
Supplementary Materials

A. Some Basic Concepts
At first, we revisit some basics, which would help us understand properties of GPs and NPs. Fundamental concepts
include permutation invariant function (PIF), general stochastic function process (GSFP) etc. We stress the importance of
relationship disentanglement between GPs and NPs and motivations in approximating stochastic processes (SPs) in the main
passage.

Definition 1. Permutation Invariant Function. The f mapping a set of N M -dimension elements to a D-dimension vector
variable is said to be a permutation invariant function if:

f : ×Ni=1RMi → RD

x = [x1, . . . , xN] 7→ f =
[
f1(xπ(1:N)), . . . , fD(xπ(1:N))

] (A.1)

where xi is a M -dimensional vector, x1:N = [x1, x2, . . . , xN] is a set, operation π : [1, 2, . . . , N] 7→ [π1, π2, . . . , πN]
imposes a permutation over the order of elements in the set. The PIF suggests the image of the map is regardless of the
element order. Another related concept permutation equivariant function (PEF) keeps the order of elements in the output
consistent with that in the input under any permutation operation π.

f : ×Ni=1RMi → RN

xπ = (xπ1 , . . . , xπN) 7→ fπ = π ◦ f(x1:N)
(A.2)

The Definition 1 is important, since the exchangeable stochastic function process of our interest in this domain is intrinsically
a distribution over set function, and PIF plays as an inductive bias in preserving invariant statistics.

Permutation invariant functions are candidate functions for learning embeddings of a set or other order uncorrelated data
structure X1:N , and several examples can be listed in the following forms.

• Some structure with mean/summation over the output:

F (Xπ(1:N)) =
(1

N
ΣNi=1φ1(xi),

1

N
ΣNi=1φ2(xi), . . . ,

1

N
ΣNi=1φM (xi)

)
(A.3)

• Some structure with Maximum/Minimum/Top k-th operator over the output (Take maximum operator for example),
such as:

F (Xπ(1:N)) =
(
maxi∈{1,2,...,N}φ1(xi),maxi∈{1,2,...,N}φ2(xi), . . . ,maxi∈{1,2,...,N}φM (xi)

)
(A.4)

• Some structure with symmetric higher order polynomials or other functions with a symmetry bi-variate function φ:

F (Xπ(1:N)) =
(
Σi,j={1,2,...,N}φ1(xi, xj),Σi,j={1,2,...,N}φ2(xi, xj), . . . ,Σi,j={1,2,...,N}φM (xi, xj)

)
(A.5)

The invariant property is easy to be verified in these cases, and note that in all settings of NP family in this paper, Eq. (A.3)
is used only. For the bi-variate symmetric function in Eq. (A.5) or other more complicated operators would result in more
flexible functional translations, but additional computation is required as well. Some of the above mentioned transformations
are instantiations in DeepSet (Zaheer et al., 2017). Further investigations in this domain can be the exploitation of these
higher order permutation invariant neural network (Giles & Maxwell, 1987) into NPs since more correlations or higher order
statistics in the set can be mined for prediction. Additionally, Set Transformer (Lee et al., 2019) is believed to be powerful in
a permutation invariant representation.

Supplementary Materials

Definition 2. General Stochastic Function Process. Let X denote the Cartesian product of some intervals as the index
set and let dimension of observations d ∈ N. For each k ∈ N and any finite sequence of distinct indices x1, x2, .., xk ∈ X ,
let ν(x1, x2, .., xk) be some probability measure over (Rd)k. Suppose the used measure satisfies Kolmogorov Extension
Theorem, then there exists a probability space (Ω,F ,P), which induces a general stochastic function process (GSFP)
F : X ×Ω→ Rd, keeping the property ν(x1,x2,..,xk)(C1×C2× ...×Ck) = P(F(x1) ∈ C1,F(x2) ∈ C2, ...,F(xk) ∈ Ck)

for all xi ∈ X , d ∈ N and measurable sets Ci ∈ Rd.

