
Model-free Reinforcement Learning in Infinite-horizon
Average-reward Markov Decision Processes

Chen-Yu Wei 1 Mehdi Jafarnia-Jahromi 1 Haipeng Luo 1 Hiteshi Sharma 1 Rahul Jain 1

Abstract
Model-free reinforcement learning is known to
be memory and computation efficient and more
amendable to large scale problems. In this pa-
per, two model-free algorithms are introduced for
learning infinite-horizon average-reward Markov
Decision Processes (MDPs). The first algorithm
reduces the problem to the discounted-reward ver-
sion and achieves O(T 2/3) regret after T steps,
under the minimal assumption of weakly com-
municating MDPs. To our knowledge, this is the
first model-free algorithm for general MDPs in
this setting. The second algorithm makes use
of recent advances in adaptive algorithms for ad-
versarial multi-armed bandits and improves the
regret to O(

√
T ), albeit with a stronger ergodic

assumption. This result significantly improves
over the O(T 3/4) regret achieved by the only ex-
isting model-free algorithm by Abbasi-Yadkori
et al. (2019a) for ergodic MDPs in the infinite-
horizon average-reward setting.

1. Introduction
Reinforcement learning (RL) refers to the problem of an
agent interacting with an unknown environment with the
goal of maximizing its cumulative reward through time.
The environment is usually modeled as a Markov Decision
Process (MDP) with an unknown transition kernel and/or
an unknown reward function. The fundamental trade-off
between exploration and exploitation is the key challenge
for RL: should the agent exploit the available information to
optimize the immediate performance, or should it explore
the poorly understood states and actions to gather more
information to improve future performance?

There are two broad classes of RL algorithms: model-based
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and model-free. Model-based algorithms maintain an es-
timate of the underlying MDP and use that to determine
a policy during the learning process. Examples include
UCRL2 (Jaksch et al., 2010), REGAL (Bartlett & Tewari,
2009), PSRL (Ouyang et al., 2017b), SCAL (Fruit et al.,
2018b), UCBVI (Azar et al., 2017), EBF (Zhang & Ji, 2019)
and EULER (Zanette & Brunskill, 2019). Model-based algo-
rithms are well-known for their sample efficiency. However,
there are two general disadvantages of model-based algo-
rithms: First, model-based algorithms require large memory
to store the estimate of the model parameters. Second, it is
hard to extend model-based approaches to non-parametric
settings, e.g., continuous state MDPs.

Model-free algorithms, on the other hand, try to resolve
these issues by directly maintaining an estimate of the op-
timal Q-value function or the optimal policy. Examples
include Q-learning (Watkins, 1989), Delayed Q-learning
(Strehl et al., 2006), TRPO (Schulman et al., 2015), DQN
(Mnih et al., 2013), A3C (Mnih et al., 2016), and more.
Model-free algorithms are not only computation and mem-
ory efficient, but also easier to be extended to large scale
problems by incorporating function approximation.

It was believed that model-free algorithms are less sample-
efficient compared to model-based algorithms. However, re-
cently Jin et al. (2018) showed that (model-free) Q-learning
algorithm with UCB exploration achieves a nearly-optimal
regret bound, implying the possibility of designing algo-
rithms with advantages of both model-free and model-
based methods. Jin et al. (2018) addressed the problem
for episodic finite-horizon MDPs. Following this work,
Dong et al. (2019) extended the result to the infinite-horizon
discounted-reward setting.

However, Q-learning based model-free algorithms with low
regret for infinite-horizon average-reward MDPs, an equally
heavily-studied setting in the RL literature, remains un-
known. Designing such algorithms has proven to be rather
challenging since the Q-value function estimate may grow
unbounded over time and it is hard to control its magni-
tude in a way that guarantees efficient learning. Moreover,
techniques such as backward induction in the finite-horizon
setting or contraction mapping in the infinite-horizon dis-
counted setting can not be applied to the infinite-horizon
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Table 1. Regret comparisons for RL algorithms in infinite-horizon average-reward MDPs with S states, A actions, and T steps. D is the
diameter of the MDP, sp(v∗) ≤ D is the span of the optimal value function, V?s,a := Vars′∼p(·|s,a)[v∗(s′)] ≤ sp(v∗)2 is the variance of
the optimal value function, tmix is the mixing time (Def 5.1), thit is the hitting time (Def 5.2), and ρ ≤ thit is some distribution mismatch
coefficient (Eq. (5)). For more concrete definition of these parameters, see Sections 3-5.

Algorithm Regret Comment

Model-based

REGAL (Bartlett & Tewari, 2009) Õ(sp(v∗)
√
SAT ) no efficient implementation

UCRL2 (Jaksch et al., 2010) Õ(DS
√
AT ) -

PSRL (Ouyang et al., 2017b) Õ(sp(v∗)S
√
AT ) Bayesian regret

OSP (Ortner, 2018) Õ(
√
tmixSAT )

ergodic assumption and
no efficient implementation

SCAL (Fruit et al., 2018b) Õ(sp(v∗)S
√
AT ) -

KL-UCRL (Talebi & Maillard, 2018) Õ(
√
S
∑
s,a V?s,aT ) -

UCRL2B (Fruit et al., 2019) Õ(S
√
DAT ) -

EBF (Zhang & Ji, 2019) Õ(
√
DSAT ) no efficient implementation

Model-free
POLITEX(Abbasi-Yadkori et al., 2019a) t3mixthit

√
SAT

3
4 ergodic assumption

Optimistic Q-learning (this work) Õ(sp(v∗)(SA)
1
3T

2
3 ) -

MDP-OOMD (this work) Õ(
√
t3mixρAT ) ergodic assumption

lower bound (Jaksch et al., 2010) Ω(
√
DSAT ) -

average-reward setting.

In this paper, we make significant progress in this direc-
tion and propose two model-free algorithms for learning
infinite-horizon average-reward MDPs. The first algorithm,
Optimistic Q-learning (Section 4), achieves a regret bound
of Õ(T 2/3) with high probability for the broad class of
weakly communicating MDPs.1 This is the first model-free
algorithm in this setting under only the minimal weakly
communicating assumption. The key idea of this algorithm
is to artificially introduce a discount factor for the reward,
to avoid the aforementioned unbounded Q-value estimate
issue, and to trade-off this effect with the approximation
introduced by the discount factor. We remark that this is
very different from the R-learning algorithm of (Schwartz,
1993), which is a variant of Q-learning with no discount
factor for the infinite-horizon average-reward setting.

The second algorithm, MDP-OOMD (Section 5), attains
an improved regret bound of Õ(

√
T ) for the more restricted

class of ergodic MDPs. This algorithm maintains an in-
stance of a multi-armed bandit algorithm at each state to
learn the best action. Importantly, the multi-armed bandit
algorithm needs to ensure several key properties to achieve
our claimed regret bound, and to this end we make use of the
recent advances for adaptive adversarial bandit algorithms
from (Wei & Luo, 2018) in a novel way.

1Throughout the paper, we use the notation Õ(·) to suppress
log terms.

To the best of our knowledge, the only existing model-free
algorithm for this setting is the POLITEX algorithm (Abbasi-
Yadkori et al., 2019a;b), which achieves Õ(T 3/4) regret for
ergodic MDPs only. Both of our algorithms enjoy a better
bound compared to POLITEX, and the first algorithm even
removes the ergodic assumption completely.2

For comparisons with other existing model-based ap-
proaches for this problem, see Table 1. We also conduct
experiments comparing our two algorithms. Details are
deferred to Appendix D due to space constraints.

2. Related Work
We review the related literature with regret guarantees for
learning MDPs with finite state and action spaces (there
are many other works on asymptotic convergence or sam-
ple complexity, a different focus compared to our work).
Three common settings have been studied: 1) finite-horizon
episodic setting, 2) infinite-horizon discounted setting, and
3) infinite-horizon average-reward setting. For the first two
settings, previous works have designed efficient algorithms
with regret bound or sample complexity that is (almost)
information-theoretically optimal, using either model-based
approaches such as (Azar et al., 2017), or model-free ap-
proaches such as (Jin et al., 2018; Dong et al., 2019).

2POLITEX is studied in a more general setup with function
approximation though. See the end of Section 5.1 for more com-
parisons.
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For the infinite-horizon average-reward setting, many model-
based algorithms have been proposed, such as (Auer &
Ortner, 2007; Jaksch et al., 2010; Ouyang et al., 2017b;
Agrawal & Jia, 2017; Talebi & Maillard, 2018; Fruit et al.,
2018a;b). These algorithms either conduct posterior sam-
pling or follow the optimism in face of uncertainty principle
to build an MDP model estimate and then plan according to
the estimate (hence model-based). They all achieve Õ(

√
T )

regret, but the dependence on other parameters are subop-
timal. Recent works made progress toward obtaining the
optimal bound (Ortner, 2018; Zhang & Ji, 2019); however,
their algorithms are not computationally efficient – the time
complexity scales exponentially in the number of states. On
the other hand, except for the naive approach of combin-
ing Q-learning with ε-greedy exploration (which is known
to suffer regret exponential in some parameters (Osband
et al., 2014)), the only existing model-free algorithm for this
setting is POLITEX, which only works for ergodic MDPs.

Two additional works are closely related to our second algo-
rithm MDP-OOMD: (Neu et al., 2013) and (Wang, 2017).
They all belong to policy optimization method where the
learner tries to learn the parameter of the optimal policy
directly. Their settings are quite different from ours and
the results are not comparable. We defer more detailed
comparisons with these two works to the end of Section 5.1.

3. Preliminaries
An infinite-horizon average-reward Markov Decision Pro-
cess (MDP) can be described by (S,A, r, p) where S is the
state space, A is the action space, r : S ×A → [0, 1] is
the reward function and p : S2 × A → [0, 1] is the transi-
tion probability such that p(s′|s, a) := P(st+1 = s′ | st =
s, at = a) for st ∈ S, at ∈ A and t = 1, 2, 3, · · · . We
assume that S and A are finite sets with cardinalities S and
A, respectively. The average reward per stage of a determin-
istic/stationary policy π : S → A starting from state s is
defined as

Jπ(s) := lim inf
T→∞

1

T
E

[
T∑
t=1

r(st, π(st))
∣∣∣ s1 = s

]

where st+1 is drawn from p(·|st, π(st)). Let J∗(s) :=
maxπ∈AS J

π(s). A policy π∗ is said to be optimal if it
satisfies Jπ

∗
(s) = J∗(s) for all s ∈ S.

We consider two standard classes of MDPs in this paper: (1)
weakly communicating MDPs defined in Section 4 and (2)
ergodic MDPs defined in Section 5. The weakly communi-
cating assumption is weaker than the ergodic assumption,
and is in fact known to be necessary for learning infinite-
horizon MDPs with low regret (Bartlett & Tewari, 2009).

Standard MDP theory (Puterman, 2014) shows that for these
two classes, there exist q∗ : S ×A → R (unique up to an

additive constant) and unique J∗ ∈ [0, 1] such that J∗(s) =
J∗ for all s ∈ S and the following Bellman equation holds:

J∗ + q∗(s, a) = r(s, a) + Es′∼p(·|s,a)[v
∗(s′)], (1)

where v∗(s) := maxa∈A q
∗(s, a). The optimal policy is

then obtained by π∗(s) = argmaxa q
∗(s, a).

We consider a learning problem where S,A and the reward
function r are known to the agent, but not the transition
probability p (so one cannot directly solve the Bellman
equation). The knowledge of the reward function is a typi-
cal assumption as in (Bartlett & Tewari, 2009; Gopalan &
Mannor, 2015; Ouyang et al., 2017b), and can be removed
at the expense of a constant factor for the regret bound.

Specifically, the learning protocol is as follows. An agent
starts at an arbitrary state s1 ∈ S. At each time step
t = 1, 2, 3, · · · , the agent observes state st ∈ S and
takes action at ∈ A which is a function of the history
s1, a1, s2, a2, · · · , st−1, at−1, st. The environment then
determines the next state by drawing st+1 according to
p(·|st, at). The performance of a learning algorithm is eval-
uated through the notion of cumulative regret, defined as the
difference between the total reward of the optimal policy
and that of the algorithm:

RT :=

T∑
t=1

(
J∗ − r(st, at)

)
.

Since r ∈ [0, 1] (and subsequently J∗ ∈ [0, 1]), the regret
can at worst grow linearly with T . If a learning algorithm
achieves sub-linear regret, then RT /T goes to zero, i.e., the
average reward of the algorithm converges to the optimal
per stage reward J∗. The best existing regret bound is
Õ(
√
DSAT ) achieved by a model-based algorithm (Zhang

& Ji, 2019) (where D is the diameter of the MDP) and it
matches the lower bound of (Jaksch et al., 2010).

Throughout the paper, we assume that T is known. When
it is unknown, one can simply apply the standard doubling
trick to obtain the same regret bound up to a constant (see
e.g., (Shalev-Shwartz, 2011, Section 2.3.1)).

