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Abstract
In face recognition, designing margin-based (e.g.,
angular, additive, additive angular margins) soft-
max loss functions plays an important role in
learning discriminative features. However, these
hand-crafted heuristic methods are sub-optimal
because they require much effort to explore the
large design space. Recently, an AutoML for loss
function search method AM-LFS has been de-
rived, which leverages reinforcement learning to
search loss functions during the training process.
But its search space is complex and unstable that
hindering its superiority. In this paper, we first an-
alyze that the key to enhance the feature discrim-
ination is actually how to reduce the softmax
probability. We then design a unified formula-
tion for the current margin-based softmax losses.
Accordingly, we define a novel search space and
develop a reward-guided search method to auto-
matically obtain the best candidate. Experimental
results on a variety of face recognition bench-
marks have demonstrated the effectiveness of our
method over the state-of-the-art alternatives.

1. Introduction
Face recognition is a fundamental and of great practice
values task in the community of pattern recognition and
machine learning. The task of face recognition contains two
categories: face identification to classify a given face to a
specific identity, and face verification to determine whether
a pair of face images are of the same identity. In recent
years, the advanced face recognition methods (Simonyan &
Andrew, 2014; Guo et al., 2018; Wang et al., 2019b; Deng
et al., 2019) are built upon convolutional neural networks
(CNNs) and the learned high-level discriminative features
are adopted for evaluation. To train CNNs with discrimi-
native features, the loss function plays an important role.
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Generally, the CNNs are equipped with classification loss
functions (Liu et al., 2017; Wang et al., 2018f;e; 2019a; Yao
et al., 2018; 2017; Guo et al., 2020), metric learning loss
functions (Sun et al., 2014; Schroff et al., 2015) or both
(Sun et al., 2015; Wen et al., 2016; Zheng et al., 2018b).
Metric learning loss functions such as contrastive loss (Sun
et al., 2014) or triplet loss (Schroff et al., 2015) usually
suffer from high computational cost. To avoid this problem,
they require well-designed sample mining strategies. So
the performance is very sensitive to these strategies. In-
creasingly more researchers shift their attention to construct
deep face recognition models by re-designing the classical
classification loss functions.

Intuitively, face features are discriminative if their intra-
class compactness and inter-class separability are well max-
imized. However, as pointed out by (Wen et al., 2016; Liu
et al., 2017; Wang et al., 2018b; Deng et al., 2019), the clas-
sical softmax loss lacks the power of feature discrimination.
To address this issue, Wen et al. (Wen et al., 2016) develop
a center loss to learn centers for each identity to enhance
the intra-class compactness. Wang et al. (Wang et al., 2017)
and Ranjan et al. (Ranjan et al., 2017) propose to use a
scale parameter to control the temperature of softmax loss,
producing higher gradients to the well-separated samples
to reduce the intra-class variance. Recently, several margin-
based softmax loss functions (Liu et al., 2017; Chen et al.,
2018; Wang et al., 2018c;b; Deng et al., 2019) to increase the
feature margin between different classes have also been pro-
posed. Chen et al. (Chen et al., 2018) insert virtual classes
between different classes to enlarge the inter-class margins.
Liu et al. (Liu et al., 2017) introduce an angular margin (A-
Softmax) between the ground truth class and other classes to
encourage larger inter-class variance. However, it is usually
unstable and the optimal parameters need to be carefully
adjusted for different settings. To enhance the stability of
A-Softmax loss, Liang et al. (Liang et al., 2017) and Wang
et al. (Wang et al., 2018b;c) propose an additive margin
(AM-Softmax) loss to stabilize the optimization. Deng et
al. (Deng et al., 2019) develop an additive angular margin
(Arc-Softmax) loss, which has a clear geometric interpreta-
tion. However, despite great achievements have been made,
all of them are hand-crafted heuristic methods that rely on
great effort from experts to explore the large design space,
which is usually sub-optimal in practice.
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Recently, Li et al. (Li et al., 2019) propose an AutoML
for loss function search method (AM-LFS) from a hyper-
parameter optimization perspective. Specifically, they for-
mulate hyper-parameters of loss functions as a parameter-
ized probability distribution sampling and achieve promis-
ing results on several different vision tasks. However, they
attribute the success of margin-based softmax losses to the
relative significance of intra-class distance to inter-class
distance, which is not directly used to guide the design of
search space. In consequence, the search space is complex
and unstable, and is hard to obtain the best candidate.

