
Learning Representations that Support Extrapolation

Taylor W. Webb 1 Zachary Dulberg 2 Steven M. Frankland 2 Alexander A. Petrov 3 Randall C. O’Reilly 4

Jonathan D. Cohen 2

Abstract
Extrapolation – the ability to make inferences that
go beyond the scope of one’s experiences – is a
hallmark of human intelligence. By contrast, the
generalization exhibited by contemporary neural
network algorithms is largely limited to interpola-
tion between data points in their training corpora.
In this paper, we consider the challenge of learn-
ing representations that support extrapolation. We
introduce a novel visual analogy benchmark that
allows the graded evaluation of extrapolation as
a function of distance from the convex domain
defined by the training data. We also introduce
a simple technique, temporal context normaliza-
tion, that encourages representations that empha-
size the relations between objects. We find that
this technique enables a significant improvement
in the ability to extrapolate, considerably outper-
forming a number of competitive techniques.

1. Introduction
The notion of interpolation is built into the assumptions
underlying most approaches to generalization in machine
learning, in which it is typically assumed that training and
test samples are drawn from the same distribution. There is
a widely shared view that human reasoning involves some-
thing more than this, that human reasoning involves the
ability to extrapolate (Lake et al., 2017; Marcus, 2001). In
particular, advocates of this view sometimes point to analog-
ical reasoning as a clear example of this capacity, in which
a reasoner extrapolates from knowledge in one domain to
make inferences in a different, often less familiar, domain,
based on common structure between the two (Gentner, 1983;

1Department of Psychology, University of California Los An-
geles, Los Angeles, CA 2Princeton Neuroscience Institute, Prince-
ton, NJ 3Department of Psychology, The Ohio State University,
Columbus, OH 4Department of Psychology, University of Cali-
fornia Davis, Davis, CA. Correspondence to: Taylor Webb <tay-
lor.w.webb@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Holyoak, 2012).

What are the prospects for capturing the capacity for ex-
trapolation in neural network algorithms? Recent results
have begun to address this question. In general, these re-
sults point to the conclusion that generalization in neural
networks, even in relatively sophisticated domains such as
relational or mathematical reasoning, is primarily limited
to interpolation between data points within the convex hull
(i.e. boundaries defined by the extremes) of the training set
(Lake & Baroni, 2017; Santoro et al., 2018; Hill et al., 2019;
Saxton et al., 2019).

It is worth considering how extrapolation is possible at all.
Consider, for example, theoretical physics, a spectacularly
successful paradigm of extrapolation. Physical laws discov-
ered on the basis of terrestrial observations make precise
quantitative predictions about phenomena in distant galax-
ies. This is possible because physical laws are characterized
by certain symmetries – that is, they are invariant with re-
spect to a group of transformations such as translation and
rotation in space, translation in time, etc. (Feynman, 1966).
As Feynman puts it, “nature uses only the longest threads to
weave her patterns, so each small piece of her fabric reveals
the organization of the entire tapestry” (Feynman, 1967).

In this work, we exploit the fact that many domains can
be characterized by such symmetries, and test the idea that
extrapolation can be enabled by encouraging the learning of
representations that reflect these symmetries. To do so, we
introduce temporal context normalization (TCN), a simple
inductive bias in which normalization is applied over a task-
relevant temporal window. This technique preserves local
relational information (e.g. the size of one object relative
to another), while introducing both scale and translation
invariance over the broader scope of the learned representa-
tional space. We hypothesized that the application of TCN
would improve the ability of neural networks to extrapolate.
Critically, when trained end-to-end, we expect the presence
of TCN to impose constraints on both upstream (computed
prior to a layer with normalization) and downstream (com-
puted post-normalization) representations, promoting the ac-
quisition of abstract representations that reflect task-relevant
symmetries.

In an effort to aid the systematic evaluation of extrapolation



Learning Representations that Support Extrapolation

in neural networks, we also introduce a novel benchmark,
the Visual Analogy Extrapolation Challenge (VAEC). This
dataset has two major advantages relative to other bench-
marks designed to evaluate extrapolation (Santoro et al.,
2018; Hill et al., 2019; Saxton et al., 2019). First, VAEC con-
tains generalization regimes that assess both translation and
scale invariance with respect to the underlying task space.
Second, in each regime, VAEC includes a progressive series
of evaluation modes, in which test data lie increasingly far
away from the convex hull defined by the training data, al-
lowing the graded evaluation of extrapolation as a function
of distance from the training domain. We evaluate TCN, in
addition to a number of competitive alternative techniques,
on the VAEC dataset, the visual analogy dataset from Hill
et al. (2019), and a dynamic object prediction task. We find
that TCN yields a considerable improvement in the ability
to extrapolate in each of these task domains.

2. Task Setup
2.1. VAEC Dataset

:: ::

A B C D

Figure 1. Example visual analogy problem.

The VAEC dataset consists of four-term visual analogy prob-
lems, constructed from objects that vary in brightness, size,
and location along the X and Y axes. Each object is ren-
dered as an RGB image of size 128 × 128 × 3, with each
color channel scaled to produce a minimum possible value
of 0 and maximum possible value of 1. Each image consists
of a green square on a gray background (R = 0.5, G = 0.5,
B = 0.5). Each of the four dimensions of variation consists
of a linear range tiled by 42 discrete levels, with bright-
ness spanning the range G ∈ [0.4 · · · 1.0], size spanning the
range width ∈ [3 · · · 85], and location spanning the range
center ∈ [43 · · · 84] along both X and Y axes.