4. Optimistic Q-Learning
In this section, we introduce our first algorithm, OPTI-
MISTIC Q-LEARNING (see Algorithm 1 for pseudocode).
The algorithm works for any weakly communicating MDPs.
An MDP is weakly communicating if its state space S can be
partitioned into two subsets: in the first subset, all states are
transient under any stationary policy; in the second subset,
every two states are accessible from each other under some
stationary policy. It is well-known that the weakly commu-
nicating condition is necessary for ensuring low regret in
this setting (Bartlett & Tewari, 2009).
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Algorithm 1 OPTIMISTIC Q-LEARNING

Parameters: H ≥ 2, confidence level δ ∈ (0, 1)
Initialization: γ = 1− 1

H , ∀s : V̂1(s) = H

∀s, a : Q1(s, a) = Q̂1(s, a) = H, n1(s, a) = 0

Define: ∀τ, ατ = H+1
H+τ , bτ = 4 sp(v∗)

√
H
τ ln 2T

δ

for t = 1, . . . , T do
Take action

at = argmaxa∈A Q̂t(st, a). (2)

Observe st+1.
Update:

nt+1(st, at)← nt(st, at) + 1

τ ← nt+1(st, at)

Qt+1(st, at)← (1− ατ )Qt(st, at)

+ατ

[
r(st, at) + γV̂t(st+1) + bτ

]
(3)

Q̂t+1(st, at)← min
{
Q̂t(st, at), Qt+1(st, at)

}
V̂t+1(st)← max

a∈A
Q̂t+1(st, a).

(All other entries of nt+1, Qt+1, Q̂t+1, V̂t+1 remain the
same as those in nt, Qt, Q̂t, V̂t.)

Define sp(v∗) = maxs v
∗(s) −mins v

∗(s) to be the span
of the value function, which is known to be bounded for
weakly communicating MDPs. In particular, it is bounded
by the diameter of the MDP (see (Lattimore & Szepesvári,
2018, Lemma 38.1)). We assume that sp(v∗) is known and
use it to set the parameters. However, in the case when it is
unknown, we can replace sp(v∗) with any upper bound of
it (e.g. the diameter) in both the algorithm and the analysis.

The key idea of Algorithm 1 is to solve the undiscounted
problem via learning a discounted MDP (with the same
states, actions, reward function, and transition), for some dis-
count factor γ (defined in terms of a parameter H). Define
V ∗ and Q∗ to be the optimal value-function and Q-function
of the discounted MDP, satisfying the Bellman equation:

∀(s, a), Q∗(s, a) = r(s, a) + γEs′∼p(·|s,a)[V
∗(s′)]

∀s, V ∗(s) = max
a∈A

Q∗(s, a).

The way we learn this discounted MDP is essentially the
same as the algorithm of Dong et al. (2019), which itself is
based on the idea from (Jin et al., 2018). Specifically, the
algorithm maintains an estimate V̂t for the optimal value
function V ∗ and Q̂t for the optimal Q-function Q∗, which
itself is a clipped version of another estimate Qt. Each
time the algorithm takes a greedy action with the maximum
estimated Q value (Eq. (2)). After seeing the next state, the

algorithm makes a stochastic update of Qt based on the
Bellman equation, importantly with an extra bonus term
bτ and a carefully chosen step size ατ (Eq.(3)). Here, τ is
the number of times the current state-action pair has been
visited, and the bonus term bτ scales as O(

√
H/τ), which

encourages exploration since it shrinks every time a state-
action pair is executed. The choice of the step size ατ is also
crucial as pointed out in (Jin et al., 2018) and determines a
certain effective period of the history for the current update.

While the algorithmic idea is similar to (Dong et al., 2019),
we emphasize that our analysis is different and novel:

• First, Dong et al. (2019) analyze the sample complexity
of their algorithm while we analyze the regret.

• Second, we need to deal with the approximation effect
due to the difference between the discounted MDP and
the original undiscounted one (Lemma 2).

• Finally, part of our analysis improves over that of
(Dong et al., 2019) (specifically our Lemma 3). Follow-
ing the original analysis of (Dong et al., 2019) would
lead to a worse bound here.

We now state the main regret guarantee of Algorithm 1.

Theorem 1. If the MDP is weakly communicating, Algo-

rithm 1 with H = min

{√
sp(v∗)T
SA ,

(
T

SA ln 4T
δ

) 1
3

}
ensures

that with probability at least 1− δ, RT is of order

O
(√

sp(v∗)SAT + sp(v∗)

(
T

2
3

(
SA ln T

δ

) 1
3 +

√
T ln 1

δ

))
.

Our regret bound scales as Õ(T 2/3) and is suboptimal com-
pared to model-based approaches with Õ(

√
T ) regret (such

as UCRL2) that matches the information-theoretic lower
bound (Jaksch et al., 2010). However, this is the first model-
free algorithm with sub-linear regret (under only the weakly
communicating condition), and how to achieve Õ(

√
T ) re-

gret via model-free algorithms remains unknown. Also note
that our bound depends on sp(v∗) instead of the potentially
much larger diameter of the MDP. To our knowledge, ex-
isting approaches that achieve sp(v∗) dependence are all
model-based (Bartlett & Tewari, 2009; Ouyang et al., 2017b;
Fruit et al., 2018b) and use very different arguments.
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4.1. Proof sketch of Theorem 1

The proof starts by decomposing the regret as

RT =

T∑
t=1

(J∗ − r(st, at))

=

T∑
t=1

(J∗ − (1− γ)V ∗(st))

+

T∑
t=1

(V ∗(st)−Q∗(st, at))

+

T∑
t=1

(Q∗(st, at)− γV ∗(st)− r(st, at)) .

Each of these three terms are handled through Lemmas 2, 3
and 4 whose proofs are deferred to the appendix. Plugging
in γ = 1 − 1

H and picking the optimal H finish the proof.
One can see that the Õ(T 2/3) regret comes from the bound
T
H from the first term and the bound

√
HT from the second.

Lemma 2. The optimal value function V ∗ of the discounted
MDP satisfies

1. |J∗ − (1− γ)V ∗(s)| ≤ (1− γ) sp(v∗), ∀s ∈ S,

2. sp(V ∗) ≤ 2 sp(v∗).

This lemma shows that the difference between the optimal
value in the discounted setting (scaled by 1 − γ) and that
of the undiscounted setting is small as long as γ is close to
1. The proof is by combining the Bellman equation of the
these two settings and direct calculations.

Lemma 3. With probability at least 1− δ, we have

T∑
t=1

(V ∗(st)−Q∗(st, at))

≤ 4HSA+ 24 sp(v∗)
√
HSAT ln 2T

δ .

This lemma is one of our key technical contributions. To
prove this lemma one can write

T∑
t=1

(V ∗(st)−Q∗(st, at))

=

T∑
t=1

(V ∗(st)− V̂t(st)) +

T∑
t=1

(Q̂t(st, at)−Q∗(st, at)),

using the fact that V̂t(st) = Q̂t(st, at) by the greedy policy.
The main part of the proof is to show that the second sum-
mation can in fact be bounded as

∑T+1
t=2 (V̂t(st)− V ∗(st))

plus a small sub-linear term, which cancels with the first
summation.

Lemma 4. With probability at least 1− δ,

T∑
t=1

(Q∗(st, at)− γV ∗(st)− r(st, at))

≤ 2 sp(v∗)
√

2T ln 1
δ + 2 sp(v∗).

This lemma is proven via Bellman equation for the dis-
counted setting and Azuma’s inequality.

5. Õ(
√
T ) Regret for Ergodic MDPs

In this section, we propose another model-free algorithm
that achieves Õ(

√
T ) regret bound for ergodic MDPs, a

sub-class of weakly communicating MDPs. An MDP is
ergodic if for any stationary policy π, the induced Markov
chain is irreducible and aperiodic. Learning ergodic MDPs
is arguably easier than the general case because the MDP
is explorative by itself. However, achieving Õ(

√
T ) regret

bound in this case with model-free methods is still highly
non-trivial and we are not aware of any such result in the
literature. Below, we first introduce a few useful properties
of ergodic MDPs, all of which can be found in (Puterman,
2014).

We use randomized policies in this approach. A randomized
policy π maps every state s to a distribution over actions
π(·|s) ∈ ∆A, where ∆A = {x ∈ RA+ :

∑
a x(a) = 1}.

In an ergodic MDP, any policy π induces a Markov chain
with a unique stationary distribution µπ ∈ ∆S satisfying
(µπ)>Pπ = (µπ)>, where Pπ ∈ RS×S is the induced tran-
sition matrix defined as Pπ(s, s′) =

∑
a π(a|s)p(s′|s, a).

We denote the stationary distribution of the optimal policy
π∗ by µ∗.

For ergodic MDPs, the long-term average reward Jπ of
any fixed policy π is independent of the starting state and
can be written as Jπ = (µπ)>rπ where rπ ∈ [0, 1]S is
such that rπ(s) :=

∑
a π(a|s)r(s, a). For any policy π, the

following Bellman equation has a solution qπ : S ×A → R
that is unique up to an additive constant:

Jπ + qπ(s, a) = r(s, a) + Es′∼p(·|s,a)[v
π(s′)],

where vπ(s) =
∑
a π(a|s)qπ(s, a). In this section, we

impose an extra constraint:
∑
s µ

π(s)vπ(s) = 0 so that qπ

is indeed unique. In this case, it can be shown that vπ has
the following form:

vπ(s) =

∞∑
t=0

(
e>s (Pπ)t − (µπ)>

)
rπ (4)

where es is the basis vector with 1 in coordinate s.

Furthermore, ergodic MDPs have finite mixing time and
hitting time, defined as follows.
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Algorithm 2 MDP-OOMD
Define: episode length B = 16tmixthit(log2 T )2 and num-
ber of episodes K = T/B
Initialize: π′1(a|s) = π1(a|s) = 1

A ,∀s, a.
for k = 1, 2, . . . ,K do

for t = (k − 1)B + 1, . . . , kB do
Draw at ∼ πk(·|st) and observe st+1.

Define trajectory Tk =
(s(k−1)B+1, a(k−1)B+1, . . . , skB , akB).

for all s ∈ S do
β̂k(s, ·) = ESTIMATEQ(Tk, πk, s).
(π′k+1(·|s), πk+1(·|s)) =

OOMDUPDATE(π′k(·|s), β̂k(s, ·)).

Definition 5.1 ((Levin & Peres, 2017; Wang, 2017)). The
mixing time of an ergodic MDP is defined as

tmix := max
π

min

{
t ≥ 1

∣∣∣ ‖(Pπ)t(s, ·)− µπ‖1 ≤
1

4
,∀s
}
,

that is, the maximum time required for any policy starting
at any initial state to make the state distribution 1

4 -close (in
`1 norm) to the stationary distribution.

Definition 5.2. The hitting time of an ergodic MDP is de-
fined as

thit := max
π

max
s

1

µπ(s)
,

that is, the maximum inverse stationary probability of visit-
ing any state under any policy.

Our regret bound also depends on the following distribution
mismatch coefficient:

ρ := max
π

∑
s

µ∗(s)

µπ(s)
(5)

which has been used in previous work (Kakade & Lang-
ford, 2002; Agarwal et al., 2019). Clearly, one has ρ ≤
thit
∑
s µ
∗(s) = thit. Note that these quantities are all pa-

rameters of the MDP only and are considered as finite con-
stants compared to the horizon T . We thus assume that T
is large enough so that tmix and thit are both smaller than
T/4. Also, we assume that these quantities are known to
the algorithm.

5.1. Policy Optimization via Optimistic OMD

The key to get Õ(
√
T ) bound is to learn the optimal policy

π∗ directly, by reducing the problem to solving an adversar-
ial multi-armed bandit (MAB) (Auer et al., 2002) instance
at each individual state.

The details of our algorithm MDP-OOMD is shown in
Algorithm 2. It proceeds in episodes, and maintains an

Algorithm 3 ESTIMATEQ
Input: T , π, s

T : a state-action trajectory from t1 to t2
(st1 , at1 , . . . , st2 , at2)

π : a policy used to sample the trajectory T
s : target state

Define: N = 4tmix log2 T (window length minus 1)
Initialize: τ ← t1, i← 0

1 while τ ≤ t2 −N do
2 if sτ = s then
3 i← i+ 1

4 Let R =
∑τ+N
t=τ r(st, at).

5 Let yi(a) = R
π(a|s)1[aτ = a],∀a. (yi ∈ RA)

6 τ ← τ + 2N

7 else
τ ← τ + 1

8 if i 6= 0 then
return 1

i

∑i
j=1 yj .

9 else
return 0.

Algorithm 4 OOMDUPDATE

Input: π′ ∈ ∆A, β̂ ∈ RA
Define:
Regularizer ψ(x) = 1

η

∑A
a=1 log 1

x(a) , for x ∈ RA+
Bregman divergence associated with ψ:

Dψ(x, x′) = ψ(x)− ψ(x′)− 〈∇ψ(x′), x− x′〉

Update:

π′next = argmax
π∈∆A

{
〈π, β̂〉 −Dψ(π, π′)

}
(6)

πnext = argmax
π∈∆A

{
〈π, β̂〉 −Dψ(π, π′next)

}
(7)

return (π′next, πnext).

independent copy of a specific MAB algorithm for each
state. At the beginning of episode k, each MAB algorithm
outputs an action distribution πk(·|s) for the corresponding
state s, which together induces a policy πk. The learner
then executes policy πk throughout episode k. At the end
of the episode, for every state s we feed a reward estimator
β̂k(s, ·) ∈ RA to the corresponding MAB algorithm, where
β̂k is constructed using the samples collected in episode
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k (see Algorithm 3). Finally all MAB algorithms update
their distributions and output πk+1 for the next episode
(Algorithm 4).