To overcome the aforementioned shortcomings, including
hand-crafted heuristic methods and the AutoML one AM-
LFS, we try to analyze the success of margin-based softmax
losses and conclude that the key to enhance the feature dis-
crimination is to reduce the softmax probability. According
to this analysis, we develop a unified formulation and define
a novel search space. We also design a new reward-guided
schedule to search the optimal solution. To sum up, the main
contributions of this paper can be summarized as follows:

• We identify that for margin-based softmax losses, the
key to enhance the feature discrimination is actually
how to reduce the softmax probability. Based on
this understanding, we develop a unified formulation
for the prevalent margin-based softmax losses, which
involves only one parameter to be determined.

• We define a simple but very effective search space,
which can sufficiently guarantee the feature discrim-
iantion for face recognition. Accordingly, we design
a random and a reward-guided method to search the
best candidate. Moreover, for reward-guided one, we
develop an efficient optimization framework to dynam-
ically optimize the distribution for sampling of losses.

• We conduct extensive experiments on the face recog-
nition benchmarks, including LFW, SLLFW, CALFW,
CPLFW, AgeDB, CFP, RFW, MegaFace and Trillion-
Pairs, which have verified the superiority of our new
approach over the baseline Softmax loss, the hand-
crafted heuristic margin-based Softmax losses, and the
AutoML method AM-LFS. To allow more experimen-
tal verification, our code is available at http://www.
cbsr.ia.ac.cn/users/xiaobowang/.

2. Preliminary Knowledge
Softmax. Softmax loss is defined as the pipeline combi-
nation of last fully connected layer, softmax function and
cross-entropy loss. The detailed formulation is as follows:

L1 = − log
ew

T
y x

ew
T
y x +

∑K
k 6=y e

wT
k x
, (1)

where wk ∈ Rd is the k-th classier (k ∈ {1, 2, . . . ,K}) and
K is the number of classes. x ∈ Rd denotes the feature
belonging to the y-th class and d is the feature dimension.
In face recognition, the weights {w1,w2, . . . ,wK} and
the feature x of the last fully connected layer are usually
normalized and their magnitudes are replaced as a scale
parameter s (Wang et al., 2017; Deng et al., 2019; Wang
et al., 2019b). In consequence, given an input feature vector
x with its ground truth label y, the original softmax loss Eq.
(1) can be re-formulated as follows (Wang et al., 2017):

L2 = − log
es cos(θwy,x)

es cos(θwy,x) +
∑K
k 6=y e

s cos(θwk,x)
, (2)

where cos(θwk,x) = wT
k x is the cosine similarity and

θwk,x is the angle between wk and x. As pointed out by
a great many studies (Liu et al., 2016; 2017; Wang et al.,
2018b; Deng et al., 2019; Wang et al., 2019b), the learned
features with softmax loss are prone to be separable, rather
than to be discriminative for face recognition.

Margin-based Softmax. To enhance the feature discrimi-
nation for face recognition, several margin-based softmax
loss functions (Liu et al., 2017; Wang et al., 2018f;b; Deng
et al., 2019) have been proposed in recent years. In summary,
they can be defined as follows:

L3 = − log
esf(m,θwy,x)

esf(m,θwy,x) +
∑K
k 6=y e

s cos(θwk,x)
, (3)

where f(m, θwy,x) ≤ cos(θwy,x) is a carefully designed
margin function. Basically, f(m1, θwy,x) = cos(m1θwy,x)
is the motivation of A-Softmax loss (Liu et al., 2017), where
m1 ≥ 1 and is an integer. f(m2, θwy,x) = cos(θwy,x+m2)
with m2 > 0 is the Arc-Softmax loss (Deng et al., 2019).
f(m3, θwy,x) = cos(θwy,x) − m3 with m3 > 0 is the
AM-Softmax loss (Wang et al., 2018c;b). More generally,
the margin function can be summarized into a combined
version: f(m, θwy,x) = cos(m1θwy,x +m2)−m3.

AM-LFS. Previous methods relay on hand-crafted heuris-
tics that require much effort from experts to explore the large
design space. To address this issue, Li et al. (Li et al., 2019)
propose a new AutoML for Loss Function Search (AM-LFS)
to automatically determine the search space. Specifically,
the formulation of AM-LFS is written as follows:

L4 =−log
(
ai

escos(θwy,x)

escos(θwy,x) +
∑K
k 6=y e

scos(θwk,x)
+bi

)
, (4)

where ai and bi are the parameters of search space. i ∈
[0,M − 1] is the i-th pre-divided bin of the softmax prob-
ability. M is the number of divided bins. Moreover, to
consider different difficulty levels of examples, the parame-
ters ai and bi may be different because they are randomly
sampled for each bin. As a result, the search space can be
viewed as a candidate set with piece-wise linear functions.

http://www.cbsr.ia.ac.cn/users/xiaobowang/
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3. Problem Formulation
In this section, we first analyze the key to success of margin-
based softmax losses from a new viewpoint and integrate
them into a unified formulation. Based on this analysis,
we define a novel search space and accordingly develop a
random and a reward-guided loss function search method.

