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A. Omitted Proofs
Proof of Lemma 1. Before the proof, we recall the follow-
ing two lemmas

Lemma 1 ((Srebro et al., 2010)). If a non-negative func-
tion f : W 7→ R+ is β-smooth, then ∥∇f(w)∥22 ≤ 4βf(w)
for all w ∈ W .

subscribe

Lemma 2 ((Juditsky and Nemirovski, 2008)). Let
X1, X2, · · · , Xn be independent copies of a zero-mean ran-
dom vector X , then E∥ 1

n

∑n
i=1 Xi∥22 ≤ 1

nE∥X∥22.

Consider w = w∗. Then by Assumption 1, we have
∇L(w∗) = E[∇ℓ(w∗, x)] = 0. Thus, by Lemma 2 we
have

E∥∇L̂(w∗, D)∥22 ≤ 1

n
E[∥∇ℓ(w∗, x)∥22].

By Markov’s inequality, we get

Pr[∥∇L̂(w∗, D)∥22 ≤ 10

n
E[∥∇ℓ(w∗, x)∥22] ≥

9

10
.

Since n ≥ nα, by the assumption we have with probability
at least 5

6 that L̂(w,D) is α strongly convex. Thus, we get

α

2
∥wD − w∗∥22 ≤

− ⟨∇L̂(w∗, D), wD − w∗⟩+ L̂(wD, D)− L̂(w∗, D)

≤ ∥∇L̂(w∗, D)∥2∥wD − w∗∥2.

In total, with probability at least 3
4 , we have

∥wD − w∗∥2 ≤
√

40E∥∇ℓ(w∗, x)∥22
nα2

.
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Proof of Theorem 2. For each subsample set DSi
, by the

assumption we have its size n
m ≥ nα. Thus, Lemma

1 holds with n = n
m . That is, (1) holds with r =√

40mE∥∇ℓ(w∗,x)∥2
2

nα2 . Hence, by Theorem 1 we have

∥A(D)− w∗∥2 ≤ O(

√
dr

ϵ
) = O(

√
dmE∥∇ℓ(w∗, x)∥22

nϵ2α2
).

Since LD(w) is β-smooth and ∇LD(w
∗) = 0, we have

LD(A(D)) − LD(w
∗) ≤ β

2 ∥A(D) − w∗∥22. Also, by
Lemma 1 and the non-negative property we get

LD(A(D))− LD(w
∗) ≤ O((

β

α
)2
dm

nϵ2
LD(w

∗)).

Taking m = Θ̃(d
2

ϵ2 ), we get the proof.

Proof of Theorem 4. We first give the definition of zCDP
in (Bun and Steinke, 2016).

Definition 1. A randomized algorithm A : Xn 7→ Y is
ρ-zero Concentrated Differentially Private (zCDP) if for all
neighboring datasets D ∼ D′ and all α ∈ (1,∞),

Dα(A(D)∥A(D′)) ≤ ρα,

where Dα(P∥Q) = 1
α−1 logEX∼P [(

P (X)
Q(X) )

α−1] denotes
the Rényi divergence of order α.

We first convert (ϵ, δ)-DP to 1
2 ϵ̃

2-zCDP by using the follow-
ing lemma

Lemma 3 ((Bun and Steinke, 2016)). Let M : Xn 7→ Y
be a randomized algorithm. If M is 1

2ϵ
2-zCDP, it is ( 12ϵ

2 +

ϵ ·
√
2 log 1

δ , δ)-DP for all δ > 0.

Thus, it suffices to show that Algorithm 3 is 1
2 ϵ̃

2-zCDP. We
note that in each iteration and each coordinate, outputting
∇t−1,j will be 1

2
ϵ̃2

dT -zCDP by Theorem 3. Thus by the com-
position property of CDP, we know that it is 1

2 ϵ̃
2-zCDP.

Proof of Lemma 2. By assumption, we know that W
is closed and bounded, and hence it is compact. By
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(Lorentz, 1966) we know that its covering number with ra-
dius δ (will be specified later) is bounded from above as
Nδ ≤ ( 3∆2δ )

d. Denote the center of this δ-net as W̃ =
{w̃1, w̃2, · · · , w̃Nδ

}.