The reward estimator β̂k(s, ·) is an almost unbiased estima-
tor for

βπk(s, ·) := qπk(s, ·) +NJπk (8)

with negligible bias (N is defined in Algorithm 3). The
term NJπk is the same for all actions and thus the cor-
responding MAB algorithm is trying to learn the best ac-
tion at state s in terms of the average of Q-value functions
qπ1(s, ·), . . . , qπK (s, ·). To construct the reward estima-
tor for state s, the sub-routine ESTIMATEQ collects non-
overlapping intervals of length N + 1 = Õ(tmix) that start
from state s, and use the standard inverse-propensity scoring
to construct an estimator yi for interval i (Line 5). In fact, to
reduce the correlation among the non-overlapping intervals,
we also make sure that these intervals are at least N steps
apart from each other (Line 6). The final estimator β̂k(s, ·)
is simply the average of all estimators yi over these disjoint
intervals. This averaging is important for reducing variance
as explained later (see also Lemma 6).

The MAB algorithm we use is optimistic online mirror
descent (OOMD) (Rakhlin & Sridharan, 2013) with log-
barrier as the regularizer, analyzed in depth in (Wei & Luo,
2018). Here, optimism refers to something different from
the optimistic exploration in Section 4. It corresponds to the
fact that after a standard mirror descent update (Eq. (6)), the
algorithm further makes a similar update using an optimistic
prediction of the next reward vector, which in our case is
simply the previous reward estimator (Eq. (7)). We refer the
reader to (Wei & Luo, 2018) for more details, but point out
that the optimistic prediction we use here is new.

It is clear that each MAB algorithm faces a non-stochastic
problem (since πk is changing over time) and thus it is
important to deploy an adversarial MAB algorithm. The
standard algorithm for adversarial MAB is EXP3 (Auer
et al., 2002), which was also used for solving adversarial
MDPs (Neu et al., 2013) (more comparisons with this to fol-
low). However, there are several important reasons for our
choice of the recently developed OOMD with log-barrier:

• First, the log-barrier regularizer produces a more ex-
ploratory distribution compared to EXP3 (as noticed in
e.g. (Agarwal et al., 2017)), so we do not need an ex-
plicit exploration over the actions, which significantly
simplifies the analysis compared to (Neu et al., 2013).

• Second, log-barrier regularizer provides more stable
updates compared to EXP3 in the sense that πk(a|s)
and πk−1(a|s) are within a multiplicative factor of
each other (see Lemma 7). This implies that the corre-
sponding policies and their Q-value functions are also
stable, which is critical for our analysis.

• Finally, the optimistic prediction of OOMD, together
with our particular reward estimator from ESTIMATEQ,
provides a variance reduction effect that leads to a
better regret bound in terms of ρ instead of thit. See
Lemma 8 and Lemma 9.

The regret guarantee of our algorithm is shown below.
Theorem 5. For ergodic MDPs, with an appropriate chosen
learning rate η for Algorithm 4, MDP-OOMD achieves

E[RT ] = Õ
(√

t3mixρAT

)
.

Note that in this bound, the dependence on the number of
states S is hidden in ρ, since ρ ≥

∑
s
µ∗(s)
µ∗(s) = S. Compared

to the bound of Algorithm 1 or some other model-based algo-
rithms such as UCRL2, this bound has an extra dependence
on tmix, a potentially large constant. As far as we know, all
existing mirror-descent-based algorithms for the average-
reward setting has the same issue (such as (Neu et al., 2013;
Wang, 2017; Abbasi-Yadkori et al., 2019a)). The role of tmix
in our analysis is almost the same as that of 1/(1−γ) in the
discounted setting (γ is the discount factor). Specifically,
a small tmix ensures 1) a short trajectory needed to approx-
imate the Q-function with expected trajectory reward (in
view of Eq. (12)) and 2) an upper bound for the magnitude
of q(s, a) and v(s) (Lemma 14). For the discounted setting
these are ensured by the discount factor already.

Comparisons. Neu et al. (2013) considered learning er-
godic MDPs with known transition kernel and adversarial
rewards, a setting incomparable to ours. Their algorithm
maintains a copy of EXP3 for each state, but the reward
estimators fed to these algorithms are constructed using
the knowledge of the transition kernel and are very dif-
ferent from ours. They proved a regret bound of order
Õ
(√

t3mixthitAT
)

, which is worse than ours since ρ ≤ thit.

In another recent work, (Wang, 2017) considered learn-
ing ergodic MDPs under the assumption that the learner
is provided with a generative model (an oracle that takes
in a state-action pair and output a sample of the next
state). They derived a sample-complexity bound of or-
der Õ

(
t2mixτ

2SA
ε2

)
for finding an ε-optimal policy, where

τ = max

{
maxs

(
µ∗(s)
1/S

)2

,maxs′,π

(
1/S
µπ(s′)

)2
}

, which

is at least maxπ maxs,s′
µ∗(s)
µπ(s′) by AM-GM inequality. This

result is again incomparable to ours, but we point out that
our distribution mismatch coefficient ρ is always bounded
by τS, while τ can be much larger than ρ on the other hand.

Finally, Abbasi-Yadkori et al. (2019a) considers a more
general setting with function approximation, and their algo-
rithm POLITEX maintains a copy of the standard exponential
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weight algorithm for each state, very similar to (Neu et al.,
2013). When specified to our tabular setting, one can verify
(according to their Theorem 5.2) that POLITEX achieves
t3mixthit

√
SAT

3
4 regret, which is significantly worse than

ours in terms of all parameters.

5.2. Proof sketch of Theorem 5

We first decompose the regret as follows:

RT =

T∑
t=1

J∗ − r(st, at)

= B

K∑
k=1

(J∗ − Jπk) +

K∑
k=1

∑
t∈Ik

(Jπk − r(st, at)) , (9)

where Ik := {(k − 1)B + 1, . . . , kB} is the set of time
steps for episode k. Using the reward difference lemma
(Lemma 15 in the appendix), the first term of Eq. (9) can be
written as

B
∑
s

µ∗(s)

[
K∑
k=1

∑
a

(π∗(a|s)− πk(a|s))qπk(s, a)

]
,

where the term in the square bracket can be recognized as
exactly the regret of the MAB algorithm for state s and
is analyzed in Lemma 8 of Section 5.3. Combining the
regret of all MAB algorithms, Lemma 9 then shows that in
expectation the first term of Eq. (9) is at most

Õ
(
BA

η
+
ηTN3ρ

B
+ η3TN6

)
. (10)

On the other hand, the expectation of the second term in

Eq.(9) can be further written as

E

[
K∑
k=1

∑
t∈Ik

(Jπk − r(st, at))

]

= E

[
K∑
k=1

∑
t∈Ik

(Es′∼p(·|st,at)[v
πk(s′)]− qπk(st, at))

]
(Bellman equation)

= E

[
K∑
k=1

∑
t∈Ik

(Es′∼p(·|st,at)[v
πk(s′)]− vπk(st+1))

]

+ E

[
K∑
k=1

∑
t∈Ik

(vπk(st)− qπk(st, at))

]

+ E

[
K∑
k=1

∑
t∈Ik

(vπk(st+1)− vπk(st))

]

= E

[
K∑
k=1

(vπk(skB+1)− vπk(s(k−1)B+1))

]
(the first two terms above are zero)

= E

[
K−1∑
k=1

(vπk(skB+1)− vπk+1(skB+1))

]
+ E

[
vπK (sKB+1)− vπ1(s1)

]
. (11)

The first term in the last expression can be bounded
by O(ηN3K) = O(ηN3T/B) due to the stability of
OOMDUPDATE (Lemma 7) and the second term is at most
O(tmix) according to Lemma 14 in the appendix.

Combining these facts with N = Õ(tmix), B = Õ(tmixthit),
Eq. (9) and Eq. (10) and choosing the optimal η, we arrive
at

E[RT ] = Õ
(
BA

η
+ η

t3mixρT

B
+ η3t6mixT

)
= Õ

(√
t3mixρAT +

(
t3mixthitA

) 3
4 T

1
4 + t2mixthitA

)
.

5.3. Auxiliary Lemmas

To analyze the regret, we establish several useful lemmas,
whose proofs can be found in the Appendix. First, we show
that β̂k(s, a) is an almost unbiased estimator for βπk(s, a).

Lemma 6. Let Ek[x] denote the expectation of a random
variable x conditioned on all history before episode k. Then
for any k, s, a (recall β defined in Eq. (8)),∣∣∣Ek [β̂k(s, a)

]
− βπk(s, a)

∣∣∣ ≤ O( 1

T

)
, (12)

Ek
[(
β̂k(s, a)− βπk(s, a)

)2
]
≤ O

(
N3 log T

Bπk(a|s)µπk(s)

)
.

(13)
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The next lemma shows that in OOMD, πk and πk−1 are
close in a strong sense, which further implies the stability
for several other related quantities.
Lemma 7. For any k, s, a,

|πk(a|s)− πk−1(a|s)| ≤ O(ηNπk−1(a|s)), (14)

|Jπk − Jπk−1 | ≤ O(ηN2),

|vπk(s)− vπk−1(s)| ≤ O(ηN3),

|qπk(s, a)− qπk−1(s, a)| ≤ O(ηN3),

|βπk(s, a)− βπk−1(s, a)| ≤ O(ηN3).

The next lemma shows the regret bound of OOMD based
on an analysis similar to (Wei & Luo, 2018).
Lemma 8. For a specific state s, we have

E

[
K∑
k=1

∑
a

(π∗(a|s)− πk(a|s))β̂k(s, a)

]
≤ O

(
A lnT

η

+ ηE

[
K∑
k=1

∑
a

πk(a|s)2
(
β̂k(s, a)− β̂k−1(s, a)

)2
])

,

where we define β̂0(s, a) = 0 for all s and a.

Finally, we state a key lemma for proving Theorem 5.
Lemma 9. MDP-OOMD ensures

E

[
B

K∑
k=1

∑
s

∑
a

µ∗(s) (π∗(a|s)− πk(a|s)) qπk(s, a)

]

= O
(
BA lnT

η
+ η

TN3ρ

B
+ η3TN6

)
.

6. Conclusions
In this work we propose two model-free algorithms for
learning infinite-horizon average-reward MDPs. They are
based on different ideas: one reduces the problem to the
discounted version, while the other optimizes the policy
directly via a novel application of adaptive adversarial multi-
armed bandit algorithms. The main open question is how to
achieve the information-theoretically optimal regret bound
via a model-free algorithm, if it is possible at all. We believe
that the techniques we develop in this work would be useful
in answering this question.

We also remark that to run our algorithms, prior knowledge
on parameters such as sp(v∗), thit, and tmix (or their up-
per bounds) is required. In practice, they can be viewed
as hyperparameters and tuned with standard techniques; in
theory, this kind of assumption is made in almost all pre-
vious works on average-reward MDPs, except for some
attempts in (Bartlett & Tewari, 2009) (unfortunately, their
algorithm is not computationally tractable). Thus, how to
learn an average-reward MDP without knowing the problem-
dependent quantities still largely remains open.

Acknowledgements
The authors would like to thank Csaba Szepesvari for point-
ing out the related works (Abbasi-Yadkori et al., 2019a;b),
Mengxiao Zhang for helping us prove Lemma 6, Gergely
Neu for clarifying the analysis in (Neu et al., 2013),
and Ronan Fruit for discussions on a related open prob-
lem presented at ALT 2019. Support from NSF for MJ
(award ECCS-1810447), HL (awards IIS-1755781 and IIS-
1943607), HS (award CCF-1817212) and RJ (awards ECCS-
1810447 and CCF-1817212) is gratefully acknowledged.

References
Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N.,

Szepesvari, C., and Weisz, G. Politex: Regret bounds for
policy iteration using expert prediction. In International
Conference on Machine Learning, pp. 3692–3702, 2019a.

Abbasi-Yadkori, Y., Lazic, N., Szepesvari, C., and Weisz,
G. Exploration-enhanced politex. arXiv preprint
arXiv:1908.10479, 2019b.

Agarwal, A., Luo, H., Neyshabur, B., and Schapire, R. E.
Corralling a band of bandit algorithms. In Conference on
Learning Theory, pp. 12–38, 2017.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan,
G. Optimality and approximation with policy gradient
methods in Markov decision processes. arXiv preprint
arXiv:1908.00261, 2019.

Agrawal, S. and Jia, R. Optimistic posterior sampling for
reinforcement learning: worst-case regret bounds. In
Advances in Neural Information Processing Systems, pp.
1184–1194, 2017.

Auer, P. and Ortner, R. Logarithmic online regret bounds
for undiscounted reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 49–56, 2007.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing, 32(1):48–77, 2002.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 263–272. JMLR. org, 2017.

Bartlett, P. L. and Tewari, A. Regal: A regularization based
algorithm for reinforcement learning in weakly communi-
cating mdps. In Proceedings of the Twenty-Fifth Confer-
ence on Uncertainty in Artificial Intelligence, pp. 35–42.
AUAI Press, 2009.

Bubeck, S., Li, Y., Luo, H., and Wei, C.-Y. Improved
path-length regret bounds for bandits. In Conference On
Learning Theory, 2019.



Model-free RL in Infinite-horizon Average-reward MDPs

Chiang, C.-K., Yang, T., Lee, C.-J., Mahdavi, M., Lu, C.-J.,
Jin, R., and Zhu, S. Online optimization with gradual
variations. In Conference on Learning Theory, pp. 6–1,
2012.