3.1. Analysis of Margin-based Softmax Loss

To begin with, let us retrospect the formulation of softmax
loss Eq. (2) and margin-based softmax losses Eq. (3). The
softmax probability p is defined as follows:

p =
es cos(θwy,x)

es cos(θwy,x) +
∑K
k 6=y e

s cos(θwk,x)
. (5)

And the margin-based softmax probability pm is formu-
lated as follows:

pm =
esf(m,θwy,x)

esf(m,θwy,x) +
∑K
k 6=y e

s cos(θwk,x)
. (6)

According to the above formulations Eqs. (5) and (6), we
can derive the following equation:

pm =
esf(m,θwy,x)

esf(m,θwy,x) +
∑K
k 6=y e

s cos(θwk,x)

=
esf(m,θwy,x)

esf(m,θwy,x) + ecos(θwy,x)(1− p)/p

=
1

p+ es[cos(θwy,x)−f(m,θwy,x)](1− p)
∗ p

=
1

ap+ (1− a)
∗ p = h(a, p) ∗ p,

(7)

where
a = 1− es[cos(θwy,x)−f(m,θwy,x)], (8)

is a modulating factor with non-positive values (a ≤ 0).
Some existing choices are summarized in Table 1. Par-
ticularly, when a = 0, the margin-based softmax proba-
bility pm becomes identical to the softmax probability p.
h(a, p) = 1

ap+(1−a) ∈ (0, 1] is a modulating function to re-
duce the softmax probability. Therefore, we can claim that,
no matter what kind of margin function f(m, θwy,x) has
been designed, the key to success of margin-based softmax
losses is how to reduce the softmax probability.

Compared to the piece-wise linear functions pm = aip+ bi
used in AM-LFS (Li et al., 2019), our pm = h(a, p) ∗ p
has several advantages: 1) Our pm = h(a, p) ∗ p is always
less than the softmax probability p while the piece-wise
linear functions pm = aip + bi are not. In other words,
the discriminability of AM-LFS is not guaranteed; 2) There
is only one parameter a to be searched in our formulation

Table 1. Some existing modulating factors including Softmax, A-
Softmax, AM-Softmax and Arc-Softmax, respectively.

Method Modulating Factor a

Softmax a = 0

A-Softmax a = 1− es[cos(θwy,x)−cos(mθwy,x)]

AM-Softmax a = 1− esm

Arc-Softmax a = 1− es[cos(θwy,x)−cos(θwy,x+m)]

while the AM-LFS needs search 2M parameters. The search
space of AM-LFS is complex and unstable; 3) Our method
has a reasonable range of the parameter (i.e., a ≤ 0) hence
facilitating the searching procedure, while the parameters
of AM-LFS ai and bi are without any constraints.

3.2. Random Search

Based on the above analysis, we can insert a simple modulat-
ing function h(a, p) = 1

ap+(1−a) into the original softmax
loss Eq. (2) to generate a unified formulation, which en-
courages the feature margin between different classes and
has the capability of feature discrimination. In consequence,
we define our search space as the choices of h(a, p), whose
impacts on the training procedure are decided by the modu-
lating factor a. The unified formulation is re-written as:

L5 = − log
(
h(a, p) ∗ p

)
, (9)

where the modulating function h(a, p) has a bounded range
(0, 1] and the modulating factor is a ≤ 0. To validate our
formulation Eq. (9), we first randomly set the modulating
factor a ≤ 0 at each training epoch and denote this simple
manner as Random-Softmax in this paper.

3.3. Reward-guided Search

The Random-Softmax can validate that the key to enhance
the feature discrimination is to reduce the softmax proba-
bility. But it may not be optimal because it is without any
guidance for training. To solve this problem, we propose
a hyper-parameter optimization method which samples B
hyper-parameters {a1, a2, . . . , aB} from a distribution at
each training epoch and use them to train the current model.
Specifically, we model the hyper-parameter a as the Gaus-
sian distribution, described by:

a ∼ N (µ, σ2), (10)

where µ is the mean or expectation of the distribution and
σ is its standard deviation. After training for one epoch, B
models are generated and the rewardsR(ai), i ∈ [1, B] of
these models are used to update the distribution of hyper-
parameter µ by REINFORCE (Williams, 1992) as follows:

µe+1 = µe + η
1

B

B∑
i=1

R(ai)∇a log(g(ai;µ, σ)), (11)
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Algorithm 1 Search-Softmax
Input: Training set St = {(xi, yi)}ni=1; Validation set
Sv; Initialized modelMw0