The Definition 2 presents an important concept for stochastic processes in high-dimensional cases, and this is a general
description for the task to learn in mentioned related works. This includes but not limited to GPs and characterizes the
distribution over the stochastic function family.

B. Proof of Proposition 1
As we know, a Gaussian distribution is closed under marginalization, conditional probability computation and some other
trivial operations. Here the statistical parameter invariance towards the order of the context variables in per sample predictive
distribution would be demonstrated.

Given a multivariate Gaussian as the context X = [x1, x2, . . . , xN]T ∼ N (X; [µ1, µ2, . . . , µN]T ,Σ(x1, x2, . . . , xN)),
and for any permutation operation over the order π : [1, 2, . . . , N] → [π1, π2, . . . , πN], there exist a permutation matrix
Pπ = [eTπ1

, eTπ2
, . . . , eTπN], where only the πi-th position is one with the rest zeros. Naturally, it results in a permutation over

the random variables in coordinates.

Pπ[x1, x2, . . . , xN]T = [xπ1
, xπ2

, . . . , xπN]T = Xπ (B.1)

The random variable Xπ follows another multivariate Gaussian as Xπ ∼ N (Xπ;Pπµ, PπΣPTπ) = N (Xπ;µπ,Σπ). In an
elementwise way, we can rewrite the statistics in the form as follows.

E[xπi] = µπi

σπls = eTl Σπes = eTl PπΣPTπ es = eπlΣeπs = cov(xπl , xπs)
(B.2)

Notice in Eq. (B.2), the statistics are permutation equivariant now.

As the most important component in GPs, the predictive distribution conditioned on the context D = [X1:N , Y1:N] can be
analytically computed once GPs are well trained and result in some mean function mθ.

p(y∗|Y1:N) = N (y∗|µ̃, σ̃2)

µ̃ = mθ(x∗) + Σx∗,DΣ−1D,D(yD −mθ(xD))

σ̃2 = σ2
x∗,x∗

− Σx∗,DΣD,DΣD,x∗

(B.3)

Similarly, after imposing a permutation π over the order of elements in the context, we can compute the first and second
order of statistics between Dπ = [Xπ(1:N), Yπ(1:N)] and per target point [x∗, y∗].

Σx∗,Dπ = Σx∗,DP
T
π = PπΣD,x∗

Σ−1Dπ,Dπ = PπΣ−1D,DP
T
π

yDπ −mθ(xDπ) = Pπ(yD −mθ(xD))

(B.4)

Hence, with the property of orthogonality of permutation matrix Pπ, it is easy to verify the permutation invariance in
statistics for per target predictive distribution.

Σx∗,DΣ−1D,D(yD −mθ(xD)) = Σx∗,DπΣ−1Dπ,Dπ (yDπ −mθ(xDπ))

Σx∗,DΣD,DΣD,x∗ = Σx∗,DπΣDπ,DπΣDπ,x∗

(B.5)

To inherit such a property, NP employs a permutation invariant function in embeddings, and the predictive distribution
in NP models is invariant to the order of context points. Also, when there exist multiple target samples in the predictive
distribution, it is trivial that the statistics between the context and the target in a GP predictive distribution are permutation
equivariant in terms of the order of target variables.

Supplementary Materials

C. Proof of DSVNP as Exchangeable Stochastic Process
In the main passage, we formulate the generation of DSVNP as:

ρx1:N+M
(y1:N+M) =

∫∫ N+M∏
i=1

p(yi|zG, zi, xi)p(zi|xi, zG)p(zG)dz1:N+MdzG (C.1)

which indicates the scenario of any finite collection of random variables in y-space. Our intention is to show this induces
an exchangeable stochastic process. Equivalently, two conditions for Kolmogorov Extension Theorem are required to be
satisfied.