The dataset contains proportional analogy problems of the
form A : B :: C : D, in which all four terms of a given
problem vary along one stimulus dimension, and in which
both the distance and direction along that dimension are
the same for A and B as they are for C and D (Figure 1).
Each analogy problem also contains a set of 6 foil objects
F1 through F6, each of which take the same values as the
terms of the analogy (A, B, C, and D) along the irrelevant
dimensions of a problem, but take a different value than D
along the relevant dimension. The task is to select D from a

2

4

6

5

3

1

6

1

d
n

d
m

2

3

4

5

Training / Test Regions

d
n

d
m

Training / Test Scales

Figure 2. Illustration of the Translation Extrapolation regime, di-
vided into Regions 1-6, and Scale Extrapolation regime, divided
into Scales 1-6. The underlying visual object space is illustrated
here in two dimensions (dn and dm), though the actual space
consists of four dimensions (size, brightness, and 2d location).

set of multiple choices consisting of D and F1 through F6.

2.1.1. TRANSLATION EXTRAPOLATION REGIME

The VAEC dataset contains two generalization regimes,
each requiring a distinct form of extrapolation. The Transla-
tion Extrapolation regime tests for invariance to translation
along the underlying dimensions of the visual object space
(size, brightness, and location), by dividing the space into
six regions along the diagonal, each with size 7× 7× 7× 7.
These are referred to as Regions 1-6 (Figure 2), where Re-
gion 1 consists of small, dim objects located in the upper
left portion of space, and Region 6 consists of large, bright
objects located in the lower right portion of space. This
allows the graded evaluation of extrapolation to a series of
increasingly remote test domains.

We note that, although the sources of variation (size, bright-
ness, and location) are correlated in terms of how training
and test regions are defined, they are not correlated within
an individual analogy problem. Each individual analogy
problem only includes a single source of variation. The
source of variation in each problem is included as an anno-
tation in the dataset, and can be used to analyze whether
and how performance differs across these dimensions. We
include such an analysis in the Supplementary Material.

For each region, analogy problems are subsampled from
the set of all valid analogies, resulting in a dataset with
19, 040 analogy problems per region, approximately 10%
of all valid analogies within a region. In our work, we
train networks on analogies from Region 1, and test on
analogies from Regions 2 through 6, though we note that
other configurations are possible with the dataset. Critically,
test samples involve not only novel objects, but objects that
fall completely outside the range of values observed during



Learning Representations that Support Extrapolation

training.

2.1.2. SCALE EXTRAPOLATION REGIME

The VAEC dataset also contains a second generalization
regime, the Scale Extrapolation regime, that tests for invari-
ance to the scale of differences between visual objects. This
regime includes six evaluation modes, referred to as Scale
1 through Scale 6. Scale 1 contains objects sampled from
levels 1-7 along each visual object dimension (identical to
values used in Region 1 of the Translation Extrapolation
regime). In scales 2 through 6, these values are multiplied
by a scalar ranging from 2 to 6. Just as with the Transla-
tion Extrapolation regime, analogy problems in the Scale
Extrapolation regime are: a) subsampled from the set of all
valid analogies at each scale, resulting in 19, 040 analogy
problems per scale; and b) use test samples outside the range
of values observed during training.

2.2. Visual Analogy Dataset

We also evaluated TCN on the extrapolation regime from
the visual analogy dataset in Hill et al. (2019). Inspired by
Raven’s Progressive Matrices (Raven, 1941), this dataset
consists of 2× 3 matrices, in which a rule must be inferred
from the images in the first row (the source) and then applied
to the images in the second row (the target). Although the
extrapolation regime in this dataset is in some ways easier
than the VAEC dataset, because it does not require extrapo-
lation as far away from the training domain, it is also more
challenging in some ways, because it involves distracting,
task-irrelevant variation, it involves cross-domain analogies
(e.g. mapping a change in brightness to a change in size),
and because each image typically involves multiple objects.

2.3. Dynamic Object Prediction Task

In order to evaluate the generality of our proposed TCN
method, we also evaluated TCN on a dynamic object pre-
diction task. Specifically, we created a task containing
a sequence of T images, x1. . . xT , depicting a smoothly
changing object, requiring the prediction of the image xt

given images x1. . . xt−1, for each time step t in the se-
quence. We used grayscale images of size 64 × 64, each
containing a white square on a black background. Over
the course of a sequence, the location and size of the
square changed smoothly. Location varied within the range
center ∈ [16 · · · 48] along the X and Y axes, and size varied
within the range width ∈ [3 · · · 31].

For each sequence, we uniformly sampled start and end
values for object size and location and generated a sequence
by linearly interpolating between these values. We used se-
quences with length T = 20. To evaluate extrapolation, we
stipulated that training would be performed only on objects
with sizes from the range width ∈ [3 · · · 13], and evaluation

x1 . . . xT

x1 . . . xT

Test

Train

Figure 3. Example sequences from the dynamic object prediction
task. Note the difference in object size between the train and test
examples.

would be performed on objects with sizes from the range
width ∈ [13 · · · 31]. This task thus required extrapolation
from training on one set of objects to testing on objects that
were an average of nearly three times as large (Figure 3).

3. Approach
Our central proposal for improving extrapolation is to nor-
malize representations with respect to a task-relevant tem-
poral window, preserving the relations between these repre-
sentations, but discarding information about their absolute
magnitude. We first formalize the proposed normalization
approach, then describe how we apply this approach to dif-
ferent task domains.