; Initialized distribution µ0;
Distribution learning rate η; Training epochs E.
for e = 1 to E do

1. Shuffle the training set St and sample B hyper-
parameters {a1, a2, . . . , aB} via Eq. (10);
2. Train the modelMwe

for one epoch separately with
the sampled hyper-parameters and get B candidate
models {Mw1

e
,Mw2

e
, . . . ,MwB

e
};

3. Calculate the reward for each candidate and get the
corresponding scores {R(a1),R(a2), . . . ,R(aB)};
4. Update the mean µe+1 by using Eq. (11);
5. Decide the index of model with the highest score
i = argmaxj∈[1,B]R(aj);
6. Broadcast the modelMwe+1 =Mwi

e
;

end for
Output: The modelMwE

where g(ai;µ, σ) is PDF of Gaussian distribution. We up-
date the distribution of a by Eq. (11) and search the best
model from these B candidates for the next epoch. We
denote this manner as Search-Softmax in this paper.

3.4. Optimization

In this part, we give the training procedure of our Search-
Softmax loss. Suppose we have a network model Mw

parameterized by w. The training set and validation set
are denoted as St = {(xi, yi)}ni=1 and Sv, respectively.
The target of our loss function search is to maximize the
model Mw’s rewards r(Mw∗(a),Sv) (e.g., accuracy) on
the validation set Sv with respect to the modulating factor a,
and the modelMw is obtained by minimizing the following
search loss:

max
a
R(a) = r(Mw∗(a),Sv)

s. t. w∗(a) = argmin
w

∑
(x,y)∈St

La(Mw(x), y). (12)

According to the works (Colson et al., 2007; Li et al., 2019),
the Eq. (12) refers to a standard bi-level optimization prob-
lem, where the modulating factor a is regarded as a hyper-
parameter. We train model parameters w which minimize
the training loss La (i.e., Eq. (9)) at the inner level, while
seeking a good loss function hyper-parameter a which re-
sults in a model parameter w∗ that maximizes the reward on
the validation set Sv at the outer level. The model with the
highest score is used in next epoch. At last, when the train-
ing converges, we directly take the model with the highest
score as the final model without any retraining. To sim-
plify the problem, we fix σ as a constant and optimize over
µ. For clarity, the whole scheme of our Search-Softmax is
summarized in Algorithm 1.

Table 2. Face datasets for training and test. (P) and (G) refer to the
probe and gallery set, respectively.

Datasets #Identities Images

Training CASIA-WebFace-R 9,879 0.43M
MS-Celeb-1M-v1c-R 72,690 3.28M

Test

LFW 5,749 13,233
SLLFW 5,749 13,233
CALFW 5,749 12,174
CPLFW 5,749 11,652
AgeDB 568 16,488

CFP 500 7,000
RFW 11,430 40,607

MegaFace 530 (P) 1M (G)
Trillion-Pairs 5,749 (P) 1.58M (G)

4. Experiments
4.1. Datasets

Training Data. This paper involves two popular training
datasets, including CASIA-WebFace (Yi et al., 2014) and
MS-Celeb-1M (Guo et al., 2016). Unfortunately, the origi-
nal CASIA-WebFace and MS-Celeb-1M datasets consist of
a great many face images with noisy labels. To be fair, here
we use the clean version of CASIA-WebFace (Zhao et al.,
2019; 2018) and MS-Celeb-1M-v1c (Deepglint, 2018) for
training.

Test Data. We use nine popular face recognition bench-
marks, including LFW (Huang et al., 2007), SLLFW(Deng
et al., 2017), CALFW (Zheng et al., 2017), CPLFW
(Zheng et al., 2018a), AgeDB (Moschoglou et al., 2017),
CFP (Sengupta et al., 2016), RFW (Wang et al., 2018d),
MegaFace (Kemelmacher-Shlizerman et al., 2016; Nech &
Kemelmacher-Shlizerman, 2017) and Trillion-Pairs (Deep-
glint, 2018), as the test data. For more details about these
test datasets, please see their references.

Dataset Overlap Removal. In face recognition, it is very
important to perform open-set evaluation, i.e., there should
be no overlapping identities between training set and test
set. To this end, we need to carefully remove the overlapped
identities between the employed training datasets and the
test datasets. For the overlap identities removal tool, we
use the publicly available script provided by (Wang et al.,
2018b) to check whether if two names (one of which is from
training set and the other comes from test set) are of the
same person. In consequence, we remove 696 identities
from the training set CASIA-WebFace and 14,718 identities
from MS-Celeb-1M-v1c. For clarity, we denote the refined
training datasets as CASIA-WebFace-R and MS-Celeb-1M-
v1c-R, respectively. Important statistics of all the involved
datasets are summarized in Table 2. To be rigorous, all the
experiments are based on the refined training sets.
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4.2. Experimental Settings

Data Processing. We detect the faces by adopting the Face-
Boxes detector (Zhang et al., 2017; 2019a) and localize
five landmarks (two eyes, nose tip and two mouth cor-
ners) through a simple 6-layer CNN (Feng et al., 2018; Liu
et al., 2019). The detected faces are cropped and resized to
144×144, and each pixel (ranged between [0,255]) in RGB
images is normalized by subtracting 127.5 and divided by
128. For all the training faces, they are horizontally flipped
with probability 0.5 for data augmentation.