• Marginalization Consistency. Generally, when the integral is finite, the swap of orders in integration is allowed.
Without exception, Eq. (C.1) is assumed to be bounded with some appropriate distributions. Then, for the subset of
indexes {N + 1, N + 2, . . . , N +M} in random variables y, we have:∫

ρx1:N+M
(y1:N+M)dyN+1:N+M =

∫∫∫ N+M∏
i=1

p(yi|zG, zi, xi)

p(zi|xi, zG)p(zG)dz1:N+MdzGdyN+1:N+M

=

∫∫ N∏
i=1

p(yi|zG, zi, xi)p(zi|xi, zG)
[∫∫ N+M∏

i=N+1

p(yi|zG, zi, xi)p(zi|xi, zG)

dyN+1:N+MdzN+1:N+M

]
p(zG)dzGdz1:N

=

∫∫ N∏
i=1

p(yi|zG, zi, xi)p(zi|xi, zG)p(zG)dz1:NdzG = ρx1:N
(y1:N)

(C.2)

hence, the marginalization consistency is verified.

• Exchangeability Consistency. For any permutation π towards the index set {1, 2, . . . , N}, we have:

ρx1:N
(y1:N) =

∫∫ N∏
i=1

p(yi|zG, zi, xi)p(zi|xi, zG)p(zG)dz1:NdzG

=

∫∫ N∏
i=1

[
p(yπi |zG, zπi , xπi)p(zπi |xπi , zG)dzπi

]
p(zG)dzG

=

∫∫ N∏
i=1

p(yπi |zG, zπi , xπi)p(zπi |xπi , zG)p(zG)dzπ(1:N)
dzG = ρxπ(1:N)

(yπ(1:N))

(C.3)

hence, the exchangeability consistency is demonstrated as well.

With properties in Eq. (C.2) and (C.3), our proposed DSVNP is an exchangeable stochastic process in this case.

D. Derivation of Evidence Lower Bound with Doubly Stochastic Variational Inference
Akin to vanilla NPs, we assume the existence of a global latent variable zG, which captures summary statistics consistent
between the context [xC , yC] and the complete target [xT , yT]. With the involvement of an approximate distribution
q
(
zG|[xC , yC , xT , yT]

)
, we can naturally have an initial ELBO in the following form.

ln
[
p(y∗|xC , yC , x∗)

]
= ln

[
Eq(zG|xC ,yC ,xT ,yT)p(y∗|zG, x∗)

p(zG|xC , yC)

q(zG|xC , yC , xT , yT)

]
≥ Eq(zG|xC ,yC ,xT ,yT) ln

[
p(y∗|zG, x∗)

]
−DKL

[
q(zG|xC , yC , xT , yT) ‖ p(zG|xC , yC)

] (D.1)

Note that in Eq. (D.1), the conditional prior distribution p(zG|xC , yC) is intractable in practice and the approximation is
used here and such a prior is employed to infer the global latent variable in testing processes. For the approximate posterior

Supplementary Materials

q(zG|xC , yC , xT , yT), it makes use of the context and the full target information, and the sample [x∗, y∗] is just an instance
in the full target.

Further, by introducing a target specific local latent variable z∗, we can derive another ELBO for the prediction term in the
right side of Eq. (D.1) with the same trick.

Eq(zG|xC ,yC ,xT ,yT) ln
[
p(y∗|zG, x∗)

]
= Eq(zG|xC ,yC ,zT ,yT) ln

[
Eq(z∗|zG,[x∗,y∗])p(y∗|zG, z∗, x∗)

p(z∗|zG, x∗)
q(z∗|zG, [x∗, y∗])

]
≥

Eq(zG|xC ,yC ,xT ,yT)Eq(z∗|zG,[x∗,y∗]) ln
[
p(y∗|zG, z∗, x∗)

]
−Eq(zG|xC ,yC ,xT ,yT)

[
DKL[q(z∗|zG, [x∗, y∗]) ‖ p(z∗|zG, x∗)]