We first fix j ∈ [d] and consider |∇̃j(w)−∇jLD(w)| (we
omit the subscript t− 1). Then, we have

EZj
(∇̃j(w)−∇jLD(w))2 =

E
(
[Trimm(Dj(w))][a,b] +

1

s
St
[trim(·)][a,b]

(Dj(w)) · Zj

−∇jLD(w)
)2

≤ O(([Trimm(Dj(w))][a,b] −∇jLD(w))2

+ E(
1

s
St
[trim(·)][a,b]

(Dj(w)) · Zj)
2)

≤ O((Trimm(Dj(w))]−∇jLD(w))2

+ E(
1

s
St
[trimm(·)][a,b]

(D(w)) · Zj)
2), (1)

where Dj(w) = {∇jℓ(w, xi)}ni=1 and the last inequality
is due to the property that the truncation operation reduces
error.

Lemma 4. Let a ≤ µ ≤ b and X be a random variable.
Then

([X][a,b] − µ)2 ≤ (x− µ)2.

By the proof of Theorem 51 in (Bun and Steinke, 2019) and
the fact that ϵ = ϵ̃√

dT
, we have (m, a, b = O(1))

EZ(
1

s
St
[trimm(·)][a,b]

(Dj(w)) · Z)2 ≤ O(
τ2dT log n

nϵ̃2
),

(2)
where the O-notation omits the log σ2 and log(b − a) fac-
tors.

Next, we bound the first term of (1). Before showing that,
we first give the following estimation error on the trimming
operation for sub-exponential random variables.

Lemma 5. Suppose that xi are i.i.d υ-sub-exponential with
mean µ. Then, the following holds for any t ≥ 0,

P{ 1
n

n∑
i=1

xi − µ ≥ t} ≤ 2 exp(−nmin{ t

2v
,
t2

2v2
}),

and for any s ≥ 0,

P[max
i∈[n]

{|xi − µ|} ≥ s] ≤ 2n exp(−min{ s

2v
,
s2

2v2
}),

and for any m ≥ 0, under the above two events,

|Trimm({xi}ni=1)− µ| ≤ nt+ms

n− 2m
.

Proof of Lemma 5. Note that the first two inequalities are
just the Berstein’s Inequality. We only prove the last in-
equality.

Let T ⊂ [n] denote the set of all trimmed variables and
U = [n]\T . Then, we know that Trimm({xi}ni=1) =∑

i∈U xi

n−2m . Thus, we have

|
∑

i∈U xi

n− 2m
− µ| = 1

n− 2m
|
∑
i∈[n]

(xi − µ)−
∑
i∈T

(xi − µ)|

≤ 1

n− 2m
(|
∑
i∈[n]

(xi − µ)|+ |
∑
i∈T

(xi − µ)|). (3)

For the second term of (3), we have |
∑

i∈T (xi − µ)| ≤
mmax{|xi−µ|}. Plugging the inequalities into (3) we get
the proof.

Now, fix any w ∈ W , we know that there exists a w̃ which
is in the δ-net, i.e., ∥w̃ − w∥2 ≤ δ. Then by using the
Bernstein inequality and the sub-exponential assumption
and taking the union bound, we can see that with proba-
bility at least 1 − 2dNδ exp(−nmin{ t

2τ ,
t2

2τ2 }), we have
the following for all j ∈ [d] and w̃ ∈ W̃

|
n∑

i=1

∇jℓ(w̃, xi)

n
−∇jLD(w̃)| ≤ t, (4)

and with probability at least 1 −
2dnNδ exp(−min{ s

2τ ,
s2

2τ2 }), we get the following
for all j ∈ [d] and w̃ ∈ W̃ ,

max
i∈[n]

|∇jℓ(w̃, xi)−∇jLD(w̃)| ≤ s. (5)

By the βj-smoothness of ℓj(·, x) we have

|
n∑

i=1

∇jℓ(w̃, xi)

n
−

n∑
i=1

∇jℓ(w, xi)

n
| ≤ βj∥w−w̃∥2 ≤ βjδ,

(6)

|∇jLD(w̃)−∇jLD(w)| ≤ βjδ. (7)

Thus, we get

|
n∑

i=1

∇jℓ(w, xi)

n
−∇jLD(w)| ≤ t+ 2βjδ (8)

max
i∈[n]

|∇jℓ(w, xi)−∇jLD(w)| ≤ s+ 2βjδ. (9)