3.1. Temporal Context Normalization

Given a batch with N sequences, in which each sequence
contains T time points, and in which a vector with H di-
mensions is presented at each time point, we refer to the
activity in the ith sequence, at the jth time point, in the kth
dimension as zijk. We define the corresponding normalized
activity TCN(zijk) as:

µik =
1

T

T∑
j=1

(zijk) (1)

σik =

√√√√ 1

T

T∑
j=1

(zijk − µik)
2
+ ε (2)

TCN(zijk) = γi(
zijk − µik

σik
) + βi (3)

where ε is a small constant to avoid division by zero, and γ



Learning Representations that Support Extrapolation

and β are learned gain and shift parameters (all initialized
to one and zero respectively). This approach is similar to
batch normalization (Ioffe & Szegedy, 2015) except that
it normalizes over the temporal dimension instead of the
batch dimension. In our experiments, we also evaluate a
range of other normalization techniques, including batch
normalization.

In the proposed approach, the context over which normal-
ization is applied can be tailored based on knowledge of
the structure of the problem. In the visual analogy dataset
from Hill et al. (2019), analogy problems in the test set
require extrapolation from familiar values in the source do-
main to novel values in the target domain. For this dataset,
we therefore implement TCN by treating the source and
target as separate contexts over which to normalize (TCN
(source/target) in Table 3), and compare to a version that
treats the entire analogy as a single context (TCN (entire
analogy) in Table 3). For all other datasets, TCN is applied
over an entire analogy problem or sequence.

3.2. Analogy Scoring Model

To solve analogy problems in both the VAEC dataset and the
visual analogy dataset from Hill et al. (2019), we employ
an approach also proposed by Hill et al. (2019), treating
analogy as a scoring problem. For each analogy problem,
our network is presented with multiple candidate analogies,
consisting of the objects A, B, C, and a candidate answer,
drawn from the set containingD and foil objects F1 through
F6. The network produces a score for each candidate anal-
ogy, these scores are passed through a softmax function, and
the network is trained to maximize the probability that D is
the correct answer.

The network consists of a feedforward encoder that gen-
erates a vector embedding z for each image, a recurrent
network that sequentially processes the vector embedding
of each image in a candidate analogy, and a linear output
layer (detailed in 4.1). In our experiments, we apply TCN,
along with a range of other techniques, to the vector embed-
dings (z) before passing them into the recurrent network.

3.3. Dynamic Object Prediction Model

To address the dynamic object prediction task, we employ
an approach that combines an autoencoder and a recurrent
network (detailed in 4.3). First, we train an autoencoder to
generate a low-dimensional embedding z given an image
x. Then, for each sequence of images x1. . . xT , we obtain
the corresponding low-dimensional embeddings z1. . . zT .
Finally, we train a recurrent network to predict zt given
z1. . . zt−1. The combined system is capable of making pre-
dictions in image space given an input sequence of images,
and can be fine-tuned end-to-end.

In our experiments, we apply TCN to the embeddings
z1. . . zt−1 before passing them to the recurrent network to
make predictions. Then, before passing the predictions
ẑ2. . . ẑT to the decoder to generate predictions in image
space, we invert the transformation imposed by normaliza-
tion. We do this because normalization removes information
about the absolute magnitude of the object that is necessary
to accurately render an image. Specifically, given the pre-
diction ẑijk (the activity in the ith sequence, at the jth time
point, in the kth dimension), we define the de-normalized
version TCN−1(ẑijk) as:

TCN−1(ẑijk) = σik · ẑijk + µik (4)

When testing other normalization procedures on the dy-
namic object prediction task, we similarly invert the nor-
malization procedure (scaling by σ and adding µ) before
passing ẑ to the decoder.

4. Experiments
4.1. Analogy Architecture and Training Procedure

For the analogy scoring model used on the VAEC dataset,
the encoder architecture consisted of 4 convolutional layers,
each with 32 kernels of size 4 × 4, and a stride of 2 (no
max-pooling), resulting in a feature map of size 8× 8× 32.
This was followed by 2 fully-connected layers, with 256
units per layer. ReLU nonlinearities were used in all layers
of the encoder. The image embedding z was then generated
with a linear layer consisting of 256 units.

We applied either TCN, or one out of a number of other nor-
malization techniques (detailed in 4.2), to these embeddings,
amd then passed a sequence consisting of the embeddings
for A, B, C, and the candidate answer to an LSTM with a
single hidden layer of 256 units. The final hidden state of
the LSTM was then passed through a linear layer to generate
a score for the candidate answer. This process was repeated
for each candidate answer (using the same encoder parame-
ters for each image, and the same recurrent and output layer
parameters for each sequence, reinitializing the recurrent
state at the beginning of each sequence), and the resulting
scores were passed through a softmax function to generate
a probability distribution over the candidate answers.

We trained networks to maximize the probability thatD was
the correct answer using a cross entropy loss. Each network
was trained for 10, 000 iterations, with a batch size of 32,
using the ADAM optimizer (Kingma & Ba, 2014) with a
learning rate of 5e−4 (except as otherwise noted in 4.2). All
weights were initialized using Xavier uniform initialization
(Glorot & Bengio, 2010), and all biases were initialized to
zero. All simulations on the VAEC dataset were performed
using TensorFlow (Abadi et al., 2016).