]
(D.2)

With the combination of Eq. (D.1) and (D.2), the final ELBO L as the right term in the following is formulated.

ln
[

p(y∗|xC , yC , x∗)︸ ︷︷ ︸
implicit data likelihood

]
≥ Eqφ1(zG)

Eqφ2(z∗)
ln[p(y∗|zG, z∗, x∗)︸ ︷︷ ︸

data likelihood

]

− Eqφ1(zG)
[DKL[q(z∗|zG, x∗, y∗) ‖ p(z∗|zG, x∗)︸ ︷︷ ︸

local prior

]
]
−DKL

[
q(zG|xC , yC , xT , yT) ‖ p(zG|xC , yC)︸ ︷︷ ︸

global prior

] (D.3)

The real data likelihood is generally implicit, and the ELBO is an approximate objective. Note that the conditional prior
distribution in Eq. (D.3), p(z∗|zG, x∗) functions as a local latent variable and is approximated with a Gaussian distribution
for the sake of easy implementation. With reparameterization trick, used as: zG = µφ1

+ ε1σφ1
and z∗ = µφ2

+ ε2σφ2
, we

can estimate the gradient towards the sample (x∗, y∗) analytically in Eq. (D.4), (D.5) and (D.6).

∂L
∂φ1

= Eε1∼N(0,I)Eε2∼N(0,I)
∂

∂φ1
ln
[
p(y∗|µφ1

+ ε1σφ1
, µφ2

+ ε2σφ2
, x∗)

]
−Eε1∼N(0,I)

∂

∂φ1
DKL

[
q(µφ2 + ε2σφ2 |µφ1 + ε1σφ1 , x∗, y∗) ‖ p(µφ2 + ε2σφ2 |µφ1 + ε1σφ1 , x∗)

]
−Eε1∼N(0,I)

∂

∂φ1
DKL

[
q(µφ1

+ ε1σφ1
|xC , yC , xT , yT) ‖ p(µφ1

+ ε1σφ1
|xC , yC)

] (D.4)

∂L
∂φ2

= Eε1∼N(0,I)Eε2∼N(0,I)
∂

∂φ2
ln
[
p(y∗|µφ1 + ε1σφ1 , µφ2 + ε2σφ2 , x∗)

]
−Eε1∼N(0,I)

∂

∂φ2
DKL

[
q(µφ2

+ ε2σφ2
|µφ1

+ ε1σφ1
, x∗, y∗) ‖ p(µφ2

+ ε2σφ2
|µφ1

+ ε1σφ1
, x∗)

] (D.5)

∂L
∂θ

= Eε1∼N(0,I)Eε2∼N(0,I)
∂

∂θ
ln
[
pθ(y∗|µφ1

+ ε1σφ1
, µφ2

+ ε2σφ2
, x∗)

]
(D.6)

E. Implementation Details in Experiments
Unless explicitly mentioned, otherwise we make of an one-step amortized transformation as dim lat 7→ [µ lat, lnσ lat] to
approximate parameters of the posterior in NP models. Especially for DSVNP, the approximate posterior of a local latent
variable is learned with the neural network transformation in the approximate posterior [dim lat, dim latx, dim laty] 7→
dim lat and in the piror network [dim lat, dim latx] 7→ dim lat. (For the sake of simplicity, these are not further
mentioned in tables of neural structures.) All models are trained with Adam (Kingma & Ba, 2014), implemented on Pytorch.

E.1. Synthetic Experiments

For synthetic experiments, all implementations resemble that in (Kim et al., 2019) 1. And the neural structures for NPs
are reported in Table (3), where dim lat is 128. Note that for the amortized transformations in encoders of NP, AttnNP

1https://github.com/deepmind/neural-processes

Supplementary Materials

Table 1. Pointwise Average Negative Log-likelihoods for 2000 realisations. Rows with J consider all data points including the context,
while those with P exclude the context points in statistics. (Figures in brackets are variances.)

