)^{\top} \mathbf{x}+\|\mathbf{x}\|_{2}^{2} .
$$

So, applying Lemma 5 with the linear loss functions $\left\{\overline{\mathbf{g}}(m)^{\top} \mathbf{x}\right\}_{m=1}^{B}$, the decision set $\mathcal{K}=\mathcal{K}_{\delta}$ and the regularizer $\mathcal{R}(\mathbf{x})=\frac{\|\mathbf{x}\|_{2}^{2}}{\eta}$, we have

$$
\begin{align*}
\sum_{m=1}^{B} \overline{\mathbf{g}}(m)^{\top}\left(\overline{\mathbf{x}}(m)-\widetilde{\mathbf{x}}^{*}\right) & \leq \frac{\left\|\widetilde{\mathbf{x}}^{*}\right\|_{2}^{2}}{\eta}-0+\sum_{m=1}^{B} \overline{\mathbf{g}}(m)^{\top}(\overline{\mathbf{x}}(m)-\overline{\mathbf{x}}(m+1)) \tag{29}\\
& \leq \frac{R^{2}}{\eta}+\sum_{m=1}^{B}\|\overline{\mathbf{g}}(m)\|_{2}\|\overline{\mathbf{x}}(m)-\overline{\mathbf{x}}(m+1)\|_{2}
\end{align*}
$$

Then, it is easy to verify that $\bar{F}_{m+1}(\mathbf{x})$ is 2 -strongly convex, which implies that

$$
\begin{aligned}
\|\overline{\mathbf{x}}(m)-\overline{\mathbf{x}}(m+1)\|_{2}^{2} & \leq \bar{F}_{m+1}(\overline{\mathbf{x}}(m))-\bar{F}_{m+1}(\overline{\mathbf{x}}(m+1)) \\
& =\bar{F}_{m}(\overline{\mathbf{x}}(m))+\eta \overline{\mathbf{g}}(m)^{\top} \overline{\mathbf{x}}(m)-\bar{F}_{m}(\overline{\mathbf{x}}(m+1))-\eta \overline{\mathbf{g}}(m)^{\top} \overline{\mathbf{x}}(m+1) \\
& =\bar{F}_{m}(\overline{\mathbf{x}}(m))-\bar{F}_{m}(\overline{\mathbf{x}}(m+1))+\eta \overline{\mathbf{g}}(m)^{\top}(\overline{\mathbf{x}}(m)-\overline{\mathbf{x}}(m+1)) \\
& \leq \eta\|\overline{\mathbf{g}}(m)\|_{2}\|\overline{\mathbf{x}}(m)-\overline{\mathbf{x}}(m+1)\|_{2}
\end{aligned}
$$

The above inequality can be simplified as

$$
\begin{equation*}
\|\overline{\mathbf{x}}(m)-\overline{\mathbf{x}}(m+1)\|_{2} \leq \eta\|\overline{\mathbf{g}}(m)\|_{2} \tag{30}
\end{equation*}
$$

Substituting (30) into (29), we have

$$
\begin{align*}
\sum_{m=1}^{B} \overline{\mathbf{g}}(m)^{\top}\left(\overline{\mathbf{x}}(m)-\widetilde{\mathbf{x}}^{*}\right) & \leq \frac{R^{2}}{\eta}+\eta \sum_{m=1}^{B}\|\overline{\mathbf{g}}(m)\|_{2}^{2} \\
& =\frac{R^{2}}{\eta}+\eta \sum_{m=1}^{B}\left\|\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbf{g}}_{i}(m)\right\|_{2}^{2} \tag{31}\\
& \leq \frac{R^{2}}{\eta}+\frac{\eta}{n} \sum_{m=1}^{B} \sum_{i=1}^{n}\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2}^{2} \\
& =\frac{R^{2}}{\eta}+\eta B \beta^{2}
\end{align*}
$$

Finally, substituting (27) and (31) into (28), we complete the proof.

D. Proof of Lemma 12

According to Algorithm 3, for any $i \in V$ and $m=1, \cdots, B$, conditioned on $\mathbf{x}_{i}(m)$,

$$
\mathbf{g}_{i}((m-1) K+1), \cdots, \mathbf{g}_{i}(m K)
$$

are K independent random vectors.
For brevity, for $j=1, \cdots, K$, let

$$
X_{j}=\mathbf{g}_{i}\left(t_{j}\right)
$$

where $t_{j}=(m-1) K+j$, and let $N=\left\|\sum_{j=1}^{K} X_{j}\right\|_{2}, \widehat{S}_{j}=\sum_{k \neq j} X_{k}$ and $\widehat{\mathbf{X}}_{j}$ be the set

$$
\left\{X_{1}, \cdots, X_{j-1}, X_{j+1}, \cdots, X_{K}\right\}
$$

To bound N by using Lemma 13, we define $\mathbf{X}_{0}=\emptyset, \mathbf{X}_{j}=\left\{X_{1}, \cdots, X_{j}\right\}$ for $j \geq 1$ and a sequence D_{1}, \cdots, D_{K} as

$$
D_{j}=\mathbb{E}\left[N \mid \mathbf{X}_{j}\right]-\mathbb{E}\left[N \mid \mathbf{X}_{j-1}\right]
$$