Learning Representations that Support Extrapolation

For the analogy scoring model used on the visual analogy
dataset from Hill et al. (2019), we used an architecture
and training procedure modeled as closely as possible on
the original paper. We describe these in detail in the Sup-
plementary Material. All simulations for this dataset were
performed using PyTorch (Paszke et al., 2017).

4.2. Comparison with Other Normalization Techniques

We considered a wide range of techniques as alternatives
to TCN. First, we compared to batch normalization (Ioffe
& Szegedy, 2015), in which normalization statistics are
computed over the batch dimension. Just as with TCN, we
applied batch normalization to the embedding vector z for
each image in a sequence.

In our default implementation, we evaluate performance
on the test set in batches with the same size (N = 32) as
during training, and compute batch normalization statistics
online directly from these test batches. We did this to give
batch normalization the best possible chance of extrapo-
lating to domains with statistics that are different than the
training set, but we note that, in the standard approach to
batch normalization, normalization statistics during test are
computed from the training set, to prevent the need to have
batches during evaluation. We therefore also compared to
a model that included batch normalization with statistics
during evaluation computed from the entire training set.

We also compared to layer normalization (Ba et al., 2016),
in which normalization statistics are computed over the units
in a hidden layer. Given that layer normalization has been
proposed specifically in the context of recurrent networks,
we evaluated two versions, one in which normalization was
applied to the hidden layer of the LSTM, and one in which
it was applied to outputs of the feedforward encoder (z). We
found that we had to train the networks with layer normal-
ization significantly longer (500, 000 training iterations) to
achieve a comparable degree of convergence on the training
set.

In our experiments, batch normalization statistics were com-
puted over a larger sample (N = 32) than TCN statistics
(T = 4). To determine whether this factor affected perfor-
mance, we compared to sub-batch normalization, in which
normalization statistics were computed over sub-batches
of size 4 (though batch size was still 32). Thus, sub-batch
normalization was performed over the same dimension as
batch normalization, but with sample sizes comparable to
TCN.

We also compared to a combination of TCN and batch-
normalization, in which normalization statistics were com-
puted over both the temporal and batch dimensions (similar
to the ‘sequence-wise normalization’ proposed by Laurent
et al. (2016)).

Our proposed approach to TCN is aligned with the tem-
poral structure of our task, in that normalization statistics
are computed over the 4 terms of a candidate analogy. To
determine the importance of this alignment, we compared
to two control conditions, each of which involved first con-
catenating all of the analogy problems from a given batch
into a long sequence. In one condition, misaligned TCN, we
divided this sequence into segments of length 5 (as opposed
to segments of length 4 required for TCN that is aligned
with the structure of the task), and computed normalization
statistics over these segments. Thus, normalization param-
eters were computed over segments that intermixed terms
(in varying proportion) from two separate analogy problems.
In a second control condition, sliding-window TCN, we
used a sliding window to compute normalization statistics
for each object based on itself and the preceding 3 objects.
Thus, for every object except the last object in each analogy,
normalization statistics were computed over a window that
incorporated objects from two analogy problems.

We also compared to a model that employed dropout, a
technique proposed to improve generalization in neural net-
works, in which a random subset of units are dropped from
each batch during training (Srivastava et al., 2014). Specif-
ically, we implemented a model that combined both batch
normalization and 50% dropout (after normalization), both
applied to the output of the feedforward encoder (z).

Finally, we compared to a network that did not have any
form of normalization applied to it. We found that we had to
use a lower learning rate (1e−4) and train for significantly
longer (500, 000 iterations) to achieve convergence with this
approach.

4.3. Dynamic Object Prediction

For the dynamic object prediction model, we first trained
an autoencoder to generate a low-dimensional embedding z
given an image x. The encoder architecture consisted of 3
convolutional layers, each with 32 kernels of size 4× 4, and
a stride of 2, resulting in a feature map of size 8× 8× 32.
This was followed by 2 fully-connected layers, with 256
units per layer. ReLU nonlinearities were used in all layers
of the encoder. The image embedding z was then generated
with a linear layer consisting of 10 units.

The decoder architecture consisted of 2 fully-connected
layers with 256 units, followed by a fully-connected layer
with 2, 048 units (reshaped for input to convolutional layers).
This was followed by 2 layers of transposed convolutions,
each with 32 kernels of size 4 × 4, and a fractional stride
of 1/2, and a final transposed convolutional layer with 1
output channel (also with kernel size 4× 4 and a fractional
stride of 1/2). ReLU nonlinearities were used in all layers
of the decoder, except for the output layer, which used
a sigmoid nonlinearity to generate grayscale images with



Learning Representations that Support Extrapolation

Table 1. Results on the Translation Extrapolation regime of the VAEC dataset. Results show accuracy in each region, including the
training region (Region 1), averaged over 8 trained networks (± the standard error of the mean).