PREDICTION CNP NP ATTNNP DSVNP

INTER(J) NAN -0.958(2E-5) -1.149(8E-6) -0.975(2E-5)
INTER(P) -0.802(1E-6) -0.949(2E-5) -1.141(6E-6) -0.970(2E-5)
EXTRA(J) NAN 8.192(7E1) 8.091(7E2) 4.203(9E0)
EXTRA(P) 1.764(1E-1) 8.573(8E1) 8.172(7E2) 4.303(1E1)

Table 2. Tested Entropies of Logit Probability on Classification Dataset. For rows of MNIST and CIFAR10, the second figures in columns
are classification accuracies. Both MC-Dropout and DSVNP are averaged with 100 Monte Carlo samples.

NN MC-DROPOUT CNP NP ATTNNP DSVNP

MNIST 0.011/0.990 0.009/0.993 0.019/0.993 0.010/0.991 0.012/0.989 0.027/0.990

FMNIST 0.385 0.735 0.711 0.434 0.337 0.956
KMNIST 0.282 0.438 0.497 0.322 0.294 0.545
GAUSSIAN 0.601 1.623 1.313 0.588 0.611 0.966
UNIFORM 0.330 1.739 0.862 0.094 0.220 0.375

CIFAR10 0.151/0.768 0.125/0.838 0.177/0.834 0.124/0.792 0.124/0.795 0.081/0.863

SVHN 0.402 0.407 0.459 0.315 0.269 0.326
RADEMACHER 0.021 0.062 0.079 0.078 0.010 0.146
GAUSSIAN 0.351 0.266 0.523 0.451 0.349 0.444
UNIFORM 0.334 0.217 0.499 0.463 0.261 0.374

and DSVNP, we use the network to learn the distribution parameters as: dim lat 7→ [µlat, lnσlat]. In training process, the
maximum number of iterations for all (C)NPs is 800k,, and the learning rate is 5e-4. For testing process, in interpolation
tasks, the maximum number of context points is 50, while that in extrapolation tasks is 200. Note that the coefficient for
KL divergence terms in (C)NPs is set 1 as default, but for DSVNP, we assign more penalty to KL divergence term of local
latent variable to avoid overfitting, where the weight is set β2 = 1000 for simplicity. Admittedly, more penalty to such term
reduces prediction accuracy and some dynamically tuning such parameter would bring some promotion in accuracy.

E.2. System Identification Experiments

In the Cart-Pole simulator, the input of the system is the vector of the coordinate/angle and their first order derivative and
a random action [xc, θ, x

′
c, θ
′, a], while the output is the transited state in the next time step [xc, θ, x

′
c, θ
′]. The force as

the action space ranges between [-10,10] N, where the action is a randomly selected force value to impose in the system.
For training dataset from 6 configurations of environments, we sample 100 state transition pairs for each configuration
as the maximum context points, and these context points work as identification of a specific configuration. The neural
architectures for CNP, NP, AttnNP and DSVNP refer to Table (4), and default parameters are listed in {dim latxy =
32, dim lat = 32, dim h = 400}. All neural network models are trained with the same learning rate 1e-3. The batch size
and the maximum number of epochs are 100. For AttnNP, we notice the generalization capability degrades with training
process, so early stopping is used. For DSVNP, the weight of regularization is set as {β1 = 1, β2 = 5}, while the KL
divergence term weight is fixed as 1 for NP and AttnNP.

E.3. Multi-output Regression Experiments

SARCOS records inverse dynamics for an anthropomorphic robot arm with seven degree freedoms, and the mission is to
predict 7 joint torques with 21-dimensional state space (7 joint positions, 7 joint velocities and 7 accelerations). WQ targets
at predicting the relative representation of plant and animal species in Slovenian rivers with some physical and chemical
water quality parameters. SCM20D is some supply chain time series dataset for many products, while SCFP records some
online click logs for several social issues.