Dong, K., Wang, Y., Chen, X., and Wang, L. Q-learning with
ucb exploration is sample efficient for infinite-horizon
mdp. arXiv preprint arXiv:1901.09311, 2019.

Fruit, R., Pirotta, M., and Lazaric, A. Near optimal
exploration-exploitation in non-communicating Markov
decision processes. In Advances in Neural Information
Processing Systems, pp. 2994–3004, 2018a.

Fruit, R., Pirotta, M., Lazaric, A., and Ortner, R. Effi-
cient bias-span-constrained exploration-exploitation in
reinforcement learning. In International Conference on
Machine Learning, pp. 1573–1581, 2018b.

Fruit, R., Pirotta, M., and Lazaric, A. Improved analysis
of ucrl2b, 2019. Available at rlgammazero.github.
io/docs/ucrl2b_improved.pdf.

Gopalan, A. and Mannor, S. Thompson sampling for learn-
ing parameterized Markov decision processes. In Confer-
ence on Learning Theory, pp. 861–898, 2015.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(Apr):1563–1600, 2010.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
Q-learning provably efficient? In Advances in Neural
Information Processing Systems, pp. 4863–4873, 2018.

Kakade, S. and Langford, J. Approximately optimal approx-
imate reinforcement learning. In Proceedings of the 34th
International Conference on Machine Learning, 2002.
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A. Omitted Proofs in Section 4
In this section, we provide detailed proof for the lemmas used in Section 4. Recall that the learning rate ατ = H+1

H+τ is
similar to the one used by (Jin et al., 2018). For notational convenience, let

α0
τ :=

τ∏
j=1

(1− αj), αiτ := αi

τ∏
j=i+1

(1− αj). (15)

It can be verified that α0
τ = 0 for τ ≥ 1 and we define α0

0 = 1. These quantities are used in the proof of Lemma 3 and have
some nice properties summarized in the following lemma.
Lemma 10 ((Jin et al., 2018)). The following properties hold for αiτ :

1. 1√
τ
≤
∑τ
i=1

αiτ√
i
≤ 2√

τ
for every τ ≥ 1.

2.
∑τ
i=1(αiτ )2 ≤ 2H

τ for every τ ≥ 1.

3.
∑τ
i=1 α

i
τ = 1 for every τ ≥ 1 and

∑∞
τ=i α

i
τ = 1 + 1

H for every i ≥ 1.

Also recall the well-known Azuma’s inequality:
Lemma 11 (Azuma’s inequality). Let X1, X2, · · · be a martingale difference sequence with |Xi| ≤ ci for all i. Then, for
any 0 < δ < 1,

P

(
T∑
i=1

Xi ≥
√

2c̄2T ln
1

δ

)
≤ δ,

where c̄2T :=
∑T
i=1 c

2
i .

A.1. Proof of Lemma 2

Lemma 2 (Restated). Let V ∗ be the optimal value function in the discounted MDP with discount factor γ and v∗ be the
optimal value function in the undiscounted MDP. Then,

1. |J∗ − (1− γ)V ∗(s)| ≤ (1− γ) sp(v∗), ∀s ∈ S,

2. sp(V ∗) ≤ 2 sp(v∗).

Proof. 1. Let π∗ and πγ be the optimal policy under undiscounted and discounted settings, respectively. By Bellman’s
equation, we have

v∗(s) = r(s, π∗(s))− J∗ + Es′∼p(·|s,π∗(s))v∗(s′).

Consider a state sequence s1, s2, · · · generated by π∗. Then, by sub-optimality of π∗ for the discounted setting, we
have

V ∗(s1) ≥ E

[ ∞∑
t=1

γt−1r(st, π
∗(st))

∣∣∣∣ s1

]

= E

[ ∞∑
t=1

γt−1 (J∗ + v∗(st)− v∗(st+1))

∣∣∣∣ s1

]

=
J∗

1− γ
+ v∗(s1)− E

[ ∞∑
t=2

(γt−2 − γt−1)v∗(st)

∣∣∣∣ s1

]

≥ J∗

1− γ
+ min

s
v∗(s)−max

s
v∗(s)

∞∑
t=2

(γt−2 − γt−1)

=
J∗

1− γ
− sp(v∗),
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where the first equality is by the Bellman equation for the undiscounted setting.

Similarly, for the other direction, let s1, s2, · · · be generated by πγ . We have

V ∗(s1) = E

[ ∞∑
t=1

γt−1r(st, πγ(st))

∣∣∣∣ s1

]

≤ E

[ ∞∑
t=1

γt−1 (J∗ + v∗(st)− v∗(st+1))

∣∣∣∣ s1

]

=
J∗

1− γ
+ v∗(s1)− E

[ ∞∑
t=2

(γt−2 − γt−1)v∗(st)

∣∣∣∣ s1

]

≤ J∗

1− γ
+ max

s
v∗(s)−min

s
v∗(s)

∞∑
t=2

(γt−2 − γt−1)

=
J∗

1− γ
+ sp(v∗),

where the first inequality is by sub-optimality of πγ for the undiscounted setting.

2. Using previous part, for any s1, s2 ∈ S, we have

|V ∗(s1)− V ∗(s2)| ≤
∣∣∣V ∗(s1)− J∗

1− γ

∣∣∣+
∣∣∣V ∗(s2)− J∗

1− γ

∣∣∣ ≤ 2 sp(v∗).

Thus, sp(V ∗) ≤ 2 sp(v∗).

A.2. Proof of Lemma 3

Lemma 3. With probability at least 1− δ,

T∑
t=1

(V ∗(st)−Q∗(st, at)) ≤ 4HSA+ 24 sp(v∗)

√
HSAT ln

2T

δ
.

Proof. We condition on the statement of Lemma 12, which happens with probability at least 1 − δ. Let nt ≥ 1 denote
nt+1(st, at), that is, the total number of visits to the state-action pair (st, at) for the first t rounds (including round t). Also
let ti(s, a) denote the timestep at which (s, a) is visited the i-th time. Recalling the definition of αint in Eq. (15), we have

T∑
t=1

(
V̂t(st)− V ∗(st)

)
+

T∑
t=1

(V ∗(st)−Q∗(st, at)) (16)

=

T∑
t=1

(
Q̂t(st, at)−Q∗(st, at)

)
(because at = argmaxa Q̂t(st, a))

=

T∑
t=1

(
Q̂t+1(st, at)−Q∗(st, at)

)
+

T∑
t=1

(
Q̂t(st, at)− Q̂t+1(st, at)

)
(17)

≤ 12 sp(v∗)

T∑
t=1

√
H

nt
ln

2T

δ
+ γ

T∑
t=1

nt∑
i=1

αint

[
V̂ti(st,at)(sti(st,at)+1)− V ∗(sti(st,at)+1)

]
+ SAH. (18)

Here, we apply Lemma 12 to bound the first term of Eq .(17) (note α0
nt = 0 by definition since nt ≥ 1), and also bound the

second term of Eq .(17) by SAH since for each fixed (s, a), Q̂t(s, a) is non-increasing in t and overall cannot decrease by
more than H (the initial value).
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To bound the third term of Eq. (18) we write:

γ

T∑
t=1

nt∑
i=1

αint

[
V̂ti(st,at)(sti(st,at)+1)− V ∗(sti(st,at)+1)

]

= γ

T∑
t=1

∑
s,a

1[st=s,at=a]

nt+1(s,a)∑
i=1

αint+1(s,a)

[
V̂ti(s,a)(sti(s,a)+1)− V ∗(sti(s,a)+1)

]

= γ
∑
s,a

nT+1(s,a)∑
j=1

j∑
i=1

αij

[
V̂ti(s,a)(sti(s,a)+1)− V ∗(sti(s,a)+1)

]
.

By changing the order of summation on i and j, the latter is equal to

γ
∑
s,a

nT+1(s,a)∑
i=1

nT+1(s,a)∑
j=i

αij

[
V̂ti(s,a)(sti(s,a)+1)− V ∗(sti(s,a)+1)

]

= γ
∑
s,a

nT+1(s,a)∑
i=1

[
V̂ti(s,a)(sti(s,a)+1)− V ∗(sti(s,a)+1)

] nT+1(s,a)∑
j=i

αij

Now, we can upper bound
∑nT+1(s,a)
j=i αij by

∑∞
j=i α

i
j where the latter is equal to 1 + 1

H by Lemma 10. Since
V̂ti(s,a)(sti(s,a)+1)− V ∗(sti(s,a)+1) ≥ 0 (by Lemma 12), we can write:

γ
∑
s,a

nT+1(s,a)∑
i=1

[
V̂ti(s,a)(sti(s,a)+1)− V ∗(sti(s,a)+1)

] nT+1(s,a)∑
j=i

αij

≤ γ
∑
s,a

nT+1(s,a)∑
i=1

[
V̂ti(s,a)(sti(s,a)+1)− V ∗(sti(s,a)+1)

] ∞∑
j=i

αij

= γ
∑
s,a

nT+1(s,a)∑
i=1

[
V̂ti(s,a)(sti(s,a)+1)− V ∗(sti(s,a)+1)

](
1 +

1

H

)

=

(
1 +

1

H

)
γ

T∑
t=1

[
V̂t(st+1)− V ∗(st+1)

]
=

(
1 +

1

H

)
γ

T∑
t=1

[
V̂t+1(st+1)− V ∗(st+1)

]
+

(
1 +

1

H

) T∑
t=1

[
V̂t(st+1)− V̂t+1(st+1)

]
≤
T+1∑
t=2

[
V̂t(st)− V ∗(st)

]
+

(
1 +

1

H

)
SH.

The last inequality is because
(
1 + 1

H

)
γ ≤ 1 and that for any state s, V̂t(s) ≥ V̂t+1(s) and the value can decrease by at

most H (the initial value). Substituting in Eq. (18) and telescoping with the left hand side, we have

T∑
t=1

(V ∗(st)−Q∗(st, at)) ≤ 12 sp(v∗)

T∑
t=1

√
H

nt
ln

2T

δ
+
(
V̂T+1(sT+1)− V ∗(sT+1)

)
+

(
1 +

1

H

)
SH + SAH

≤ 12 sp(v∗)

T∑
t=1

√
H

nt
ln

2T

δ
+ 4SAH.

Moreover,
∑T
t=1

1√
nt
≤ 2
√
SAT because

T∑
t=1

1√
nt+1(st, at)

=

T∑
t=1

∑
s,a

1[st=s,at=a]√
nt+1(s, a)

=
∑
s,a

nT+1(s,a)∑
j=1

1√
j
≤
∑
s,a

2
√
nT+1(s, a) ≤ 2

√
SA

∑
s,a

nT+1(s, a) = 2
√
SAT ,
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where the last inequality is by Cauchy-Schwarz inequality. This finishes the proof.

Lemma 12. With probability at least 1− δ, for any t = 1, . . . , T and state-action pair (s, a), the following holds

0 ≤ Q̂t+1(s, a)−Q∗(s, a) ≤ Hα0
τ + γ

τ∑
i=1

αiτ

[
V̂ti(sti+1)− V ∗(sti+1)

]
+ 12 sp(v∗)

√
H

τ
ln

2T

δ
,

where τ = nt+1(s, a) (i.e., the total number of visits to (s, a) for the first t timesteps), αiτ is defined by (15), and
t1, . . . , tτ ≤ t are the timesteps on which (s, a) is taken.

Proof. Recursively substituting Qt(s, a) in Eq. (3) of the algorithm, we have

Qt+1(s, a) = Hα0
τ +

τ∑
i=1

αiτ

[
r(s, a) + γV̂ti(sti+1)

]
+

τ∑
i=1

αiτ bi.

Moreover, since
∑τ
i=1 α

i
τ = 1 (Lemma 10), By Bellman equation we have

Q∗(s, a) = α0
τQ
∗(s, a) +

τ∑
i=1

αiτ
[
r(s, a) + γEs′∼p(·|s,a)V

∗(s′)
]
.

Taking their difference and adding and subtracting a term γ
∑τ
i=1 α

i
τV
∗(sti+1) lead to:

Qt+1(s, a)−Q∗(s, a) = α0
τ (H −Q∗(s, a)) + γ

τ∑
i=1

αiτ

[
V̂ti (sti+1)− V ∗ (sti+1)

]
+ γ

τ∑
i=1

αiτ
[
V ∗(sti+1)− Es′∼p(·|s,a)V

∗(s′)
]

+

τ∑
i=1

αiτ bi.

The first term is upper bounded by α0
τH clearly and lower bounded by 0 since Q∗(s, a) ≤

∑∞
i=0 γ

i = 1
1−γ = H .

The third term is a martingale difference sequence with each term bounded in [−γαiτ sp(V ∗), γαiτ sp(V ∗)]. There-

fore, by Azuma’s inequality (Lemma 11), its absolute value is bounded by γ sp(V ∗)
√

2
∑τ
i=1(αiτ )2 ln 2T

δ ≤

2γ sp(V ∗)
√

H
τ ln 2T

δ ≤ 4γ sp(v∗)
√

H
τ ln 2T

δ with probability at least 1 − δ
T , where the first inequality is by Lemma

10 and the last inequality is by Lemma 2. Note that when t varies from 1 to T and (s, a) varies over all possible state-action
pairs, the third term only takes T different forms. Therefore, by taking a union bound over these T events, we have: with

probability 1− δ, the third term is bounded by 4γ sp(v∗)
√

H
τ ln 2T

δ in absolute value for all t and (s, a).