REGION 1 (TRAINING) REGION 2 REGION 3 REGION 4 REGION 5 REGION 6
TCN 99.1 ± 0.6 77.0 ± 5.8 73.2 ± 6.4 72.5 ± 5.1 71.7 ± 5.5 61.6 ± 4.9
SUB-BATCH NORM. 83.4 ± 3.3 56.1 ± 1.5 51.7 ± 1.7 50.5 ± 2.2 47.0 ± 2.7 46.3 ± 1.5
SLIDING-WINDOW TCN 68.2 ± 8.2 44.8 ± 1.6 35.4 ± 2.6 34.8 ± 2.7 36.7 ± 4.0 36.6 ± 4.1
TCN + BATCH NORM. 98.0 ± 0.5 42.5 ± 1.4 33.6 ± 5.0 37.0 ± 6.3 36.7 ± 6.5 36.5 ± 6.2
LAYER NORM. (RECURRENT) 100.0 ± 0.0 52.1 ± 8.0 44.5 ± 7.5 35.7 ± 6.1 27.4 ± 3.9 23.3 ± 3.7
MISALIGNED TCN 55.3 ± 4.9 41.5 ± 2.0 35.4 ± 1.0 33.3 ± 1.6 31.6 ± 1.6 31.6 ± 1.8
BATCH NORM. 99.5 ± 0.1 29.0 ± 2.2 26.8 ± 2.4 28.0 ± 2.6 29.0 ± 2.7 30.8 ± 1.7
BATCH NORM. + DROPOUT 99.0 ± 0.1 27.5 ± 2.4 22.6 ± 1.8 24.4 ± 2.3 26.0 ± 1.6 26.8 ± 1.7
LAYER NORM. 99.0 ± 0.2 25.2 ± 2.6 22.9 ± 2.3 22.4 ± 2.3 21.6 ± 2.2 17.2 ± 1.9
NO NORM. 94.8 ± 3.3 23.9 ± 2.6 23.4 ± 2.4 19.1 ± 1.9 17.8 ± 1.7 16.7 ± 1.4
BATCH NORM. (TRAIN STATS) 99.9 ± 0.0 33.5 ± 4.0 19.1 ± 6.4 10.2 ± 4.9 13.5 ± 7.7 6.3 ± 4.3

values ranging between 0 and 1.

We trained the autoencoder using a reconstruction loss
(mean-squared error), with a batch size of 32, for 200, 000
iterations (though we found that convergence was achieved
after approximately 25, 000 iterations), using the ADAM
optimizer and a learning rate of 5e−4.

After training the autoencoder, we used the encoder to ob-
tain a sequence of low-dimensional embeddings z1. . . zT for
each sequence of images. We trained a recurrent network
to predict zt given z1. . . zt−1. The recurrent network con-
sisted of an LSTM with 20 units (we found that using larger
LSTMs did not make a difference in this task), and a linear
output layer with 10 units, corresponding to the size of its
input (i.e. the embedding layer of the autoencoder).

We performed TCN before passing the embeddings to the
recurrent network, and then de-normalized the predictions
made by the recurrent network. We also compare to versions
with batch normalization (computed either online using
batches of size N = 32 on the test set, or by calculating
statistics over a sample of size N = 500 from the training
set), and to a version without any normalization.

We trained the recurrent network using the mean-squared
error between the predicted embedding ẑ and the true em-
bedding z with a batch size of 32, for 20, 000 iterations,
using the ADAM optimizer and a learning rate of 5e−4. All
simulations for the dynamic object prediction task were per-
formed using PyTorch (Paszke et al., 2017). All weights and
biases were initialized using a uniform distribution bounded
by 1/

√
n, where n is the number of input dimensions for a

given layer (default method in PyTorch). We evaluate the
combined model (including the encoder, LSTM, and de-
coder) using the mean-squared error between the predicted
image x̂ and the true image x.

5. Results
5.1. VAEC Dataset

5.1.1. TRANSLATION EXTRAPOLATION REGIME

Table 1 shows the results on the Translation Extrapolation
regime of the VAEC dataset. In general, we find that per-
formance decreases monotonically as a function of distance
from the training domain, although we note that most mod-
els struggle even with extrapolation from Region 1 to Re-
gion 2. This suggests that the VAEC dataset is indeed a
challenging benchmark, and an effective method of evaluat-
ing extrapolation in neural networks.

Promisingly, we find that networks trained with TCN extrap-
olate considerably better than any of the other techniques
that we tested. This is particularly true when compared to
networks trained without any normalization at all, but there
is also a substantial difference in test accuracy when com-
paring to established techniques, such as layer and batch
normalization, with an overall decrease in test error of 42%
relative to the next best method (sub-batch normalization).

Some of the techniques that we tested were designed to
better understand TCN. From the performance of these tech-
niques, we learn a few things. First, from the comparison
with sub-batch normalization, we learn that the improve-
ment from TCN is not due merely to normalizing over a
smaller sample. Second, from the comparison with both
sliding-window and misaligned TCN, we learn that it is
important for TCN to be aligned with the temporal structure
of the task. Third, we learn that combining TCN with batch
normalization actually results in worse generalization than
with TCN alone.

As expected, we also find that networks trained with batch
normalization extrapolate quite poorly when statistics are
computed over the training set. This result emphasizes an
additional strength of TCN: that it can be computed on-



Learning Representations that Support Extrapolation

Table 2. Results on the Scale Extrapolation regime of the VAEC dataset. Results show accuracy at each scale, including the training scale
(Scale 1), averaged over 8 trained networks (± the standard error of the mean).