Before data split, standardization over input and output space is operated on dataset, scaling each dimension of dataset in zero

Supplementary Materials

Table 3. Neural Network Structure of (C)NP Models for 1-D Stochastic Process. The transformations in the table are in linear form,
followed with ReLU activation mostly. And Dropout rate for DNN is defined as 0.5 for all transformation layers in Encoder. As for
AttnNP and DSVNP, the encoder network is doubled in the table since there exist some local variable for prediction.

NP MODELS ENCODER DECODER

CNP&NP [dim x, dim y] 7→ 32 7→ 32 7→ dim lat [dim x, dim lat] 7→ 2 ∗ dim y

ATTNNP&DSVNP [dim x, dim y] 7→ 32 7→ 32 7→ dim lat [dim x, 2 ∗ dim lat] 7→ 2 ∗ dim y

Table 4. Neural Network Structure of (C)NP Models in System Identification Tasks. The transformations in the table are linear, followed
with ReLU activation mostly. As for AttnNP and DSVNP, the encoder network is doubled in the table since there exist some local variable
for prediction. Here only dot product attention is used in AttnNP.

NP MODELS ENCODER DECODER

[dim x, dim y] 7→ dim latxy 7→ dim latxy︸ ︷︷ ︸
2 times

[dim x, dim lat] 7→ dim h 7→ dim h

CNP&NP dim latxy 7→ dim lat. dim h 7→ 2 ∗ dim y

[dim x, dim y] 7→ dim latxy 7→ dim latxy︸ ︷︷ ︸
2 times

[dim x, 2 ∗ dim lat] 7→ dim h 7→ dim h

ATTNNP&DSVNP dim x 7→ dim latx;
[dim latx, dim laty] 7→ dim lat. dim h 7→ 2 ∗ dim y

mean and unit variance 2. Such pre-processing is required to ensure the stability of training. Also, we find directly treating the
data likelihood term as some Gaussian and optimizing negative log likelihood of Gaussian to learn both mean and variance
do harm to the prediction, hence average MSE is selected as the objective. As for the variance estimation for uncertainty,
Monte Carlo estimation can be used. For all dataset, we employ the neural structure in Table (5), and default parameters in
Encoder and Decoder are in the list {dim h = 100, dim latx = 32, dim laty = 8, dim lat = 64}. The learning rate for
Adam is selected as 1e-3, the batch size for all dataset is 100, the maximum number of context points is randomly selected
during training, and the maximum epochs in training are up to the scale of dataset and convergence condition. Here the
maximum epochs are respectively 300 for SARCOS, 3000 for SCM20D and 5000 for WQ. For the testing process, 30
data points are randomly selected as the context for prediction in each batch. Also notice that, the hyper-parameters as the
weights of KL divergence term are the same in implementation as one without additional modification in this experiments.

E.4. Image Classification and O.O.D. Detection

The implementations of NP related models and Monte-Carlo Neural Network are quite similar. On MNIST task, the feature
extractor for images is taken as LeNet-like structure as [20, ’M’, 50, ’F’, ’500’]3, and the decoder is one-layer transformation.
On CIFAR10 task, the extractor is parameterized in VGG-style network as [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256,
256, ’M’, 512, 512, 512, 512, ’M’, 512, 512, 512, 512, ’M’]4, and the decoder is also one-layer transformation from latent
variable to label output in softmax form. Other parameters are in the list {dim latx = 32, dim laty = 64, dim lat = 64}
for MNIST and {dim latx = 32, dim laty = 64, dim lat = 128}. The labels for both are represented in one-hot encoding
way and then further transform to some continuous embedding. Batch size in training is 100 as default, the number of
context samples for NP related models is randomly selected no larger than 100 in each batch, while the optimizer Adam is
with learning rate 1e−3 for MNIST task and 5e−5 for CIFAR10 task. The maximum epochs for both is 100 in both cases,
and the size of all source and o.o.d. dataset is 10000. Dropout rates for MC-Dropout in encoder networks are respectively as
0.1 and 0.2 for LeNet-like one and VGG-like one. In the testing process, 100 samples from source dataset are randomly
selected as the context points.