The forth term is lower bounded by 4 sp(v∗)
√

H
τ ln 2T

δ and upper bounded by 8 sp(V ∗)
√

H
τ ln 2T

δ , by Lemma 10.

Combining all aforementioned upper bounds and the fact Q̂t+1(s, a) = min
{
Q̂t(s, a), Qt+1(s, a)

}
≤ Qt+1(s, a) we

prove the upper bound in the lemma statement. To prove the lower bound, further note that the second term can be written
as γ

∑τ
i=1 α

i
τ

[
maxa Q̂ti(sti+1, a)−maxaQ

∗(sti+1, a)
]
. Using a direct induction with all aforementioned lower bounds

and the fact Q̂t+1(s, a) = min
{
Q̂t(s, a), Qt+1(s, a)

}
we prove the lower bound in the lemma statement as well.

A.3. Proof of Lemma 4

Lemma 4. With probability at least 1− δ,

T∑
t=1

(Q∗(st, at)− γV ∗(st)− r(st, at)) ≤ 2 sp(v∗)

√
2T ln

1

δ
+ 2 sp(v∗).
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Proof. By Bellman equation for the discounted problem, we have Q∗(st, at) − γV ∗(st) − r(st, at) =
γ
(
Es′∼p(·|st,at)[V ∗(s′)]− V ∗(st)

)
. Adding and subtracting V ∗(st+1) and summing over t we will get

T∑
t=1

(Q∗(st, at)− γV ∗(st)− r(st, at)) = γ

T∑
t=1

(
Es′∼p(·|st,at)[V

∗(s′)]− V ∗(st+1)
)

+ γ

T∑
t=1

(V ∗(st+1)− V ∗(st))

The summands of the first term on the right hand side constitute a martingale difference sequence. Thus, by Azuma’s

inequality (Lemma 11) and the fact that sp(V ∗) ≤ 2 sp(v∗) (Lemma 2), this term is upper bounded by 2γ sp(v∗)
√

2T ln 1
δ ,

with probability at least 1− δ. The second term is equal to γ(V ∗(sT+1)− V ∗(s1)) which is upper bounded by 2γ sp(v∗).
Recalling γ < 1 completes the proof.

B. Omitted Proofs in Section 5 — Proofs for Lemma 6 and Lemma 7
B.1. Auxiliary Lemmas

In this subsection, we state several lemmas that will be helpful in the analysis.

Lemma 13 ((Levin & Peres, 2017, Section 4.5)). Define

tmix(ε) := max
π

min
{
t ≥ 1

∣∣∣ ‖(Pπ)t(s, ·)− µπ‖1 ≤ ε, ∀s
}
,

so that tmix = tmix(
1
4 ). We have

tmix(ε) ≤
⌈

log2

1

ε

⌉
tmix

for any ε ∈ (0, 1
2 ].

Corollary 13.1. For an ergodic MDP with mixing time tmix, we have

‖(Pπ)t(s, ·)− µπ‖1 ≤ 2 · 2−
t
tmix , ∀π, s

for all π and all t ≥ 2tmix.

Proof. Lemma 13 implies for any ε ∈ (0, 1
2 ], as long as t ≥ dlog2(1/ε)etmix, we have

‖(Pπ)t(s, ·)− µπ‖1 ≤ ε.

This condition can be satisfied by picking log2(1/ε) = t
tmix
− 1, which leads to ε = 2 · 2−

t
tmix .

Corollary 13.2. Let N = 4tmix log2 T . For an ergodic MDP with mixing time tmix < T/4, we have for all π:

∞∑
t=N

‖(Pπ)t(s, ·)− µπ‖1 ≤
1

T 3
.

Proof. By Corollary 13.1,

∞∑
t=N

‖(Pπ)t(s, ·)− µπ‖1 ≤
∞∑
t=N

2 · 2−
t
tmix =

2 · 2−
N
tmix

1− 2
− 1
tmix

≤ 2tmix

ln 2
· 2 · 2−

N
tmix =

2tmix

ln 2
· 2 · 1

T 4
≤ 1

T 3
.

Lemma 14 (Stated in (Wang, 2017) without proof). For an ergodic MDP with mixing time tmix, and any π, s, a,

|vπ(s)| ≤ 5tmix,

|qπ(s, a)| ≤ 6tmix.
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Proof. Using the identity of Eq. (4) we have

|vπ(s)| =

∣∣∣∣∣
∞∑
t=0

((Pπ)t(s, ·)− µπ)>rπ

∣∣∣∣∣
≤
∞∑
t=0

∥∥(Pπ)t(s, ·)− µπ
∥∥

1
‖rπ‖∞

≤
2tmix−1∑
t=0

∥∥(Pπ)t(s, ·)− µπ
∥∥

1
+

∞∑
i=2

(i+1)tmix−1∑
t=itmix

∥∥(Pπ)t(s, ·)− µπ
∥∥

1

≤ 4tmix +

∞∑
i=2

2 · 2−itmix (by ‖(Pπ)t(s, ·)− µπ‖1 ≤ 2 and Corollary 13.1)

≤ 5tmix,

and thus

|qπ(s, a)| =
∣∣r(s, a) + Es′∼p(·|s,a)[v

π(s′)]
∣∣ ≤ 1 + 5tmix ≤ 6tmix.

Lemma 15 ((Neu et al., 2013, Lemma 2)). For any two policies π, π̃,

J π̃ − Jπ =
∑
s

∑
a

µπ̃(s) (π̃(a|s)− π(a|s)) qπ(s, a).

Proof. Using Bellman equation we have∑
s

∑
a

µπ̃(s)π̃(a|s)qπ(s, a)

=
∑
s

∑
a

µπ̃(s)π̃(a|s)

(
r(s, a)− Jπ +

∑
s′

p(s′|s, a)vπ(s′)

)
= J π̃ − Jπ +

∑
s′

µπ̃(s′)vπ(s′)

= J π̃ − Jπ +
∑
s

µπ̃(s)vπ(s)

= J π̃ − Jπ +
∑
s

∑
a

µπ̃(s)π(a|s)qπ(s, a),

where the second equality uses the facts J π̃ =
∑
s

∑
a µ

π̃(s)π̃(a|s)r(s, a) and
∑
s,a µ

π̃(s)π̃(a|s)p(s′|s, a) = µπ̃(s′).
Rearranging gives the desired equality.

Lemma 16. Let I = {t1 +1, t1 +2, . . . , t2} be a certain period of an episode k of Algorithm 2 with |I| ≥ N = 4tmix log2 T .
Then for any s, the probability that the algorithm never visits s in I is upper bounded by(

1− 3µπk(s)

4

)b |I|N c
.

Proof. Consider a subset of I: {t1 + N, t1 + 2N, . . .} which consists of at least
⌊
t2−t1
N

⌋
rounds that are at least N -step

away from each other. By Corollary 13.1, we have for any i,∣∣∣Pr[st1+iN = s
∣∣ st1+(i−1)N ]− µπk(s)

∣∣∣ ≤ 2 · 2−
N
tmix ≤ 2 · 2−4 log2 T ≤ 2

T 4
,

that is, conditioned on the state at time t1 + (i − 1)N , the state distribution at time t1 + iN is close to the stationary
distribution induced by πk. Therefore we further have Pr[st1+iN = s

∣∣ st1+(i−1)N ] ≥ µπk(s) − 2
T 4 ≥ 3

4µ
πk(s), where
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the last step uses the fact µπk(s) ≥ 1
thit
≥ 4

T . The probability that the algorithm does not visit s in any of the rounds
{t1 +N, t1 + 2N, . . .} is then at most(

1− 3µπk(s)

4

)b t2−t1N c
=

(
1− 3µπk(s)

4

)b |I|N c
,

finishing the proof.

B.2. Proof for Lemma 6

Proof for Eq.(12). In this proof, we consider a specific episode k and a specific state s. For notation simplicity, we use π for
πk throughout this proof, and all the expectations or probabilities are conditioned on the history before episode k. Suppose
that when Algorithm 2 calls ESTIMATEQ in episode k for state s, it finds M disjoint intervals that starts from s. Denote the
reward estimators corresponding to the i-th interval as β̂k,i(s, ·) (i.e., the yi(·) in Algorithm 3), and the time when the i-th
interval starts as τi (thus sτi = s). Then by the algorithm, we have

β̂k(s, a) =

{∑M
i=1 β̂k,i(s,a)

M if M > 0,

0 if M = 0.
(19)

Since each β̂k,i(s, a) is constructed by a length-(N + 1) trajectory starting from s at time τi ≤ kB −N , we can calculate
its conditional expectation as follows:

E
[
β̂k,i(s, a)

∣∣∣sτi = s
]

= Pr[aτi = a | sτi = s]×
r(s, a) + E

[∑τi+N
t=τi+1 r(st, at)

∣∣∣ (sτi , aτi) = (s, a)
]

π(a|s)

= r(s, a) +
∑
s′

p(s′|s, a)E

[
τi+N∑
t=τi+1

r(st, at)
∣∣∣sτi+1 = s′

]

= r(s, a) +
∑
s′

p(s′|s, a)

N−1∑
j=0

e>s′(P
π)jrπ

= r(s, a) +
∑
s′

p(s′|s, a)

N−1∑
j=0

(e>s′(P
π)j − (µπ)>)rπ +NJπ (because µπ>rπ = Jπ)

= r(s, a) +
∑
s′

p(s′|s, a)vπ(s′) +NJπ −
∑
s′

p(s′|s, a)

∞∑
j=N

(e>s′(P
π)j − (µπ)>)rπ (By Eq. (4))

= qπ(s, a) +NJπ − δ(s, a)

= βπ(s, a)− δ(s, a), (20)

where δ(s, a) ,
∑
s′ p(s

′|s, a)
∑∞
j=N (e>s′(P

π)j − (µπ)>)rπ . By Corollary 13.2,

|δ(s, a)| ≤ 1

T 3
. (21)

Thus, ∣∣∣∣∣E [β̂k,i(s, a)
∣∣∣sτi = s

]
− βπ(s, a)

∣∣∣∣∣ ≤ 1

T 3
.

This shows that β̂k,i(s, a) is an almost unbiased estimator for βπ conditioned on all history before τi. Also, by our selection
of the episode length, M > 0 will happen with very high probability according to Lemma 16. These facts seem to indicate
that β̂k(s, a) – an average of several β̂k,i(s, a) – will also be an almost unbiased estimator for βπ(s, a) with small error.
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However, a caveat here is that the quantity M in Eq.(19) is random, and it is not independent from the reward estimators∑M
i=1 β̂k,i(s, a). Therefore, to argue that the expectation of E[β̂k(s, a)] is close to βπ(s, a), more technical work is needed.

Specifically, we use the following two steps to argue that E[β̂k(s, a)] is close to βπ(s, a).
Step 1. Construct an imaginary world where β̂k(s, a) is an almost unbiased estimator of βπ(s, a).
Step 2. Argue that the expectation of β̂k(s, a) in the real world and the expectation of β̂k(s, a) in the imaginary world are
close.

� � � � ��

�,� �,�
wait to see 
(length = �)

wait to see 
(length = �)

do nothing do nothing

� � �

Figure 1. An illustration for the sub-algorithm ESTIMATEQ with target state s (best viewed in color). The red round points indicate that
the algorithm “starts to wait” for a visit to s. When the algorithm reaches s (the blue stars) at time τi, it starts to record the sum of rewards
in the following N + 1 steps, i.e.

∑τi+N
t=τi

r(st, at). This is used to construct β̂k,i(s, ·). The next point the algorithm “starts to wait for s”
would be τi + 2N if this is still no later than kB −N .

Step 1. We first examine what ESTIMATEQ sub-algorithm does in an episode k for a state s. The goal of this sub-algorithm
is to collect disjoint intervals of length N + 1 that start from s, calculate a reward estimator from each of them, and finally
average the estimators over all intervals to get a good estimator for βπ(s, ·). However, after our algorithm collects an interval
[τ, τ +N ], it rests for another N steps before starting to find the next visit to s – i.e., it restarts from τ + 2N (see Line 6 in
ESTIMATEQ (Algorithm 3), and also the illustration in Figure 1).

The goal of doing this is to de-correlate the observed reward and the number of collected intervals: as shown in Eq.(19),
these two quantities affect the numerator and the denominator of β̂k(s, ·) respectively, and if they are highly correlated,
then β̂k(s, ·) may be heavily biased from βπ(s, ·). On the other hand, if we introduce the “rest time” after we collect each
interval (i.e., the dashed segments in Figure 1), then since the length of the rest time (N ) is longer than the mixing time,
the process will almost totally “forget” about the reward estimators collected before. In Figure 1, this means that the state
distributions at the red round points (except for the left most one) will be close to µπ when conditioned on all history that
happened N rounds ago.

We first argue that if the process can indeed “reset its memory” at those red round points in Figure 1 (except for the left most
one), then we get almost unbiased estimators for βπ(s, ·). That is, consider a process like in Figure 2 where everything
remains same as in ESTIMATEQ except that after every rest interval, the state distribution is directly reset to the stationary
distribution µπ .