SCALE 1 (TRAINING) SCALE 2 SCALE 3 SCALE 4 SCALE 5 SCALE 6
TCN 98.8 ± 0.7 77.8 ± 1.8 61.2 ± 3.8 54.4 ± 3.3 51.2 ± 2.5 48.7 ± 2.2
LAYER NORM. (RECURRENT) 100.0 ± 0.0 44.1 ± 5.0 28.1 ± 2.4 23.4 ± 1.6 20.2 ± 1.2 18.3 ± 0.8
BATCH NORM. (TRAIN STATS) 99.9 ± 0.0 40.2 ± 1.2 25.7 ± 1.7 21.2 ± 1.2 21.3 ± 0.8 19.9 ± 0.8
BATCH NORM. 99.2 ± 0.2 18.3 ± 0.3 17.7 ± 0.5 18.4 ± 0.4 20.1 ± 0.8 21.2 ± 1.0
NO NORM. 94.4 ± 3.5 20.9 ± 1.0 17.6 ± 0.7 17.6 ± 0.6 16.7 ± 0.7 16.7 ± 0.6

line from single test samples, rather than requiring batches
during evaluation.

One unexpected result was that sub-batch normalization
was the second best performing technique. This was surpris-
ing because previous work has found batch normalization
works better with larger batch sizes (Wu & He, 2018). We
speculate that normalizing over small sub-batches might im-
plicitly regularize the learned representations by introducing
a source of noise during training, enabling stronger extrapo-
lation. However, we note that batch normalization actually
outperforms sub-batch normalization within the training
region, suggesting that normalizing over larger batches is
indeed better in the traditional IID generalization regime.

Here, we have focused on the benefits of normalization for
generalization, but a common reason for applying normal-
ization techniques to neural networks is to decrease training
time. We found in our simulations that TCN provided a com-
parable acceleration in training speed to batch normalization
(training time courses are presented in the Supplementary
Material), demonstrating that it is also useful for this pur-
pose.

We also performed an analysis to better understand how
TCN shaped the representations learned by our networks.
We found that TCN encouraged the learning of representa-
tions that mirrored the linear structure of the stimulus space,
and that this structure was preserved across the test regions
in a manner that supported extrapolation (Supplementary
Material).

Finally, we note that, although TCN does indeed enable a
substantial increase in the ability to extrapolate, extrapola-
tion is still far from perfect. Thus, we see the VAEC dataset
as a tool to aid in the development of methods with even
stronger abilities to extrapolate.

5.1.2. SCALE EXTRAPOLATION REGIME

Table 2 shows the results on the Scale Extrapolation regime.
As with the Translation Extrapolation regime, we find that
extrapolating between scales is quite challenging, with per-
formance monotonically decreasing as distance from the
training domain increases. We find, however, that models

Table 3. Results for the extrapolation regime of the visual analogy
dataset in Hill et al. (2019). Results show test accuracy averaged
over 5 trained networks for our results, and 10 trained networks for
results from Hill et al. (2019) (± the standard error of the mean).

TCN (SOURCE/TARGET) 74.2 ± 0.81
TCN (ENTIRE ANALOGY) 67.6 ± 0.49
BATCH NORM. 66.1 ± 0.53
BASELINE (HILL ET AL., 2019) 62 ± 0.02

trained with TCN again display a considerable improvement
in the ability to extrapolate relative to the other techniques
we tested.

5.2. Visual Analogy Dataset

Table 3 shows the results on the visual analogy dataset from
Hill et al. (2019). We find that applying TCN over the
source and target separately enables a 32% decrease in test
error relative to the results of Hill et al. (2019). We also find
that batch normalization, and TCN applied over the entire
analogy problem, both enable more limited improvements
in extrapolation. These results show that TCN can also
improve extrapolation in a more complex visual setting.

5.3. Dynamic Object Prediction

We find that the generalization benefits of TCN are not spe-
cific to visual analogy problems, but also enable a significant
improvement in extrapolation on the dynamic object predic-
tion task. Table 4 shows the average prediction error on the
test set (in which objects are, on average, nearly three times
the size of objects in the training set), for models trained
with TCN, batch normalization, or no normalization.

Note that when we implement batch normalization in the
conventional manner (computing normalization statistics
from the training set), test error is nearly ten times as high
as with TCN. Even when we allow normalization statistics
to be computed over the test set, we find that the test error
for batch normalization is 70% higher than TCN. These
results demonstrate that the extrapolation benefits afforded
by TCN are not limited to visual analogies, but extend to



Learning Representations that Support Extrapolation

Table 4. Results for the dynamic object prediction task. Results
show average MSE for 3 trained networks on 2 randomly generated
test sets (± the standard error of the mean).

TCN 0.0056 ± 0.00010
BATCH NORM. 0.0095 ± 0.00008
BATCH NORM. (TRAIN STATS) 0.0507 ± 0.00162
NO NORM. 0.0675 ± 0.00275

sequential tasks more generally.

6. Related Work
Recent studies have investigated the question of extrapo-
lation in neural networks (Santoro et al., 2018; Hill et al.,
2019; Saxton et al., 2019). Despite the fact that some of
these studies found surprisingly strong performance in com-
plex reasoning tasks, they nevertheless found that current
approaches do not perform well when neural networks are
required to extrapolate. These results are broadly consis-
tent with the work presented here; however, we note two
unique contributions of our work. First, whereas in this pre-
vious work neural networks were required to extrapolate to a
domain immediately adjacent to the training domain (equiv-
alent to extrapolating from Region 1 to Region 2 in our
task), the VAEC dataset that we present allows the graded
evaluation of extrapolation at distances much farther from
the training domain. This is important because, as we find in
this work, the ability of neural networks to extrapolate tends
to degrade as a function of the distance from the training
domain, so the ability to measure extrapolation in terms of
this distance is important for evaluating novel approaches
to extrapolation. Second, we present a technique that con-
siderably outperforms other approaches at extrapolation,
performing reasonably well even in the more challenging
evaluation modes of our dataset.