CNN Architecture. In face recognition, there are many
kinds of network architectures (Liu et al., 2017; Wang et al.,
2018b;a; Deng et al., 2019). To be fair, the CNN architecture
should be same to test different loss functions. To to achieve
a good balance between computation and accuracy, we use
the SEResNet50-IR (Deng et al., 2019) as the backbone,
which is also publicly available at the website1. The output
of SEResNet50-IR gets a 512-dimension feature.

Training. Since our Search-Softmax loss is a bi-level op-
timization problem, our implementation settings can be
divided into inner level and outer level. In the inner level,
the model parameter w is optimized by stochastic gradient
descent (SGD) algorithm and is trained from scratch. The
total batch size is 128. The weight decay is set to 0.0005 and
the momentum is 0.9. The learning rate is initially 0.1. For
the CASIA-WebFace-R, we empirically divide the learning
rate by 10 at 9, 18, 26 epochs and finish the training process
at 30 epoch. For the MS-Celeb-1M-v1c-R, we divide the
learning rate by 10 at 4, 8, 10 epochs, and finish the training
process at 12 epoch. For all the compared methods, we run
their source codes and keep the same experimental settings.
In the outer level, we optimize the modulating factor a by
REINFORCE (Williams, 1992) with rewards (i.e., accuracy
on LFW) from a fixed number of sampled models. We nor-
malized the rewards returned by each sample to zero mean
and unit variance, which is set as the reward of each sample.
We use Adam optimizer with a learning rate of η = 0.05
and set σ = 0.2 for updating the distribution parameter µ.
After that, we broadcast the model parameter w∗ with the
highest reward for synchronization. All experiments in this
paper are implemented by Pytorch (Paszke et al., 2019).

Test. At test stage, only the original image features are
employed to compose the face representations. All the
reported results in this paper are evaluated by a single model,
without model ensemble or other fusion strategies.

For the evaluation metric, the cosine similarity is utilized.
We follow the unrestricted with labelled outside data proto-
col (Huang et al., 2007) to report the performance on LFW,
SLLFW, CALFW, CPLFW, AgeDB, CFP and RFW. On
Megaface and Trillion-Pairs Challenge, face identification

1https://github.com/wujiyang/Face_Pytorch

and verification are conducted by ranking and thresholding
the similarity scores. Specifically, for face identification,
the Cumulative Match Characteristics (CMC) curves are
adopted to evaluate the Rank-1 accuracy. For face verifica-
tion, the Receiver Operating Characteristic (ROC) curves
are adopted. The true positive rate (TPR) at low false accep-
tance rate (FAR) is emphasized since in real applications
false acceptance gives higher risks than false rejection.

For the compared methods, we compare our method with
the baseline Softmax loss (Softmax) and the hand-crafted
heuristic methods (including A-Softmax (Liu et al., 2017),
V-Softmax (Chen et al., 2018), AM-Softmax (Wang et al.,
2018c;b) and Arc-Softmax (Deng et al., 2019)) and one
AutoML for loss function search method (AM-LFS (Li
et al., 2019)). For all the hand-crafted heuristic competitors,
their source codes can be downloaded from the github or
authors’ webpages. While for AM-LFS, we try our best to
re-implement it since its source code is not publicly avail-
able yet. The corresponding parameter settings of each
competitor are mainly determined according to their pa-
per’s suggestions. Specifically, for V-Softmax, the number
of virtual classes is set as the batch size. For A-Softmax,
the margin parameter is set as m1 = 3. While for Arc-
Softmax and AM-Softmax, the margin parameters are set as
m2 = 0.5 and m3 = 0.35, respectively. The scale param-
eter s has already been discussed sufficiently in previous
works (Wang et al., 2018b;c; Zhang et al., 2019b). In this
paper, we empirically fixed it to 32 for all the methods.

Figure 1. From Left to Right: The derived modulating function
h(a, p) = 1

ap+(1−a) and the corresponding margin-based softmax
probability pm = h(a, p) ∗ p with different modulating factors a.