Below we calculate the expectation of β̂k(s, a) in this imaginary world. As specified in Figure 2, we use τi to denote
the i-th time ESTIMATEQ starts to record an interval (therefore sτi = s), and let wi = τi − (τi−1 + 2N) for i > 1 and
w1 = τ1 − ((k − 1)B + 1) be the “wait time” before starting the i-th interval. Note the following facts in the imaginary
world:

1. M is determined by the sequence w1, w2, . . . because all other segments in the figures have fixed length.

2. w1 only depends on s(k−1)B+1 and Pπ , and wi only depends on the stationary distribution µπ and Pπ because of the
reset.

The above facts imply that in the imaginary world, w1, w2, . . ., as well as M , are all independent from
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� � � � ��

�,� �,�
wait to see 
(length = �)

wait to see 
(length = �)

do nothing do nothing

� � �

reset to stationary 
distribution �

reset to stationary 
distribution �

reset to stationary 
distribution �

Figure 2. The imaginary world (best viewed in color)

β̂k,1(s, a), β̂k,2(s, a), . . .. Let E′ denote the expectation in the imaginary world. Then

E′
[
β̂k(s, a)

]
= Pr[w1 ≤ B −N ]× E′{wi}

[
1

M

M∑
i=1

E′
[
β̂k,i(s, a)

∣∣∣{wi}]
∣∣∣∣∣w1 ≤ B −N

]
+ Pr[w1 > B −N ]× 0

= Pr[w1 ≤ B −N ]× E′{wi}

[
1

M

(
M∑
i=1

βπ(s, a)− δ(s, a)

)]
(by the same calculation as in (20))

= Pr[w1 ≤ B −N ]× (βπ(s, a)− δ(s, a))

= βπ(s, a)− δ′(s, a), (22)

where E′{wi} denotes the expectation over the randomness of w1, w2, . . ., and δ′(s, a) = (1 − Pr[w1 ≤ B −

N ]) (βπ(s, a)− δ(s, a)) + δ(s, a). By Lemma 16, we have Pr[w1 ≤ B − N ] ≥ 1 −
(

1− 3
4thit

)B−N
N

= 1 −(
1− 3

4thit

)4thit log2 T−1

≥ 1− 1
T 3 . Together with Eq. (21) and Lemma 14, we have

|δ′(s, a)| ≤ 1

T 3
(|βπ(s, a)|+ |δ(s, a)|) + |δ(s, a)| ≤ 1

T 3
(6tmix +N +

1

T 3
) +

1

T 3
= O

(
1

T 2

)
,

and thus ∣∣∣E′ [β̂k(s, a)
]
− βπ(s, a)

∣∣∣ = O
(

1

T 2

)
. (23)

Step 2. Note that β̂k(s, a) is a deterministic function of X = (M, τ1, T1, τ2, T2, . . . , τM , TM ), where Ti =

(aτi , sτi+1, aτi+1, . . . , sτi+N , aτi+N ). We use β̂k(s, a) = f(X) to denote this mapping. To say E[β̂k(s, a)] and E′[β̂k(s, a)]
are close, we bound their ratio:

E[β̂k(s, a)]

E′[β̂k(s, a)]
=

∑
X f(X)P(X)∑
X f(X)P′(X)

≤ max
X

P(X)

P′(X)
, (24)

where we use P and P′ to denote the probability mass function in the real world and the imaginary world respectively, and in
the last inequality we use the non-negativeness of f(X).

For a fixed sequence of X , the probability of generating X in the real world is

P(X) = P(τ1)× P(T1|τ1)× P(τ2|τ1, T1)× P(T2|τ2)× · · · × P(τM |τM−1, TM−1)

× P(TM |τM )× Pr
[
st 6= s, ∀t ∈ [τM + 2N, kB −N ]

∣∣∣τM , TM] . (25)
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In the imaginary world, it is

P′(X) = P(τ1)× P(T1|τ1)× P′(τ2|τ1, T1)× P(T2|τ2)× · · · × P′(τM |τM−1, TM−1)

× P(TM |τM )× Pr
[
st 6= s, ∀t ∈ [τM + 2N, kB −N ]

∣∣∣τM , TM] . (26)

Their difference only comes from P(τi+1|τi, Ti) 6= P′(τi+1|τi, Ti) because of the reset. Note that

P(τi+1|τi, Ti) =
∑
s′ 6=s

P(sτi+2N = s′|τi, Ti)× Pr
[
st 6= s, ∀t ∈ [τi + 2N, τi+1 − 1], sτi+1

= s
∣∣∣sτi+2N = s′

]
, (27)

P′(τi+1|τi, Ti) =
∑
s′ 6=s

P′(sτi+2N = s′|τi, Ti)× Pr
[
st 6= s, ∀t ∈ [τi + 2N, τi+1 − 1], sτi+1

= s
∣∣∣sτi+2N = s′

]
. (28)

Because of the reset in the imaginary world, P′(sτi+2N = s′|τi, Ti) = µπ(s′) for all s′; in the real world, since at time
τi + 2N , the process has proceeded N steps from τi +N (the last step of Ti), by Corollary 13.1 we have

P(sτi+2N = s′|τi, Ti)
P′(sτi+2N = s′|τi, Ti)

= 1 +
P(sτi+2N = s′|τi, Ti)− µπ(s′)

µπ(s′)
≤ 1 +

2

T 4µπ(s′)
≤ 1 +

1

T 3
for all s′,

which implies P(τi+1|τi,Ti)
P′(τi+1|τi,Ti) ≤ 1 + 1

T 3 by (27) and (28) . This further implies P(X)
P′(X) ≤

(
1 + 1

T 3

)M ≤ e MT3 ≤ e
1
T2 ≤ 1 + 2

T 2

by (25) and (26). From (24), we then have

E[β̂k(s, a)]

E′[β̂k(s, a)]
≤ 1 +

2

T 2
.

Thus, using the bound from Eq. (23) we have

E[β̂k(s, a)] ≤
(

1 +
2

T 2

)
E′[β̂k(s, a)] ≤

(
1 +

2

T 2

)(
βk(s, a) +O

(
1

T 2

))
≤ βk(s, a) +O

(
1

T

)
.

Similarly we can prove the other direction: βk(s, a) ≤ E[β̂k(s, a)] +O
(

1
T

)
, finishing the proof.

Proof for Eq.(13). We use the same notations, and the similar approach as in the previous proof for Eq. (12). That is, we first
bound the expectation of the desired quantity in the imaginary world, and then argue that the expectation in the imaginary
world and that in the real world are close.
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Step 1. Define ∆i = β̂k,i(s, a)− βπ(s, a) + δ(s, a). Then E′[∆i | {wi}] = 0 by Eq.(20). Thus in the imaginary world,

E′
[(
β̂k(s, a)− βπ(s, a))

)2
]

= E′
( 1

M

M∑
i=1

(
β̂k,i(s, a)− βπ(s, a)

))2

1[M > 0] + βπ(s, a)21[M = 0]


= E′

( 1

M

M∑
i=1

∆i − δ(s, a)

)2

1[M > 0] + βπ(s, a)21[M = 0]


≤ E′

2

(
1

M

M∑
i=1

∆i

)2

+ 2δ(s, a)2

1[M > 0] + βπ(s, a)21[M = 0]

 (using (a− b)2 ≤ 2a2 + 2b2)

≤ Pr[w1 ≤ B −N ]× E′{wi}

E′
2

(
1

M

M∑
i=1

∆i

)2

+ 2δ(s, a)2

∣∣∣∣∣ {wi}
 ∣∣∣∣∣w1 ≤ B −N

+ Pr[w1 > B −N ]× (N + 6tmix)2

(βπ(s, a) ≤ N + 6tmix by Lemma 14)

≤ E′{wi}

E′
2

(
1

M

M∑
i=1

∆i

)2 ∣∣∣∣∣ {wi}
 ∣∣∣∣∣w1 ≤ B −N

+O
(

1

T

)
(using Lemma 16: Pr[w1 > B −N ] ≤

(
1− 3

4thit

)B−N
N ≤ 1

T 3 .)

≤ E′{wi}

[
2

M2

M∑
i=1

E′
[
∆2
i

∣∣ {wi}]
∣∣∣∣∣w1 ≤ B −N

]
+O

(
1

T

)
(∆i is zero-mean and independent of each other conditioned on {wi})

≤ E′{wi}

[
2

M2
·M × O(N2)

π(a|s)

∣∣∣∣∣w1 ≤ B −N

]
+O

(
1

T

)
(E′[∆2

i ] ≤ π(a|s) O(N2)
π(a|s)2 = O(N2)

π(a|s) by definition of β̂k(s, a), Lemma 14, and Eq. (21))

≤ O(N2)

π(a|s)
E′
[

1

M

∣∣∣ w1 ≤ B −N
]

+O
(

1

T

)
. (29)

Since Pr′[M = 0] ≤ 1
T 3 by Lemma 16, we have Pr′[w1 ≤ B −N ] = Pr′[M > 0] ≥ 1− 1

T 3 . Also note that if

M < M0 :=
B −N

2N + 4N log T
µπ(s)

,

then there exists at least one waiting interval (i.e., wi) longer than 4N log T
µπ(s) (see Figure 1 or 2) . By Lemma 16, this happens

with probability smaller than
(

1− 3µπ(s)
4

) 4 log T
µπ(s) ≤ 1

T 3 .

Therefore,

E′
[

1

M

∣∣∣M > 0

]
=

∑∞
m=1

1
m Pr′[M = m]

Pr′[M > 0]
≤

1× Pr′[M < M0] + 1
M0
× Pr′[M ≥M0]

Pr′[M > 0]

≤
1× 1

T 3 +
2N+ 4N log T

µπ(s)

B−N

1− 1
T 3

≤ O
(
N log T

Bµπ(s)

)
.

Combining with (29), we get

E′
[(
β̂k(s, a)− βπ(s, a))

)2
]
≤ O

(
N3 log T

Bπ(a|s)µπ(s)

)
.
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Step 2. By the same argument as in the “Step 2” of the previous proof for Eq. (12), we have

E
[(
β̂k(s, a)− βπ(s, a))

)2
]
≤
(

1 +
2

T 2

)
E′
[(
β̂k(s, a)− βπ(s, a))

)2
]
≤ O

(
N3 log T

Bπ(a|s)µπ(s)

)
,

which finishes the proof.

B.3. Proof for Lemma 7

Proof. We defer the proof of Eq. (14) to Lemma 17 and prove the rest of the statements assuming Eq. (14). First, we have

|Jπk − Jπk−1 | =

∣∣∣∣∣∑
s

∑
a

µπk(s) (πk(a|s)− πk−1(a|s)) qπk−1(s, a)

∣∣∣∣∣ (By Lemma 15)

≤
∑
s

∑
a

µπk(s) |(πk(a|s)− πk−1(a|s))| |qπk−1(s, a)|

= O

(∑
s

∑
a

µπk(s)Nηπk−1(a|s)tmix

)
(By Eq. (14) and Lemma 14)

= O (ηtmixN) = O(ηN2). (30)

Next, to prove a bound on |vπk(s)− vπk−1(s)|, first note that for any policy π,

vπ(s) =

∞∑
n=0

(
e>s (Pπ)n − (µπ)>

)
rπ (By Eq. (4))

=

N−1∑
n=0

(
e>s (Pπ)n − (µπ)>

)
rπ +

∞∑
n=N

(
e>s (Pπ)n − (µπ)>

)
rπ

=

N−1∑
n=0

e>s (Pπ)nrπ −NJπ + errorπ(s), (Jπ = (µπ)>rπ)

where errorπ(s) :=
∑∞
n=N

(
e>s (Pπ)n − µπ

)>
rπ . By Corollary 13.2, |errorπ(s)| ≤ 1

T 2 . Thus

|vπk(s)− vπk−1(s)| =

∣∣∣∣∣
N−1∑
n=0

e>s ((Pπk)n − (Pπk−1)n) rπk +

N−1∑
n=0

e>s (Pπk−1)n(rπk − rπk−1)−NJπk +NJπk−1

∣∣∣∣∣+
2

T 2

≤
N−1∑
n=0

‖((Pπk)n − (Pπk−1)n) rπk‖∞ +

N−1∑
n=0

‖rπk − rπk−1‖∞ +N |Jπk − Jπk−1 |+ 2

T 2
. (31)

Below we bound each individual term above (using notation π′ := πk, π := πk−1, P ′ := Pπk , P := Pπk−1 , r′ := rπk , r :=
rπk−1 , µ := µπk−1 for simplicity). The first term can be bounded as

‖(P ′n − Pn)r′‖∞
= ‖

(
P ′(P ′n−1 − Pn−1) + (P ′ − P )Pn−1

)
r′‖∞

≤ ‖P ′(P ′n−1 − Pn−1)r′‖∞ + ‖(P ′ − P )Pn−1r′‖∞
≤ ‖(P ′n−1 − Pn−1)r′‖∞ + ‖(P ′ − P )Pn−1r′‖∞ (because every row of P ′ sums to 1)

= ‖(P ′n−1 − Pn−1)r′‖∞ + max
s

∣∣e>s (P ′ − P )Pn−1r′
∣∣

≤ ‖(P ′n−1 − Pn−1)r′‖∞ + max
s
‖e>s (P ′ − P )Pn−1‖1,
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where the last term can be further bounded by

max
s
‖e>s (P ′ − P )Pn−1‖1 ≤ max

s
‖e>s (P ′ − P )‖1

= max
s

(∑
s′

∣∣∣∣∣∑
a

(π′(a|s)− π(a|s))p(s′|s, a)

∣∣∣∣∣
)

≤ O

(
max
s

(∑
s′

∑
a

ηNπ(a|s)p(s′|s, a)

))
(By Eq. (14))

= O (ηN) .