It is not hard to verify that

$$
\mathbb{E}\left[D_{j} \mid \mathbf{X}_{j-1}\right]=\mathbb{E}\left[\left(\mathbb{E}\left[N \mid \mathbf{X}_{j}\right]-\mathbb{E}\left[N \mid \mathbf{X}_{j-1}\right]\right) \mid \mathbf{X}_{j-1}\right]=0
$$

which implies that D_{1}, \cdots, D_{K} is a martingale difference sequence.
Moreover, we have

$$
\begin{equation*}
\left|D_{j}\right|=\left|\mathbb{E}\left[N \mid \mathbf{X}_{j}\right]-\mathbb{E}\left[N \mid \mathbf{X}_{j-1}\right]\right| \leq \sup _{\widehat{\mathbf{x}}_{j}}\left|N-\mathbb{E}\left[N \mid \widehat{\mathbf{X}}_{j}\right]\right| \tag{32}
\end{equation*}
$$

Using the triangle inequality, we have

$$
\begin{equation*}
N \leq\left\|\widehat{S}_{j}\right\|_{2}+\left\|X_{j}\right\|_{2} \text { and } N \geq\left\|\widehat{S}_{j}\right\|_{2}-\left\|X_{j}\right\|_{2} \tag{33}
\end{equation*}
$$

According to the Algorithm 3, we have

$$
\left\|X_{j}\right\|_{2}=\left\|\frac{d}{\delta} f_{t_{j}, i}\left(\mathbf{y}_{i}\left(t_{j}\right)\right) \mathbf{u}_{i}\left(t_{j}\right)\right\|_{2} \leq \frac{d M}{\delta}
$$

Therefore, combining (32) with (33) and the above inequality, we further have

$$
\begin{equation*}
\left|D_{j}\right| \leq\left\|X_{j}\right\|_{2}+\mathbb{E}\left[\left\|X_{j}\right\|_{2} \mid \widehat{\mathbf{X}}_{j}\right] \leq \frac{2 d M}{\delta} \tag{34}
\end{equation*}
$$

Let $\Delta=\frac{\sqrt{K} d M}{\delta} \sqrt{8 \ln \frac{n B}{\gamma}}$. Then, applying Lemma 13 , with probability at least $1-\frac{\gamma}{n B}$, we have

$$
N-\mathbb{E}[N]=\mathbb{E}\left[N \mid \mathbf{X}_{K}\right]-\mathbb{E}\left[N \mid \mathbf{X}_{0}\right]=\sum_{j=1}^{K} D_{j} \leq \frac{\sqrt{K} d M}{\delta} \sqrt{8 \ln \frac{n B}{\gamma}}
$$

which implies that

$$
\begin{equation*}
\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2}=N \leq \frac{\sqrt{K} d M}{\delta} \sqrt{8 \ln \frac{n B}{\gamma}}+\mathbb{E}[N] \leq \frac{\sqrt{K} d M}{\delta} \sqrt{8 \ln \frac{n B}{\gamma}}+\sqrt{\mathbb{E}\left[N^{2}\right]} \tag{35}
\end{equation*}
$$

It is easy to provide an upper bound of $\mathbb{E}\left[N^{2}\right]$ by following the proof of Lemma 5 in Garber \& Kretzu (2019). We include the detailed proof for completeness.

According to the definition, we have

$$
\begin{aligned}
\mathbb{E}\left[N^{2}\right] & =\mathbb{E}\left[\mathbb{E}\left[\sum_{j=1}^{K} X_{j}^{\top} X_{j} \mid \mathbf{x}_{i}(m)\right]\right]+\mathbb{E}\left[\mathbb{E}\left[\sum_{j=1}^{K} \sum_{k \in[K] \cap k \neq j} X_{j}^{\top} X_{k} \mid \mathbf{x}_{i}(m)\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\sum_{j=1}^{K}\left\|X_{j}\right\|_{2}^{2} \mid \mathbf{x}_{i}(m)\right]\right]+\mathbb{E}\left[\sum_{j=1}^{K} \sum_{k \in[K] \cap k \neq j} \mathbb{E}\left[X_{j} \mid \mathbf{x}_{i}(m)\right]^{\top} \mathbb{E}\left[X_{k} \mid \mathbf{x}_{i}(m)\right]\right] \\
& \leq \mathbb{E}\left[\mathbb{E}\left[\sum_{j=1}^{K}\left\|X_{j}\right\|_{2}^{2} \mid \mathbf{x}_{i}(m)\right]\right]+\mathbb{E}\left[\sum_{j=1}^{K} \sum_{k \in[K] \cap k \neq j}\left\|\mathbb{E}\left[X_{j} \mid \mathbf{x}_{i}(m)\right]\right\|_{2}\left\|\mathbb{E}\left[X_{k} \mid \mathbf{x}_{i}(m)\right]\right\|_{2}\right] \\
& \leq K\left(\frac{d M}{\delta}\right)^{2}+\mathbb{E}\left[\sum_{j=1}^{K} \sum_{k \in[K] \cap k \neq j}\left\|\mathbb{E}\left[X_{j} \mid \mathbf{x}_{i}(m)\right]\right\|_{2}\left\|\mathbb{E}\left[X_{k} \mid \mathbf{x}_{i}(m)\right]\right\|_{2}\right] \\
& \leq K\left(\frac{d M}{\delta}\right)^{2}+\left(K^{2}-K\right) G^{2} \\
& \leq K\left(\frac{d M}{\delta}\right)^{2}+K^{2} G^{2}
\end{aligned}
$$

where the third inequality is due to Lemmas 1 and 9.
Combining the above inequality with (35), with probability at least $1-\frac{\gamma}{n B}$, we have

$$
\left\|\widehat{\mathbf{g}}_{i}(m)\right\|_{2} \leq\left(1+\sqrt{8 \ln \frac{n B}{\gamma}}\right) \frac{d M \sqrt{K}}{\delta}+K G
$$

Finally, using the union bound, we complete the proof for all $i \in V$ and $m=1, \cdots, B$.