4.3. Ablation Study

Effect of reducing softmax probability. We study the
effect of reducing softmax probability by setting different
modulating factors a ≤ 0. Specifically, we manually sample
several values a = {0,−1,−10,−100,−1000,−10000}.
The corresponding modulating functions h(a, p) are shown
in the left sub-figure of Figure 1. From the curves, we can
see that h(a, p) is a monotonically increasing function with
the defined domain a ≤ 0 (i.e., the value of h(a, p) de-
creases as the value of a decreases). The function h(a, p) is
in the range (0, 1] hence makes pm = h(a, p)∗p always less

https://github.com/wujiyang/Face_Pytorch
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Table 3. Effect of reducing softmax probability by setting the mod-
ulating factor a ≤ 0. The training set is MS-Celeb-1M-v1c-R.

0 -1 -10 -100 -1000 -10000

LFW 99.53 99.56 99.66 99.71 99.61 99.71
SLLFW 98.78 98.91 99.20 99.28 99.36 99.36

Table 4. Effect of the number of sampled models by setting B. The
training set is MS-Celeb-1M-v1c-R.

B = 2 B = 4 B = 8 B = 16

LFW 99.79 99.78 99.79 99.78
SLLFW 99.31 99.56 99.53 99.58

than the softmax probability p. The corresponding margin-
based softmax probabilities pm = h(a, p) ∗ p are displayed
in the right sub-figure of Figure 3. Moreover, we also report
the performance on LFW and SLLFW in Table 3. From
the values, it can be concluded that reducing the softmax
probability (i.e., a < 0) achieves better performance than
the softmax probability (i.e., a = 0). Eventually, the exper-
iments have indicated that the key to enhance the feature
discrimination is to reduce the softmax probability and give
us a cue to design the search space for our Search-Softmax.

Effect of the number of sampled models. We investigate
the effect of the number of sampled models in the optimiza-
tion procedure by changing the parameter B in our Search-
Softmax loss. Note that it costs more computation resources
(GPUs) as B increases. We report the performance results
of different B values selected from {2, 4, 8, 16} in Table 4
in terms of accuracy on the LFW and SLLFW test sets. The
results show that when B is small (e.g., B = 2), the perfor-
mance is not satisfactory because the best candidate cannot
be obtained without enough samples. We also observe that
the performance exhibits saturation when we keep enlarging
B (e.g., B ≥ 4). For a trade-off between the performance
and the training efficiency, we choose to fix B as 4 during
training. For all the datasets, each sampled model is trained
with 2 P40 GPUs, so a total of 8 GPUs are used.

Convergence. Although the convergence of our method is
not easy to be theoretically analyzed, it would be intuitive to
see its empirical behavior. Here, we give the loss changes as
the number of epochs increases. From the curves in Figure
2, it can be observed that the loss changes of our Random-
Softmax is fluctuated because the modulating factor a ≤ 0 is
randomly selected at each epoch. Nevertheless, the overall
trend is converged. For our Search-Softmax, we can see
that it has a good behavior of convergence. The loss values
obviously decrease as the number of epochs increases and
the curve is much more smooth than the Random-Softmax.

Figure 2. Convergence of the proposed Random-Softmax and
Search-Softmax losses. From the curves, we can see that our
methods have a good behavior of convergence.

The reason behind this is that our Search-Softmax updates
the distribution parameter µ by the rewards of the sampled
models. The parameter µ is towards optimal distribution
thus the sampled a for each epoch is towards decreasing the
loss values to achieve better performance.

4.4. Results on LFW, SLLFW, CALFW, CPLFW,
AgeDB, CFP

Tables 5 and 6 provide the quantitative results of the com-
pared methods and our method on the LFW, SLLFW,
CALFW, CPLFW, AgeDB and CFP sets. The bold number
in each column represents the best result. For the accu-
racy on LFW, it is well-known that the protocol is typical
and easy and almost all the competitors can achieve sat-
urated performance. So the improvement of our Search-
Softmax loss is not quite large. On the test sets SLLFW,
CALFW, CPLFW, AgeDB and CFP, we can observe that
our Random-Softmax loss is better than the baseline Soft-
max loss and is comparable to most of the margin-based
softmax losses. Our Search-Softmax loss further boost the
performance and is better than the state-of-the-art alterna-
tives. Specifically, when training by the CASIA-WebFace-R
dataset, our Serach-Softmax achieves about 0.72% average
improvement over the best competitor AM-Softmax. When
training by the MS-Celeb-1M-v1c-R dataset, our Serach-
Softmax still outperforms the best competitor AM-Softmax
with 0.31% average improvement. The main reason is that
the candidates sampled from our proposed search space can
well approximate the margin-based loss functions, which
means their good properties can be sufficiently explored
and utilized during the training phase. Meanwhile, our opti-
mization strategy enables that the dynamic loss can guide
the model training of different epochs, which helps further
boost the discrimination power. Nevertheless, we can see
that the improvements of our method on these test sets are
not by a large margin. The reason is that the test protocol is
relatively easy and the performance of all the methods on
these test sets are near saturation. So there is an urgent need
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Table 5. Verification performance (%) of different methods on the test sets LFW, SLLFW, CALFW, CPLFW, AgeDB and CFP. The
training set is CASIA-WebFace-R.