Repeatedly applying this bound we arrive at ‖(P ′n − Pn)r′‖∞ ≤ O
(
ηN2

)
, and therefore,

N−1∑
n=0

‖((Pπk)n − (Pπk−1)n) rπk‖∞ ≤ O
(
ηN3

)
.

The second term in Eq. (31) can be bounded as (by Eq. (14) again)

N−1∑
n=0

‖r′ − r‖∞ =

N−1∑
n=0

max
s

∣∣∣∣∣∑
a

(π′(a|s)− π(a|s))r(s, a)

∣∣∣∣∣ ≤ O
(
N−1∑
n=0

max
s

∑
a

ηNπ(a|s)

)
= O

(
ηN2

)
,

and the third term in Eq. (31) is bounded via the earlier proof (for bounding |Jπk − Jπk−1 |):

N |Jπk − Jπk−1 | = O
(
ηN3

)
. (Eq.(30))

Plugging everything into Eq.(31), we prove |vπk(s)− vπk−1(s)| = O
(
ηN3

)
.

Finally, it is straightforward to prove the rest of the two statements:

|qπk(s, a)− qπk−1(s, a)| =
∣∣r(s, a) + Es′∼p(·|s,a)[v

πk(s′)]− r(s, a)− Es′∼p(·|s,a)[v
πk−1(s′)]

∣∣
=
∣∣Es′∼p(·|s,a)[v

πk(s′)− vπk−1(s′)]
∣∣ = O

(
ηN3

)
.

|βπk(s, a)− βπk−1(s, a)| ≤ |qπk(s, a)− qπk−1(s, a)|+N |Jπk − Jπk−1 | = O
(
ηN3

)
.

This completes the proof.

C. Analyzing Optimistic Online Mirror Descent with Log-barrier Regularizer — Proofs for
Eq.(14), Lemma 8, and Lemma 9

In this section, we derive the stability property (Eq.(14)) and the regret bound (Lemma 8 and Lemma 9) for optimistic
online mirror descent with the log-barrier regularizer. Most of the analysis is similar to that in (Wei & Luo, 2018; Bubeck
et al., 2019). Since in our MDP-OOMD algorithm, we run optimistic online mirror descent independently on each state,
the analysis in this section only focuses on a specific state s. We simplify our notations using πk(·) := πk(·|s), π′k(·) :=

π′k(·|s), β̂k(·) := β̂k(s, ·) throughout the whole section.

Our MDP-OOMD algorithm is effectively running Algorithm 5 on each state. We first verify that the condition in Line 1 of
Algorithm 5 indeed holds in our MDP-OOMD algorithm. Recall that in ESTIMATEQ (Algorithm 3) we collect trajectories
in every episode for every state. Suppose for episode k and state s it collects M trajectories that start from time τ1, . . . , τM
and has total reward R1, . . . , RM respectively. Let ma =

∑M
i=1 1[aτi = a], then we have

∑
ama = M . By our way of

constructing β̂k(s, ·), we have

β̂k(s, a) =

M∑
i=1

Ri1[aτi = a]

Mπk(a|s)

when M > 0. Thus we have
∑
a πk(a|s)β̂k(s, a) =

∑
a

∑M
i=1

Ri1[aτi=a]

M =
∑M
i=1

Ri
M ≤ (N + 1) because every Ri is

the total reward for an interval of length N + 1. This verifies the condition in Line 1 for the case M > 0. When M = 0,
ESTIMATEQ sets β̂(s, ·) to zero so the condition clearly still holds.
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Algorithm 5 Optimistic Online Mirror Descent (OOMD) with log-barrier regularizer
Define:
C := N + 1
Regularizer ψ(x) = 1

η

∑A
a=1 log 1

x(a) , for x ∈ RA+
Bregman divergence associated with ψ:

Dψ(x, x′) = ψ(x)− ψ(x′)− 〈∇ψ(x′), x− x′〉

Initialization: π′1 = π1 = 1
A1

for k = 1, . . . ,K do
1 Receive β̂k ∈ RA+ for which

∑
a πk(a)β̂k(a) ≤ C.

2 Update

π′k+1 = argmax
π∈∆A

{
〈π, β̂k〉 −Dψ(π, π′k)

}
πk+1 = argmax

π∈∆A

{
〈π, β̂k〉 −Dψ(π, π′k+1)

}

C.1. The stability property of Algorithm 5 — Proof of Eq.(14)

The statement and the proofs of Lemmas 17 and 18 are almost identical to those of Lemma 9 and 10 in (Bubeck et al., 2019).

Lemma 17. In Algorighm 5, if η ≤ 1
270C = 1

270(N+1) , then

|πk+1(a)− πk(a)| ≤ 120ηCπk(a).

To prove this lemma we make use of the following auxiliary result, where we use the notation ‖a‖M =
√
a>Ma for a

vector a ∈ RA and a positive semi-definite matrix M ∈ RA×A.

Lemma 18. For some arbitrary b1, b2 ∈ RA, a0 ∈ ∆A with η ≤ 1
270C , define{

a1 = argmina∈∆A
F1(a), where F1(a) , 〈a, b1〉+Dψ(a, a0),

a2 = argmina∈∆A
F2(a), where F2(a) , 〈a, b2〉+Dψ(a, a0).

(ψ and Dψ are defined in Algorithm 5). Then as long as ‖b1 − b2‖∇−2ψ(a1) ≤ 12
√
ηC, we have for all i ∈ [A],

|a2,i − a1,i| ≤ 60ηCa1,i.

Proof of Lemma 18. First, we prove ‖a1 − a2‖∇2ψ(a1) ≤ 60
√
ηC by contradiction. Assume ‖a1 − a2‖∇2ψ(a1) > 60

√
ηC.

Then there exists some a′2 lying in the line segment between a1 and a2 such that ‖a1 − a′2‖∇2ψ(a1) = 60
√
ηC. By Taylor’s

theorem, there exists a that lies in the line segment between a1 and a′2 such that

F2(a′2) = F2(a1) + 〈∇F2(a1), a′2 − a1〉+
1

2
‖a′2 − a1‖2∇2F2(a)

= F2(a1) + 〈b2 − b1, a′2 − a1〉+ 〈∇F1(a1), a′2 − a1〉+
1

2
‖a′2 − a1‖2∇2ψ(a)

≥ F2(a1)− ‖b2 − b1‖∇−2ψ(a1)‖a′2 − a1‖∇2ψ(a1) +
1

2
‖a′2 − a1‖2∇2ψ(a)

≥ F2(a1)− 12
√
ηC × 60

√
ηC +

1

2
‖a′2 − a1‖2∇2ψ(a) (32)

where in the first inequality we use Hölder inequality and the first-order optimality condition 〈∇F1(a1), a′2 − a1〉 ≥ 0, and
in the last inequality we use the conditions ‖b1 − b2‖∇−2ψ(a1) ≤ 12

√
ηC and ‖a1 − a′2‖∇2ψ(a1) = 60

√
ηC. Note that
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∇2ψ(x) is a diagonal matrix and∇2ψ(x)ii = 1
η

1
x2
i

. Therefore for any i ∈ [A],

60
√
ηC = ‖a′2 − a1‖∇2ψ(a1) =

√√√√ A∑
j=1

(a′2,j − a1,j)2

ηa2
1,j

≥
|a′2,i − a1,i|
√
ηa1,i

and thus
|a′2,i−a1,i|

a1,i
≤ 60ηC ≤ 2

9 , which implies max
{
a′2,i
a1,i

,
a1,i
a′2,i

}
≤ 9

7 . Thus the last term in (32) can be lower bounded by

‖a′2 − a1‖2∇2ψ(a) =
1

η

A∑
i=1

1

a2
i

(a′2,i − a1,i)
2 ≥ 1

η

(
7

9

)2 A∑
i=1

1

a2
1,i

(a′2,i − a1,i)
2

≥ 0.6‖a′2 − a1‖2∇2ψ(a1) = 0.6× (60
√
ηC)

2
= 2160ηC2.

Combining with (32) gives

F2(a′2) ≥ F2(a1)− 720ηC2 +
1

2
× 2160ηC2 > F2(a1).

Recall that a′2 is a point in the line segment between a1 and a2. By the convexity of F2, the above inequality implies
F2(a1) < F2(a2), contradicting the optimality of a2.

Thus we conclude ‖a1 − a2‖∇2ψ(a1) ≤ 60
√
ηC. Since ‖a1 − a2‖∇2ψ(a1) =

√∑A
j=1

(a1,j−a2,j)2
ηa21,j

≥ |a2,i−a1,i|√
ηa1,i

for all i,

we get |a2,i−a1,i|√
ηa1,i

≤ 60
√
ηC, which implies |a2,i − a1,i| ≤ 60ηCa1,i.

Proof of Lemma 17. We prove the following stability inequalities∣∣πk(a)− π′k+1(a)
∣∣ ≤ 60ηCπk(a), (33)∣∣π′k+1(a)− πk+1(a)
∣∣ ≤ 60ηCπk(a). (34)

Note that (33) and (34) imply

|πk(a)− πk+1(a)| ≤ 120ηCπk(a), (35)

which is the inequality we want to prove.

We use induction on k to prove (33) and (34). Note that (33) implies

π′k+1(a) ≤ πk(a) + 60ηCπk(a) ≤ πk(a) +
60

270
πk(a) ≤ 2πk(a), (36)

and (35) implies

πk+1(a) ≤ πk(a) + 120ηCπk(a) ≤ πk(a) +
120

270
πk(a) ≤ 2πk(a). (37)

Thus, (36) and (37) are also inequalities we may use in the induction process.

Base case. For the case k = 1, note that{
π1 = argminπ∈∆A

Dψ(π, π′1), (because π1 = π′1)
π′2 = argminπ∈∆A

〈π,−β̂1〉+Dψ(π, π′1).

To apply Lemma 18 and obtain (33), we only need to show ‖β̂1‖∇−2ψ(π1) ≤ 12
√
ηC. Recall ∇2ψ(u)ii = 1

η
1
u2
i

and

∇−2ψ(u)ii = ηu2
i . Thus,

‖β̂1‖2∇−2ψ(π1) ≤
A∑
a=1

ηπ1(a)2β̂1(a)2 ≤ ηC2
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because
∑
a π1(a)2β̂1(a)2 ≤

(∑
a π1(a)β̂1(a)

)2

≤ C2 by the condition in Line 1 of Algorithm 5. This proves (33) for
the base case.

Now we prove (34) of the base case. Note that{
π′2 = argminπ∈∆A

Dψ(π, π′2),

π2 = argminπ∈∆A

〈
π,−β̂1

〉
+Dψ(π, π′2).

(38)

Similarly, with the help of Lemma 18, we only need to show ‖β̂1‖∇−2ψ(π′2) ≤ 12
√
ηC. This can be verified by

‖β̂1‖2∇−2ψ(π′2) ≤
A∑
a=1

ηπ′2(a)2β̂1(a)2 ≤ 4

A∑
a=1

ηπ1(a)2β̂1(a)2 ≤ 4ηC2,

where the second inequality uses (36) for the base case (implied by (33) for the base case, which we just proved).

Induction. Assume (33) and (34) hold before k. To prove (33), observe that{
πk = argminπ∈∆A

〈
π,−β̂k−1

〉
+Dψ(π, π′k),

π′k+1 = argminπ∈∆A
〈π,−β̂k〉+Dψ(π, π′k).

(39)

To apply Lemma 18 and obtain (33), we only need to show ‖β̂k − β̂k−1‖∇−2ψ(πk) ≤ 12
√
ηC. This can be verified by

‖β̂k − β̂k−1‖2∇−2ψ(πk) ≤
A∑
a=1

ηπk(a)2
(
β̂k(a)− β̂k−1(a)

)2

≤ 2η

A∑
a=1

πk(a)2
(
β̂k(a)2 + β̂k−1(a)2

)
≤ 2η

A∑
a=1

πk(a)2β̂k(a)2 + 2η

A∑
a=1

4πk−1(a)2β̂k−1(a)2

≤ 10ηC2,

where the third inequality uses (37) for k − 1.

To prove (34), we observe: {
π′k+1 = argminπ∈∆A

Dψ(π, π′k+1),

πk+1 = argminπ∈∆A

〈
π,−β̂k

〉
+Dψ(π, π′k+1).

(40)

Similarly, with the help of Lemma 18, we only need to show ‖β̂k‖∇−2ψ(π′k+1) ≤ 12
√
ηC. This can be verified by

‖β̂k‖2∇−2ψ(π′k+1) ≤
A∑
a=1

ηπ′k+1(a)2β̂k(a)2 ≤ 4

A∑
a=1

ηπk(a)2β̂k(a)2 ≤ 4ηC2,

where in the second inequality we use (36) (implied by (33), which we just proved). This finishes the proof.

