
Amortised Learning by Wake-Sleep

A. Mathematical details
A.1. Solving mean squared error to for conditional expectations

Given x,y ∼ ρ(x,y), we want to find an estimator in some space F of the posterior mean function fρ : x 7→ Eρ(y|x)[y].
Assuming that F is contained in L2

ρ, the class of squared-integral functions under ρ(x), and that y has finite l-2 norm under
ρ(y), a natural cost function to learn f is the expected squared l-2 distance

LE(f) := Eρ(y,x)

[
‖f(x)− y‖22

]
= Eρ(x)

[
Eρ(y|x)

[
‖f(x)− y‖22

]]
.

By Jensen’s inequality,
LE(f) ≤ Eρ(x)

[∥∥f(x)− Eρ(y|x)[y]
∥∥2

2

]
= LR(f).

This shows that the MSE is an upper bound on the expected l-2 distance between f(x) and the posterior mean Eρ(y|x)[y].
Further, the minimum of LR is attained at an f that also minimises LE . This can be shown through a simple decomposition

LE(f) = Eρ(x)

[
Eρ(y|x)

[
‖f(x)− y‖22

]]
= Eρ(x)

[
‖f(x)‖22 − f(x) · Eρ(y|x)[y] + Eρ(y|x)

[
‖y‖22

]]
(1)
= Eρ(x)

[
‖f(x)‖22 − f(x) · Eρ(y|x)[y] +

∥∥Eρ(y|x)[y]
∥∥2

2
+ Tr

[
Cρ(y|x)[y]

]]
= Eρ(x)

[
Eρ(y|x)

[∥∥f(x)− Eρ(y|x)[y]
∥∥2

2

]]
+ Eρ(x)

[
Tr
[
Cρ(y|x)(y

]]
= LR(f) + term independent of f

where Cp is the covariance under p. Equality (1) holds because

Ep
[
‖a‖22

]
= Ep

[∑
i

a2
i

]
=
∑
i

Ep
[
a2
i

]
= Ep[ai]2 +

∑
i

Vp[ai] = ‖Ep[a]‖22 + Tr [Cp[a]]

for any a ∈ in L2
p. So LR(f) is equal to LE(f) up to a constant that depends only on ρ but not f .

A.2. Boundedness of the gradient function

To learn y(x) = Epθt (z|x)[∇θ log pθ(z,x)]
∣∣
θt

using regression as above, the target needs to be square-integrable un-
der pθt(x), i.e. y(x) ∈ L2

p. Common likelihood functions are in the exponential family and has ∇θ log pθ(z,x) =
∇θη(z)s(x) − ∇θΨ(z). Thus, it suffices to check the L2

p integrability of the gradient in terms of these functions. We
sketch below that this is indeed the case for common choices of model architectures.

As a simple example, consider a model

pθ(z) = N (0, I), pθ(x|z) = N (NNw(z),Σ). (14)

where I is the identity covariance matrix, NNw is a neural network with weightsw and Σ is a diagonal matrix. Note that in
this case, one has that

Ψθ(z) = −1

2
‖z‖22 −

1

2
log |Σ|+ constant, ηθ(z) = [Σ−1NNw(z),−1

2
Σ−1], θ = {w,Σ}, s(x) = [x,xxT ].

Further, assume that

1. The neural network NNw(z) is Lipschitz and w-differentiable almost everywhere, such as one that is composed of
linear projections followed by Lipschitz nonlinearities (e.g., ReLU).

2. Epθ(z)

[
‖NNw(z)‖22

]
<∞.

3. Spectral norm of weightsW in each layer of NNw(z) is bounded above by a positive constant.
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4. The diagonal elements of Σ are bounded below by some constant.

The first and second assumptions are mild and satisfied by NNs with ReLU activations. The third and fourth conditioons
limit the ranges of the parameter values, which can be imposed by clipping or through appropriate parametrisation.

The second and fourth conditions make the gradients of Ψθ(z) and ηθ(z) w.r.t. Σ bounded; thus, we will demonstrate the
integrability of the gradients w.r.t. the neural network parameter w.