Method LFW SLLFW CALFW CPLFW AgeDB CFP Avg.

Softmax 97.85 92.98 86.05 78.58 89.91 90.58 89.32
A-Softmax (Liu et al., 2017) 98.30 93.40 86.36 78.13 89.43 90.11 89.28
V-Softmax (Chen et al., 2018) 98.60 93.11 85.36 78.10 88.86 91.08 89.18
AM-Softmax (Wang et al., 2018b) 99.23 97.01 90.38 82.65 93.65 93.11 92.67
Arc-Softmax (Deng et al., 2019) 99.00 96.29 89.93 81.66 93.70 92.88 92.24
AM-LFS (Li et al., 2019) 98.88 95.23 88.14 80.63 91.41 92.67 91.16
Random-Softmax (Ours) 99.26 97.03 90.71 83.38 93.88 93.32 92.93
Search-Softmax (Ours) 99.15 97.68 90.98 84.21 94.15 94.21 93.39

Table 6. Verification performance (%) of different methods on the test sets LFW, SLLFW, CALFW, CPLFW, AgeDB and CFP. The
training set is MS-Celeb-1M-v1c-R.

Method LFW SLLFW CALFW CPLFW AgeDB CFP Avg.

Softmax 99.53 98.78 93.38 86.25 96.66 93.00 94.60
A-Softmax (Liu et al., 2017) 99.56 98.63 93.86 86.40 96.31 93.57 94.72
V-Softmax (Chen et al., 2018) 99.65 99.23 94.66 87.51 97.06 93.67 95.29
AM-Softmax (Wang et al., 2018b) 99.68 99.40 95.26 88.63 97.60 95.22 95.96
Arc-Softmax (Deng et al., 2019) 99.69 99.26 95.21 88.33 97.35 95.00 95.80
AM-LFS (Li et al., 2019) 99.68 99.01 94.18 86.85 96.70 93.70 95.02
Random-Softmax (Ours) 99.65 99.39 95.10 89.03 97.63 95.01 95.97
Search-Softmax (Ours) 99.78 99.56 95.40 89.50 97.75 95.64 96.27

Table 7. Verification performance (%) of different methods on the
test set RFW. The training set is CASIA-WebFace-R.

Method Caucasian Indian Asian African

Softmax 89.16 77.50 78.16 74.16
A-Softmax 88.16 79.33 79.33 77.50
V-Softmax 87.00 78.00 79.49 73.83
AM-Softmax 92.33 83.83 82.50 82.33
Arc-Softmax 91.49 83.66 81.00 80.66
AM-LFS 91.49 78.99 78.50 79.83
Random-Softmax 91.99 84.83 83.66 82.33
Search-Softmax 90.99 86.50 85.00 85.16

to test the performance of all the competitors on new test
sets or test with more complicated protocols.

4.5. Results on RFW

Firstly, we evaluate all the competitors on the recent pro-
posed new test set RFW (Wang et al., 2018d). RFW is a face
recognition benchmark for measuring racial bias, which con-
sists of four test subsets, namely Caucasian, Indian, Asian
and African. Tables 7 and 8 display the performance com-
parison of all the involved methods. From the values, we
can conclude that the results on the four subsets exhibit
the same trends, i.e., our method is better than the baseline
Softmax loss, the hand-crafted margin-based losses and the
recent AM-LFS in most of cases. Concretely, our Random-

Table 8. Verification performance (%) of different methods on the
test set RFW. The training set is MS-Celeb-1M-v1c-R.

Method Caucasian Indian Asian African

Softmax 97.50 90.49 91.49 87.33
A-Softmax 97.50 91.49 90.66 87.66
V-Softmax 96.33 93.16 93.50 91.49
Arc-Softmax 98.99 93.49 93.49 94.00
AM-Softmax 99.00 95.16 94.66 94.16
AM-LFS 91.49 93.49 92.33 89.99
Random-Softmax 98.83 96.16 93.66 93.33
Search-Softmax 99.00 96.17 94.67 95.33

Softmax obviously outperforms the Softmax loss by a large
margin, which reveals that reducing the softmax probability
will enhance the feature discrimination for face recognition.
Our reward-guided one Search-Softmax, which defines an
effective search space to well approximate the margin-based
loss functions and uses rewards to explicitly search the best
candidate at each epoch, is more likely to enhance the dis-
criminative feature learning. Therefore, our Search-Softmax
loss usually learns more discriminative face features and
achieves higher performance than previous alternatives.