It is important to note that the ability to extrapolate is not the
only challenging aspect of analogical reasoning. A related,
but separate, challenge arises from the control demands
imposed by analogical and relational reasoning tasks more
broadly. When many entities are present in a scene or se-
quence, as is often the case in natural settings, processing
the relations between these entities in a systematic man-
ner becomes challenging. A number of architectures have
recently been proposed to meet this challenge, with impres-
sive results ranging from relational reasoning (Santoro et al.,
2017; 2018), to natural language processing (Vaswani et al.,
2017), to mathematical reasoning (Saxton et al., 2019). In
the present work, we pursued the hypothesis that the failure
of neural networks to extrapolate may be due to the nature
of the representations over which they operate, rather than
the control demands inherent to relational reasoning tasks.
To that end, we focused on a simple problem from a control

perspective, allowing us to use a relatively simple recurrent
architecture (LSTM). To extend the present approach to
more complex settings involving many entities and hierar-
chical relations, it may be useful to combine our approach
with some of these recent architectural developments.

Some studies have employed a ‘parallelogram’ computation
(D̂ = C + (B −A), based on the approach of Rumelhart et
al. (1973)) to perform both linguistic (Mikolov et al., 2013)
and visual (Reed et al., 2015) analogies in vector space.
Here, we use LSTMs instead of a prespecified computation,
with the aim of developing a more flexible framework that is
also amenable to other relational and analogical reasoning
tasks. The parallelogram approach would not be capable
of handling, for instance, either the analogy problems from
Hill et al. (2019) or the dynamic object prediction task.

A key aspect of our approach involves normalizing repre-
sentations with respect to their context. Other forms of
normalization have played an important role in recent deep
learning research, including batch normalization (Ioffe &
Szegedy, 2015) and layer normalization (Ba et al., 2016).
These methods have been shown to both speed convergence
and improve generalization (Bjorck et al., 2018), at least in
the traditional IID setting. However, to our knowledge, it
has not been tested whether any variants of these methods
also improve extrapolation. In our work, we found that nor-
malization can indeed enable a substantial improvement in
extrapolation, but the details of the normalization procedure
make quite a difference. We found, for instance, that normal-
izing only over the temporal dimension (‘TCN’) results in
significantly better extrapolation than normalizing over both
the batch and temporal dimensions (‘TCN + batch norm.’
in our work, referred to as ‘sequence-wise normalization’
by Laurent et al. (2016)).

We note that the idea of normalizing activations with respect
to the recent context is similar to the ‘adaptive detrending’
(subtraction of the mean activity over a temporal window)
applied by Jung et al. (2018), who found that this procedure
improved image recognition from video, providing a benefit
both in terms of convergence and (IID) generalization. The
details of the normalization procedure in this study were
different than ours – in particular, we implement both a
detrending and a scaling operation, as well as the learned
gain and shift operations that are commonly found in other
normalization procedures. But we are encouraged by the
fact that a similar approach proved useful in a more applied
setting. Given these results, as well as our results in the
dynamic object prediction task, we predict that TCN may
also enable the ability to extrapolate in richer settings such
as video prediction.



Learning Representations that Support Extrapolation

7. Discussion
We have considered the question of how to enable neural
networks to extrapolate beyond the convex domain of their
training data, making two key contributions. First, we pro-
posed a novel benchmark, the Visual Analogy Extrapolation
Challenge (VAEC) dataset, that allows the graded evaluation
of extrapolation as a function of distance from the training
data, testing for invariance to both scale and translation.
Second, we have proposed a simple technique, TCN, that
enables a considerable improvement in the ability to extrap-
olate, as revealed by experiments using the VAEC dataset,
the visual analogy dataset from Hill et al. (2019), and a
dynamic object prediction task.

One possible concern with the benchmark that we propose
in this work is that it lacks much of the visual complex-
ity characteristic of real-world data (3D objects, multiple
sources of illumination, clutter, etc.). Adding complexity
to the VAEC dataset would certainly pose an interesting
challenge, but we opted to avoid this in the present work
for a simple reason. Adding extraneous complexity to the
dataset, unrelated to the issue of extrapolation, would make
it difficult to determine whether model failures resulted from
this added complexity or from the central challenge of ex-
trapolation. The poor performance on our dataset exhibited
by a range of competitive techniques demonstrates that the
extrapolation required by the task is more than challeng-
ing enough without additional visual complexity. We argue
that the VAEC dataset is thus appropriately focused on the
highly challenging issue of extrapolation.

Another potential concern with the present work is that TCN
needed to be temporally aligned with the structure of the
task in order to enable a significant degree of extrapolation.
This was easy to do in the context of our task, but is this too
strong a constraint for the approach to be generally applica-
ble? The question of how to align a normalization procedure
with the underlying temporal structure of a task is an im-
portant one to address in future work, but we highlight two
aspects of this problem that are causes for optimism. First,
from an engineering perspective, many problems present
natural, heuristic methods for segmenting sequential data
according to their underlying structure, such as segmenting
natural language data at the ends of sentences or paragraphs.
Second, we point to a body of work in neuroscience focused
precisely on the question of event segmentation (Zacks et al.,
2007). In particular, this work suggests particular signatures
that might be used as cues to the presence of event bound-
aries, such as transient changes in prediction error (Zacks
et al., 2011), or clusters of temporal associations (Schapiro
et al., 2013).