2https://scikit-learn.org/stable/modules/preprocessing.html
3Numbers are dimensions of Out-Channel with kernel size 5, ’F’ is flattening operation, and each layer is followed with ReLU

activation.
4Numbers are dimensions of Out-Channel with kernel size 3 and padding 1 in each layer, followed with BatchNorm and ReLU

function, here M means max-polling operation.

Supplementary Materials

Table 5. Neural Network Structure of (C)NP Models in Multi-Output Regression Tasks. The transformations in the table are linear,
followed with ReLU activation mostly. And Dropout rate for DNN is defined as 0.01 for all transformation layers in Encoder. As for
AttnNP and DSVNP, the encoder network is doubled in the table since there exist some local variable for prediction. Here only dot
product attention is used in AttnNP.

NP MODELS ENCODER DECODER

DNN(MC-DROPOUT) dim x 7→ dim h 7→ dim h︸ ︷︷ ︸
2 times

dim lat 7→ dim h

dim h 7→ dim lat dim h 7→ dim y

dim x 7→ dim h 7→ dim h︸ ︷︷ ︸
2 times

7→ dim latx [dim latx, dim lat] 7→ dim h

CNP&NP dim y 7→ dim laty;
[dim latx, dim laty] 7→ dim lat. dim lat 7→ dim y

dim x 7→ dim h 7→ dim h︸ ︷︷ ︸
2 times

7→ dim latx [dim latx, 2 ∗ dim lat] 7→ dim h

ATTNNP&DSVNP dim y 7→ dim laty;
[dim latx, dim laty] 7→ dim lat. dim lat 7→ dim y

Table 6. Neural Network Structure of (C)NP Models in Image Classification Tasks. The transformations in the table are linear, followed
with ReLU activation mostly. And Dropout rate for DNN is defined as 0.5 for all transformation layers in Encoder. As for AttnNP and
DSVNP, the encoder network is doubled in the table since there exist some local variable for prediction.

NP MODELS ENCODER DECODER

DNN(MC-DROPOUT) dim x 7→ dim h︸ ︷︷ ︸
embedding net

dim lat 7→ dim y

dim h 7→ dim lat

dim x 7→ dim h︸ ︷︷ ︸
embedding net

7→ dim latx

CNP&NP dim y 7→ dim laty; [dim latx, dim lat] 7→ dim y
[dim latx, dim laty] 7→ dim lat.

dim x 7→ dim h︸ ︷︷ ︸
embedding net

7→ dim latx

ATTNNP&DSVNP dim y 7→ dim laty; [dim latx, 2 ∗ dim lat] 7→ dim y
[dim latx, dim laty] 7→ dim lat.

Before prediction process (estimating predictive entropies on both domain dataset and o.o.d dataset), images on MNIST are
normalized in interval [0, 1], those on CIFAR10 are standarized as well, and all o.o.d. dataset follow similar way as that on
MNIST or CIFAR10. More specifically, Rademacher dataset is generated in the way: place bi-nominal distribution with
probability 0.5 over in image shaped tensor and then minus 0.5 to ensure the zero-mean in statistics. Similar operation is
taken in uniform cases, while Gaussian o.o.d. dataset is from standard Normal distribution. All results are reported in Table
(2).

References
Giles, C. L. and Maxwell, T. Learning, invariance, and generalization in high-order neural networks. Applied optics, 26(23):

4972–4978, 1987.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive neural
processes. arXiv preprint arXiv:1901.05761, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International Conference on Machine Learning, pp. 3744–3753, 2019.

Supplementary Materials

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. Deep sets. In Advances in
neural information processing systems, pp. 3391–3401, 2017.