4.6. Results on MegaFace and Trillion-Pairs

We then test all the competitors with more complicated pro-
tocols. Specifically, the identification (Id.) Rank-1 and the
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Table 9. Performance (%) of different loss functions on the test
sets MegaFace and Trillion-Pairs. The training set is CASIA-
WebFace-R.

Method MegaFace Trillion-Pairs
Id. Veri. Id. Veri.

Softmax 65.17 71.29 12.34 11.35
A-Softmax 64.48 71.98 11.83 11.11
V-Softmax 60.09 65.40 9.08 8.65
Arc-Softmax 79.91 84.57 21.32 20.97
AM-Softmax 82.86 87.33 25.26 24.66
AM-LFS 71.30 77.74 16.16 15.06
Random-Softmax 82.51 86.13 27.70 27.28
Search-Softmax 84.38 88.34 29.23 28.49

Table 10. Performance (%) of different loss functions on the test
sets MegaFace and Trillion-Pairs. The training set is MS-Celeb-
1M-v1c-R.

Method MegaFace Trillion-Pairs
Id. Veri. Id. Veri.

Softmax 91.10 92.30 50.34 46.63
A-Softmax 90.81 93.49 49.99 45.59
V-Softmax 94.45 95.25 63.85 61.17
Arc-Softmax 96.39 96.86 67.60 66.46
AM-Softmax 96.77 97.20 69.02 67.94
AM-LFS 92.51 93.80 54.85 52.76
Random-Softmax 96.15 96.81 68.73 68.03
Search-Softmax 96.97 97.84 70.41 68.67

verification (Veri.) TPR@FAR=1e-6 on MegaFace, the iden-
tification (Id.) TPR@FAR=1e-3 and the verification (Veri.)
TPR@FAR=1e-9 on Trillion-Pairs are reported in Tables 9
and 10, respectively. From the numbers, we observe that
our Search-Softmax achieves the best performance over the
baseline Softmax loss, the margin-based softmax losses, the
AutoML one AM-LFS and our naive Random-Softmax, on
both MegaFace and Trillion-Pairs Challenge. Specifically,
on MegaFace, for our proposed Search-Softmax, it obvi-
ously beats the best margin-based competitor AM-Softmax
loss by a large margin (about 1.5% on identification and
1.0% on verification when training by CASIA-WebFace-R,
and 0.2% and 0.6% when training by MS-Celeb-1M-v1c-R).
Compared to the AM-LFS, our Search-Softmax loss is also
better due to our new designed search space. In Figures 3
and 4, we draw both of the CMC curves to evaluate the per-
formance of face identification and the ROC curves to evalu-
ate the performance of face verification on MegaFace Set 1.
From the curves, we can see the similar trends at other mea-
sures. On Trillion-Pairs Challenge, we can observe that the
results exhibit the same trends that emerged on MegaFace
test set. Besides, the trends are more obvious. In particular,
we achieve about 4% improvements by CASIA-WebFace-R
and 1% improvements by MS-Celeb-1M-v1c-R at both the
identification and the verification. In these experiments, we

Figure 3. From Left to Right: CMC curves and ROC curves of
different loss functions with 1M distractors on MegaFace Set 1.
The training set is CASIA-WebFace-R.

Figure 4. From Left to Right: CMC curves and ROC curves of
different loss functions with 1M distractors on MegaFace Set 1.
The training set is MS-Celeb-1M-v1c-R.

have clearly demonstrated that our Search-Softmax loss is
superior for both the identification and verification tasks,
especially when the false positive rate is very low. To sum
up, by designing a simple but very effective search space
and using rewards to guide the discriminative learning, our
new developed Search-Softmax loss has shown its strong
generalization ability for face recognition.

5. Conclusion
This paper has summarized that the key to enhance the fea-
ture discrimination for face recognition is how to reduce
the softmax probability. Based on this knowledge, we de-
sign a unified formulation for the prevalent margin-based
softmax losses. Moreover, we define a new search space
to guarantee the feature discrimination. Accordingly, we
develop a random and a reward-guided loss function search
method to obtain the best candidate. An efficient optimiza-
tion framework for optimizing the distribution of search
space is also proposed. Extensive experiments on a variety
of face recognition benchmarks have validated the effective-
ness of our new approach over the baseline softmax loss, the
hand-crafted heuristic methods, i.e., margin-based softmax
losses, and the recent AutoML one AM-LFS.
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