In this work, we took inspiration from the notion of sym-
metries in theoretical physics, hypothesizing that data in
many domains can be characterized by such symmetries,

and that extrapolation can be enabled by designing learning
algorithms that exploit these symmetries. Our proposed ap-
proach, TCN, was designed to exploit such symmetries – in
particular, the translation and scale invariance of underlying
linear dimensions – and our results demonstrate that doing
so does substantially improve the ability to extrapolate. We
emphasize that this result was far from obvious a priori.
Though our proposed normalization procedure introduces
scale and translational invariance with respect to the repre-
sentational space (in whichever layer it is applied), this will
not necessarily be the same thing as introducing scale and
translation invariance with respect to the underlying object
space (the size, location, and brightness of objects).

These results are particularly surprising in the case of our
experiments with the VAEC dataset and the dataset from
Hill et al. (2019), in which no aspect of the trained system,
including the feedforward encoder, experienced any objects
outside of the narrowly defined training domain. In this
case, the downstream presence of TCN apparently shaped
the learning of representations in the encoder that supported
a significant degree of extrapolation. In other words, the
learning of representations that support extrapolation was
encouraged by the presence of a subtle inductive bias that
reflected the underlying symmetries in the task space. Un-
derstanding this interaction better is an important task for
future work, and would likely lead to even further improve-
ments in the ability to extrapolate.

Finally, we note that there is likely much more to be gained
from the design of inductive biases that reflect the underly-
ing symmetries of a given task space. In addition to design-
ing techniques to more effectively capitalize on translation
and scale invariance, there are also a host of other symme-
tries to be exploited, including invariance with respect to
rotation in space, translation in time, and so on. There are
also a number of opportunities to capitalize on symmetry
between domains that are characterized by similar under-
lying structure. This is indeed the basis of more advanced
forms of analogical reasoning (e.g., the analogy between
the solar system and an atom). It is no coincidence that
complex, relational representations are the hallmark of ana-
logical reasoning because the most abstract and far-reaching
invariances are expressed as systems of relations. We look
forward to exploring these ideas in greater depth in future
work.

Acknowledgments
We would like to thank Timothy Buschman, Simon Segert,
Mariano Tepper, Jacob Russin, and the reviewers for helpful
feedback and discussions. We would also like to thank
David Turner for assistance in performing simulations.



Learning Representations that Support Extrapolation

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bjorck, N., Gomes, C. P., Selman, B., and Weinberger,
K. Q. Understanding batch normalization. In Advances in
Neural Information Processing Systems, pp. 7694–7705,
2018.

Feynman, R. The character of physical law (1965). Cox
and Wyman Ltd., London, 1967.

Feynman, R. P. Symmetry in physical laws. The Physics
Teacher, 4(4):161–174, 1966.

Gentner, D. Structure-mapping: A theoretical framework
for analogy. Cognitive science, 7(2):155–170, 1983.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Hill, F., Santoro, A., Barrett, D. G., Morcos, A. S.,
and Lillicrap, T. Learning to make analogies by con-
trasting abstract relational structure. arXiv preprint
arXiv:1902.00120, 2019.

Holyoak, K. J. Analogy and relational reasoning. The
Oxford handbook of thinking and reasoning, pp. 234–259,
2012.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Jung, M., Lee, H., and Tani, J. Adaptive detrending to
accelerate convolutional gated recurrent unit training for
contextual video recognition. Neural Networks, 105:356–
370, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lake, B. M. and Baroni, M. Generalization with-
out systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. arXiv preprint
arXiv:1711.00350, 2017.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and brain sciences, 40, 2017.

Laurent, C., Pereyra, G., Brakel, P., Zhang, Y., and Bengio,
Y. Batch normalized recurrent neural networks. In 2016
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2657–2661. IEEE, 2016.

Marcus, G. The algebraic mind, 2001.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. In Advances in neural infor-
mation processing systems, pp. 3111–3119, 2013.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Raven, J. C. Standardization of progressive matrices, 1938.
British Journal of Medical Psychology, 19(1):137–150,
1941.

Reed, S. E., Zhang, Y., Zhang, Y., and Lee, H. Deep vi-
sual analogy-making. In Advances in neural information
processing systems, pp. 1252–1260, 2015.

Rumelhart, D. E. and Abrahamson, A. A. A model for
analogical reasoning. Cognitive Psychology, 5(1):1–28,
1973.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple neu-
ral network module for relational reasoning. In Advances
in neural information processing systems, pp. 4967–4976,
2017.

Santoro, A., Hill, F., Barrett, D., Morcos, A., and Lillicrap,
T. Measuring abstract reasoning in neural networks. In
International Conference on Machine Learning, pp. 4477–
4486, 2018.

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. Analysing
mathematical reasoning abilities of neural models. arXiv
preprint arXiv:1904.01557, 2019.

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne,
N. B., and Botvinick, M. M. Neural representations of
events arise from temporal community structure. Nature
neuroscience, 16(4):486, 2013.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.



Learning Representations that Support Extrapolation

Wu, Y. and He, K. Group normalization. In Proceedings of
the European Conference on Computer Vision (ECCV),
pp. 3–19, 2018.

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S.,
and Reynolds, J. R. Event perception: a mind-brain
perspective. Psychological bulletin, 133(2):273, 2007.

Zacks, J. M., Kurby, C. A., Eisenberg, M. L., and Haroutu-
nian, N. Prediction error associated with the perceptual
segmentation of naturalistic events. Journal of Cognitive
Neuroscience, 23(12):4057–4066, 2011.