By Lemma 5 we have for all j ∈ [d] and w ∈ W

|Trimm(Dj(w))−∇jLD(w)| ≤
nt+ms

n− 2m
+

m+ n

n− 2m
2βjδ.
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Combining this with (2) we have the following with
probability at least 1 − 2dnNδ exp(−min{ s

2τ ,
s2

2τ2 }) −
2dNδ exp(−nmin{ t

2τ ,
t2

2τ2 }) for all j ∈ [d] and w̃ ∈ W̃ ,

E∥∇L̃(w,D)−∇LD(w)∥2 ≤

≤ O(
√
d
nt+ms

n− 2m
+ β̂δ

m+ n

n− 2m
+

τd
√
T log n√
nϵ̃

), (10)

where β̂ =
√
β2
1 + · · ·+ β2

d . Thus, let δ = 1
nβ̂

,m =

O(1),

t = O(τ max{ d
n
log(nβ̂∆),

√
d

n
log(nβ̂∆)}),

s = O(τd log(β̂n∆)).

Then, we get the proof.

Proof of Theorem 5. In the t-th iteration, let

ŵt = wt−1 − η∇L̃(wt−1, D).

Then, by the property of Euclidean project we have

∥wt − wt−1∥2 ≤ ∥ŵt − wt−1∥2.

Hence, we have

∥ŵt − w∗∥2 ≤ ∥wt−1 − η∇L̃(wt−1, D)− w∗∥2
≤ ∥wt−1 − η∇LD(w

t−1)− w∗∥2
+ η∥∇L̃(wt−1, D)− LD(w

t−1)∥2.

For the first term, by the co-coercivity of strongly convex
functions (Bubeck and others, 2015), we have

⟨wt−1 − w∗,∇LD(w
t−1)⟩ ≥ αβ

α+ β
∥wt−1 − w∗∥22

+
1

α+ β
∥∇LD(w

t−1)∥22.

Thus we obtain the following by taking η = 1
β

∥wt−1 − η∇LD(w
t−1)− w∗∥22 ≤

(1− 2α

α+ β
)∥wt−1 − w∗∥22 −

2

β(β + α)
∥∇LD(w

t−1)∥22

+
1

β2
∥∇LD(w

t−1)∥22

≤ (1− 2α

α+ β
)∥wt−1 − w∗∥22. (11)

Taking the expectation w.r.t Zt−1 and using the inequality
of

√
1− x ≤ 1− x

2 and Lemma 4, we have

E∥ŵt−w∗∥2 ≤ (1− α

α+ β
)E∥wt−1−w∗∥2+O(

τd
√
T log n

β
√
nϵ̃

).

(12)

That is,

E∥ŵT − w∗∥2 ≤ (1− α

β + α
)T∆+O(

β

α

τd
√
T log n

β
√
nϵ̃

).

Thus, taking T = O(βα log n), we have the following with
probability at least 1− Ω( 2dn logn

(1+nL̂∆)d
)

E∥ŵt − w∗∥2 ≤ O(

√
β

α

∆τd log n

α
√
nϵ̃

).

Since ϵ̃ =
√
2 log 1

δ + 2ϵ −
√

2 log 1
δ , by using the

Taylor series of the function
√
x+ 1 −

√
x, we have

ϵ̃ = O( ϵ√
log 1

δ

). Since LD(w) is β-smooth we have

ELD(w
T ) − LD(w

∗) ≤ β
2E∥w

T − w∗∥22. Thus we get
the proof.

Proof of Theorem 7. The proof of (ϵ, δ)-DP is the same
as in the proof of Theorem 3. The ℓ2 sensitivity is s

n
4
√
2

3 .

Next, we show the upper bound. The key lemma on the
uniform converge rate is the following. For convenience,
we denote by

ĝj(w) =
1

n

n∑
i=1

(∇jℓ(w, xi)
(
1−

∇2
jℓ(w, xi)

2s2β

)
−
∇3

jℓ(w, xi)

6s2
)+

1

n

n∑
i=1

C

(
∇jℓ(w, xi)

s
,
|∇jℓ(w, xi)|

s
√
β

)
and ĝj(w) = (ĝ1(w), ĝ2(w), · · · , ĝd(w)).