C.2. The regret bound of Algorithm 5 — Proof of Lemma 8

Proof of Lemma 8. By standard analysis for optimistic online mirror descent (e.g, (Wei & Luo, 2018, Lemma 6), (Chiang
et al., 2012, Lemma 5)), we have (recall β̂0 is the all-zero vector)

〈π̃ − πk, β̂k〉 ≤ Dψ(π̃, π′k)−Dψ(π̃, π′k+1) + 〈πk − π′k+1, β̂k−1 − β̂k〉 (41)
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for any π̃ ∈ ∆A. Summing over k and telescoping give

K∑
k=1

〈π̃ − πk, β̂k〉 ≤ Dψ(π̃, π′1)−Dψ(π̃, π′K+1) +

K∑
k=1

〈πk − π′k+1, β̂k−1 − β̂k〉 ≤ Dψ(π̃, π′1) +

K∑
k=1

〈πk − π′k+1, β̂k−1 − β̂k〉.

As in (Wei & Luo, 2018), we pick π̃ =
(
1− 1

T

)
π∗ + 1

TA1A, and thus

Dψ(π̃, π′1) = ψ(π̃)− ψ(π′1)− 〈∇ψ(π′1), π̃ − π′1〉
= ψ(π̃)− ψ(π′1) (∇ψ(π′1) = −Aη 1 and 〈1, π̃ − π′1〉 = 0)

=
1

η

A∑
a=1

log
1

π̃(a)
− 1

η

A∑
a=1

log
1

π′1(a)

≤ A log(AT )

η
− A logA

η
=
A lnT

η
.

On the other hand, to bound 〈πk − π′k+1, β̂k−1 − β̂k〉, we follow the same approach as in (Wei & Luo, 2018, Lemma
14): define Fk(π) = 〈π,−β̂k−1〉 + Dψ(π, π′k) and F ′k+1(π) = 〈π,−β̂k〉 + Dψ(π, π′k). Then by definition we have
πk = argminπ∈∆A

Fk(π) and π′k+1 = argminπ∈∆A
F ′t+1(π).

Observe that

F ′k+1(πk)− F ′k+1(π′k+1) = (πk − π′k+1)>(β̂k−1 − β̂k) + Fk(πk)− Fk(π′k+1)

≤ (πk − π′k+1)>(β̂k−1 − β̂k) (by the optimality of πk)

≤
∥∥πk − π′k+1

∥∥
∇2ψ(πk)

∥∥∥β̂k−1 − β̂k
∥∥∥
∇−2ψ(πk)

. (42)

On the other hand, for some ξ that lies on the line segment between πk and π′k+1, we have by Taylor’s theorem and the
optimality of π′k+1,

F ′k+1(πk)− F ′k+1(π′k+1) = ∇F ′k+1(π′k+1)>(πk − π′k+1) +
1

2

∥∥πk − π′k+1

∥∥2

∇2F ′k+1(ξ)

≥ 1

2

∥∥πk − π′k+1

∥∥2

∇2ψ(ξ)
(by the optimality of π′k+1 and that∇2F ′k+1 = ∇2ψ)

(43)

By Eq.(33) we know π′k+1(a) ∈
[

1
2πk(a), 2πk(a)

]
, and hence ξ(a) ∈

[
1
2πk(a), 2πk(a)

]
holds as well, because ξ is in the

line segment between πk and π′k+1. This implies for any x,

‖x‖∇2ψ(ξ) =

√√√√ A∑
a=1

x(a)2

ηξ(a)2
≥ 1

2

√√√√ A∑
a=1

x(a)2

ηπk(a)2
=

1

2
‖x‖∇2ψ(πk).

Combine this with (42) and (43), we get

∥∥πk − π′k+1

∥∥
∇2ψ(πk)

∥∥∥β̂k−1 − β̂k
∥∥∥
∇−2ψ(πk)

≥ 1

8

∥∥πk − π′k+1

∥∥2

∇2ψ(πk)
,

which implies
∥∥πk − π′k+1

∥∥
∇2ψ(πk)

≤ 8
∥∥∥β̂k−1 − β̂k

∥∥∥
∇−2ψ(πk)

. Hence we can bound the third term in (41) by

∥∥πk − π′k+1

∥∥
∇2ψ(πk)

∥∥∥β̂k−1 − β̂k
∥∥∥
∇−2ψ(πk)

≤ 8
∥∥∥β̂k−1 − β̂k

∥∥∥2

∇−2ψ(πk)
= 8η

∑
a

πk(a)2
(
β̂k−1(a)− β̂k(a)

)2

.
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Finally, combining everything we have

E

[
K∑
k=1

〈π∗ − πk, β̂k〉

]

= E

[
K∑
k=1

〈π∗ − π̃, β̂k〉+ 〈π̃ − πk, β̂k〉

]

≤

[
1

T

K∑
k=1

〈
π∗ − 1

A
1, β̂k

〉]
+O

(
A log T

η
+ η

K∑
k=1

∑
a

πk(a)2
(
β̂k−1(a)− β̂k(a)

)2
)
,

where the expectation of the first term is bounded by O
(
KN
T

)
= O(1) by the fact E[β̂k(s)] = O(N) (implied by Lemma 6

and Lemma 14). This completes the proof.

C.3. Proof for Lemma 9

Lemma 19 (Restatement of Lemma 9).

E

[
B

K∑
k=1

∑
s

∑
a

µ∗(s) (π∗(a|s)− πk(a|s)) qπk(s, a)

]

= Õ
(
BA lnT

η
+ η

TN3ρ

B
+ η3TN6

)
.

With the choice of η = min

{
1

270(N+1) ,
B
√
A√

ρTN3
,

4√
BA

4√
TN6

}
, the bound becomes

Õ
(√

N3ρAT + (BAN2)
3
4T

1
4 +BNA

)
= Õ

(√
t3mixρAT + (t3mixthitA)

3
4T

1
4 + t2mixthitA

)
.

Proof. For any s,

E

[
K∑
k=1

∑
a

(π∗(a|s)− πk(a|s))qπk(s, a)

]

= E

[
K∑
k=1

∑
a

(π∗(a|s)− πk(a|s))βπk(s, a)

]
(by the definition of βπk and that

∑
a(π∗(a|s)− πk(a|s))Jπk = 0)

≤ E

[
K∑
k=1

∑
a

(π∗(a|s)− πk(a|s))Ek
[
β̂k(s, a)

]]
+O

(
K

T

)
(by Eq. (12))

= O
(
A lnT

η

)
+O

(
ηE

[
K∑
k=1

∑
a

πk(a|s)2(β̂k(s, a)− β̂k−1(s, a))2

])
(by Lemma 8)

≤ O
(
A lnT

η
+ ηN2

)
+O

(
ηE

[
K∑
k=2

∑
a

πk(a|s)2(β̂k(s, a)− βπk(s, a))2

])

+O

(
ηE

[
K∑
k=2

∑
a

πk(a|s)2(βπk(s, a)− βπk−1(s, a))2

])

+O

(
ηE

[
K∑
k=2

∑
a

πk(a|s)2(βπk−1(s, a)− β̂k−1(s, a))2

])
, (44)
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where the last line uses the fact (z1 + z2 + z3)2 ≤ 3z2
1 + 3z2

2 + 3z2
3 . The second term in (44) can be bounded using Eq. (13):

O

(
ηE

[
K∑
k=2

∑
a

πk(a|s)2(β̂k(s, a)− βπk(s, a))2

])

= O

(
ηE

[
K∑
k=2

∑
a

πk(a|s)2 N3 log T

Bπk(a|s)µπk(s)

])

= O

(
ηE

[
K∑
k=2

N3 log T

Bµπk(s)

])
.

The fourth term in (44) can be bounded similarly, except that we first use Lemma 17 to upper bound πk(a|s) by 2πk−1(a|s).
Eventually this term is upper bounded by O

(
ηE
[∑K

k=2
N3 log T
Bµπk−1 (s)

])
= O

(
ηE
[∑K

k=1
N3 log T
Bµπk (s)

])
.

The third term in (44) can be bounded using Lemma 7:

O

(
ηE

[
K∑
k=2

∑
a

πk(a|s)2(βπk(s, a)− βπk−1(s, a))2

])

= O

(
ηE

[
K∑
k=2

∑
a

πk(a|s)2(ηN3)2

])
= O

(
η3KN6

)
.

Combining all these bounds in (44), we get

E

[
K∑
k=1

∑
a

(π∗(a|s)− πk(a|s))qπk(s, a)

]
= O

(
A lnT

η
+ ηE

[
K∑
k=1

N3 log T

Bµπk(s)

]
+ η3KN6

)
.

Now multiplying both sides by Bµ∗(s) and summing over s we get

E

[
B

K∑
k=1

∑
s

∑
a

µ∗(s)(π∗(a|s)− πk(a|s))qπk(s, a)

]
= O

(
BA lnT

η
+ ηE

[
K∑
k=1

∑
s

N3(log T )µ∗(s)

µπk(s)

]
+ η3BKN6

)

≤ O
(
BA lnT

η
+ ηρKN3(log T ) + η3BKN6

)
= Õ

(
BA

η
+ ηρ

TN3

B
+ η3TN6

)
(T = BK)

Choosing η = min

{
1

270(N+1) ,
B
√
A√

ρTN3
,

4√
BA

4√
TN6

}
(η ≤ 1

270(N+1) is required by Lemma 17), we finally obtain

E

[
B

K∑
k=1

∑
s

∑
a

µ∗(s)(π∗(a|s)− πk(a|s))qπk(s, a)

]
= Õ

(√
N3ρAT + (BAN2)

3
4T

1
4 +BNA

)
= Õ

(√
t3mixρAT + (t3mixthitA)

3
4T

1
4 + t2mixthitA

)
.

D. Experiments
In this section, we compare the performance of our proposed algorithms and previous model-free algorithms. We note that
model-based algorithms (UCRL2, PSRL, . . . ) typically have better performance in terms of regret but require more memory.
For a fair comparison, we restrict our attention to model-free algorithms.
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Figure 3. Performance of model-free algorithms on random MDP (left) and JumpRiverSwim (right). The standard Q-learning algorithm
with ε-greedy exploration suffers from linear regret. The OPTIMISTIC Q-LEARNING and MDP-OOMD algorithms achieve sub-linear
regret. The shaded area denotes the standard deviation of regret over multiple runs.

Table 2. Hyper parameters used in the experiments. These hyper parameters are optimized to perform the best possible result for all the
algorithms. All the experiments are averaged over 10 independent runs for a horizon of 5× 106. For the POLITEX algorithm, τ and τ ′ are
the lengths of the two stages defined in Figure 3 of (Abbasi-Yadkori et al., 2019a).

Algorithm Parameters

Random MDP

Q-learning with ε-greedy ε = 0.05

Optimistic Q-learning H = 100, c = 1, bτ = c
√
H/τ

MDP-OOMD N = 2, B = 4, η = 0.01

POLITEX τ = 1000, τ ′ = 1000, η = 0.2

JumpRiverSwim

Q-learning with ε-greedy ε = 0.03

Optimistic Q-learning H = 100, c = 1, bτ = c
√
H/τ

MDP-OOMD N = 10, B = 30, η = 0.01

POLITEX τ = 3000, τ ′ = 3000, η = 0.2

Two environments are considered: a randomly generated MDP and JumpRiverSwim. Both of the environments consist of 6
states and 2 actions. The reward function and the transition kernel of the random MDP are chosen uniformly at random.
The JumpRiverSwim environment is a modification of the RiverSwim environment (Strehl & Littman, 2008; Ouyang et al.,
2017a) with a small probability of jumping to an arbitrary state at each time step.

The standard RiverSwim models a swimmer who can choose to swim either left or right in a river. The states are arranged in
a chain and the swimmer starts from the leftmost state (s = 1). If the swimmer chooses to swim left, i.e., the direction of
the river current, he is always successful. If he chooses to swim right, he may fail with a certain probability. The reward
function is: r(1, left) = 0.2, r(6, right) = 1 and r(s, a) = 0 for all other states and actions. The optimal policy is to always
swim right to gain the maximum reward of state s = 6. The standard RiverSwim is not an ergodic MDP and does not satisfy
the assumption of the MDP-OOMD algorithm. To handle this issue, we consider the JumpRiverSwim environment which
has a small probability 0.01 of moving to an arbitrary state at each time step. This small modification provides an ergodic
environment.

We compare our algorithms with two benchmark model-free algorithms. The first benchmark is the standard Q-learning
with ε-greedy exploration. Figure 3 shows that this algorithm suffers from linear regret, indicating that the naive ε-greedy
exploration is not efficient. The second benchmark is the POLITEX algorithm by Abbasi-Yadkori et al. (2019a). The
implementation of POLITEX is based on the variant designed for the tabular case, which is presented in their Appendix F
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and Figure 3. POLITEX usually requires longer episode length than MDP-OOMD (see Table 2) because in each episode
it needs to accurately estimate the Q-function, rather than merely getting an unbiased estimator of it as in MDP-OOMD.
Figure 3 shows that the proposed OPTIMISTIC Q-LEARNING, MDP-OOMD algorithms, and the POLITEX algorithm
by Abbasi-Yadkori et al. (2019a) all achieve similar performance in the RandomMDP environment. In the JumpRiverSwim
environment, the Optimistic Q-learning algorithm outperforms the other three algorithms. Although the regret upper bound
for OPTIMISTIC Q-LEARNING scales as Õ(T 2/3) (Theorem 1), which is worse than that of MDP-OOMD (Theorem 5),
Figure 3 suggests that in the environments that lack good mixing properties, OPTIMISTIC Q-LEARNING algorithm may
perform better. The detail of the experiments is listed in Table 2.