Lemma 6 (Lemma 8 in (Holland, 2019)). Under Assump-
tions 1 and 4, with probability at least 1− δ′, the following
holds for any w ∈ W ,

∥ĝj(w)− E[∇ℓ(w, x)]∥2 ≤ O(
βd

√
v log( 1

δ′∆n)
√
n

). (13)

Thus, we have the following lemma.

Lemma 7. Under the assumptions in the previous lemma,
the following holds with probability at least 1− 2δ′ for any
w ∈ W

∥gj(w)− E[∇ℓ(w, x)]∥2 ≤ O(
βd

√
vT log( 1

δ′∆n)
√
n
√
ϵ̃

).

(14)

The remaining proof is almost the same as the proof of
Theorem 5 by using Lemma 7. We omit it here for con-
venience.
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Proof of Theorem 8. Let ŵt denote the same notation as
in the proof of Theorem 5. Then, we have

∥ŵt − w∗∥2 ≤ ∥wt−1 − ηgt−1(wt−1)− w∗∥2
≤ ∥wt−1 − η∇LD(w

t−1)− w∗∥2
+ η∥gt−1(wt−1)− LD(w

t−1)∥2,

and

∥wt−1 − η∇LD(w
t−1)− w∗∥22 ≤ ∥wt−1 − w∗∥22

− 2η⟨∇LD(w
t−1), wt−1 − w∗⟩+ η2∥∇LD(w

t−1)∥22

≤ ∥wt−1 − w∗∥22 − 2η
1

β
∥∇LD(w

t−1)∥22 + η2∥∇LD(w
t−1)∥22

≤ ∥wt−1 − w∗∥22.

Thus by Lemma 7 we have with probability at least 1− 2δ′

∥ŵt − w∗∥2 ≤ ∥wt−1 − w∗∥2 +O(
d
√
vT log( 1

δ′∆n)
√
n
√
ϵ̃

).

(15)

Hence, when O(
dT
√

vT log( 1
δ′ ∆n)

√
n
√
ϵ̃

) ≤ ∥w0 − w∗∥2, we

have ŵt ∈ W for all t = {1, · · · , T} with probability at
least 1 − 2δ′T . This means that ŵt = wt for all t ∈ [T ].
Hence, we proceed to study the algorithm without projec-

tion. Let Dt = ∥w0 − w∗∥2 + O(
dt
√

vT log( 1
δ′ ∆n)

√
n
√
ϵ̃

) for
t = {0, 1, · · · , T}. By the smoothness of LD(·) we have

LD(w
t) ≤ LD(w

t−1) + ⟨∇LD(w
t−1), wt − wt−1⟩

+
β

2
∥wt − wt−1∥22

= LD(w
t−1) + η⟨∇LD(w

t−1),−gt−1(wt−1) +∇LD(w
t−1)

−∇LD(w
t−1)⟩+ η2

β

2
∥gt−1(wt−1)−∇LD(w

t−1)

+∇LD(w
t−1)∥22.

Since η = 1
β , by simple calculation we have

LD(w
t) ≤ LD(w

t−1)− 1

2β
∥∇L(w

t−1)∥2

+O(
βd2vT log( 1

δ′∆n)

nϵ̃
). (16)

Next we show the following lemma

Lemma 8. Assume that events (14) hold for all t =
{1, · · · , T}. Then there exists at least one t ∈ {1, · · · , T}
such that

LD(w
t)− LD(w

∗) ≤ 16D0χ,

where χ = O(
βd
√

vT log( 1
δ′ ∆n)

√
n
√
ϵ̃

).

Proof. We note that Dt ≤ 2D0 for all t = 0, · · · , T . Thus
we have

LD(w) − LD(w
∗) ≤ ∥∇LD(w)∥2∥w − w∗∥2,

which implies that

∥∇LD(w)∥2 ≥ LD(w)− LD(w
∗)

∥w − w∗∥2
.

Suppose that there exists t ∈ {1, 2, · · · , T} such that
∥∇LD(w

t)∥2 <
√
2χ. Then, we have LD(w

t) −
LD(w

∗) ≤ ∥∇LD(w
t)∥2∥wt − w∗∥2 ≤ 2

√
2D0χ.

Otherwise suppose that for all {1, 2, · · · , T},
∥∇LD(w

t) ≥
√
2χ. Then, we have the following

for all t ≤ T ,

LD(w
t)− LD(w

∗) ≤ LD(w
t−1)− LD(w

∗)

− 1

4β
∥∇LD(w

t−1)∥22

≤ LD(w
t−1)− LD(w

∗)− 1

4βD2
t−1

(LD(w
t−1)− LD(w

∗)).

Multiplying both side by [(LD(w
t) −

LD(w
∗))(LD(w

t−1)− LD(w
∗))]−1 we get

1

LD(wt)− LD(w∗)
≥ 1

LD(wt−1)− LD(w∗)

+
1

4βD2
t−1

LD(w
t−1)− LD(w

∗)

LD(wt)− LD(w∗)

≥ 1

LD(wt−1)− LD(w∗)
+

1

16βD2
0

,

where the last inequality is due to the facts that Dt ≤ 2D0

and LD(w
t−1) ≥ LD(w

t).

Hence, we have

1

LD(wT )− LD(w∗)
≥ T

16βD2
0

≥ 1

16D0χ
(17)

using the fact that T = βD0

χ , that is, T =

Õ
(

∥w0−w∗∥2
√
n
√
ϵ̃

d

) 2
3

. Thus χ = Õ(∆ d
2
3

(nϵ̃)
1
3
).

Next we show that

LD(w
T )− LD(w

∗) ≤ 16D0χ+
1

2β
χ2. (18)

Let t = t0 be the first time that LD(w
T ) − LD(w

∗) ≤
16D0χ. We show that for any t ≥ t0, LD(w

t)−LD(w
∗) ≤

16D0χ + 1
2βχ

2. If not, let t1 be the first time that
LD(w

t) − LD(w
∗) > 16D0χ + 1

2βχ
2. Then, we must

have LD(w
t1) > LD(w

t1−1). By (16) we have

LD(w
t1−1)− LD(w

∗) ≥

LD(w
t1)− LD(w

∗)− 1

2β
χ2 > 16D0χ.
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Thus, we have

∥∇LD(w
t1−1)∥2 ≥ LD(w

t1−1)− LD(w
∗)

∥wt1−1 − w∗∥2
≥ 8χ.

By (16) we have LD(w
t1) ≤ LD(w

t1−1) which is a contra-
diction.

B. Explicit Form of C(a, b) in (10)
We first define the following notations:

V− :=

√
2− a

b
, V+ =

√
2 + a

b
(19)

F− := Φ(−V−), F+ := Φ(−V+) (20)

E− := exp(−
V 2
−
2
), E+ := exp(−

V 2
+

2
), (21)

where Φ denotes the CDF of the standard Gaussian distri-
bution. Then

C(a, b) = T1 + T2 + · · ·+ T5, (22)

where

T1 :=
2
√
2

3
(F− − F+) (23)

T2 := −(a− a3

6
)(F− + F+) (24)

T3 :=
b√
2π

(1− a2

2
)(E+ − E−) (25)

T4 :=
ab2

2

(
F+ + F− +

1√
2π

(V+E+ + V−E−)

)
(26)

T5 :=
b3

6
√
2π

(
(2 + V 2

−)E− − (2 + V 2
+)E+

)
. (27)

C. Full description of experiments
For the synthetic data generation, we select the parameters
(µ = 1, σ = 1) and (µ = 0.2, σ = 0.2) for the Lognormal
and Loglogistic noises underlying, respectively. The step
size of Algorithm 3 is set to 0.01 where m = 0.05n. As for
algorithm 4, v = 5, failure probability δ′ = 0.01 and the
step size is set to 0.1. For the stochastic Algorithm 4, the
step size is selected as 1√

t
, where t is the iteration number.

Accordingly, w̄T =
∑T

t=1 wt

T . Corresponding to Fig. 1 and
2, we present the results which also mark the difference
between the best and the worst performances as follows.

To measure the impact from dimension on performances,
we fix n = 105 and test d varying from 10 to 50 through
stochastic Algorithm 4 and RGD under the same setup as
above. To test the impact from the size of the dataset, we
fix d = 20 and test n varying from 2× 104 to 105.
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Figure 1. Experiments on synthetic datasets. Figures (a) and (b) are for ridge regressions over synthetic data with Lognormal noises.
Figures (c) and (d) are for logistic regressions over synthetic data with Loglogistic noises.
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Figure 2. Experiments on UCI Adult dataset. Figures (a) and (b) are for ridge regressions. Figures (c) and (d) are for logistic regressions.