First term Epθ(z|x)[∇θηθ(z)]s(x)

Multiple applications of the Cauchy-Schwartz inequality yields

Epθ(x)

[∥∥Epθ(z|x)[∇wηθ(z)]s(x)
∥∥2
]
≤
√
Epθ(x)

[
‖Epθ(z|x)[∇wηθ(z)]‖42‖

]√
Epθ(x)[‖s(x)‖42].

By our assumption, NN(z) is Lipschitz w.r.t.w and the gradient∇wηθ(z) is bounded as, for C0, C1 > 0, ‖∇wηθ(z)‖2 ≤
C0 + C1‖z‖2. This can be proved by writing out ∇wNNθ(z) using chain rule, which will be a series of product involving
W in each layer and derivative of Lipschitz functions, and applying the first two conditions above. Thus, we have

Epθ(x)

[∥∥Epθ(z|x)[∇wηθ(z)]
∥∥4

2

]
≤ Epθ(x)

[
Epθ(z|x)

[
‖∇wηθ(z)‖42

]]
≤ Epθ(z)

[
(C0 + C1 ‖z‖2)4

]
<∞

as the prior pθ(z) is a standard Gaussian.

The integrability of s(x) is equivalent to the finiteness of the corresponding moments of pθ(x). By Lemma A.2, the
marginal pθ(x) has exponential tails, and thus the moments are finite.

Second term∇θΨ(z)

Epθt (z)

[∥∥∥Epθt (z|x)[∇θΨθ(z)]
∥∥∥2

2

]
≤ Epθt (z)

[
Epθt (z|x)

[
‖∇θΨθ(z)‖22

]]
= ‖Σ−1‖22 <∞

where we have applied Jensen’s inequality. Therefore, Epθ(z|x)[∇θΨ(z)] is a finite constant and thus in L2
p.

Therefore, for the generative model defined in (14), the desired target y(x) = Epθt (z|x)[∇θ log pθ(z,x)]
∣∣
θt

for regression
is in L2

p, which can be approximated arbitrarily well by KRR (see Section 2.4)) with more sleep samples. A similar analysis
can show that, for Bernoulli likelihoods whose logits are parametrised by a Lipschitz neural network, the target for the
regression is also in L2

p, with logits bounded from above and below.

A.3. Gradient of the log marginal likelihood w.r.t. parameters

To show the result used in (7), we start from the free energy (ELBO) lower bound on the log-likelihood log pθ(x).

log pθ(x) = log
pθ(z,x)

pθ(z|x)
=

∫
q(z) log

[
q(z)

q(z)

pθ(z,x)

pθ(z|x)

]
dz =

∫
q(z) log

[
pθ(z,x)

q(z)

q(z)

pθ(z|x)

]
dz

=

∫
q(z) log pθ(z,x)dz −

∫
q(z) log q(z)dz +DKL[q(z)‖pθ(z|x)]

= F(q,θ) +DKL[q(z)‖pθ(z|x)], (15)

where we have defined

F(q,θ) =

∫
q(z) log pθ(z,x)dz −

∫
q(z) log q(z)dz = Eq(z)[log pθ(z,x)] + H[q].

The KL term in (15) is non-negative and is zero if q(z) = pθ(z|x), suggesting that

log pθ(x) = F(pθ(z|x),θ)
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Replacing q(z) = pθ(z|x) in (15) and take derivative w.r.t. θ gives (assuming all derivatives and expectations exist)

∆θ(x) := ∇θ log pθ(x)

= ∇θ
∫
pθ(z|x) log pθ(z,x)dz −∇θ

∫
pθ(z|x) log pθ(z|x)dz

=

∫
∇θpθ(z|x) log pθ(z,x)dz +

∫
pθ(z|x)∇θ log pθ(z,x)dz

−
∫
∇θpθ(z|x) log pθ(z|x)dz −

∫
pθ(z|x)∇θ log pθ(z|x)dz. (16)

The last term in (16) is zero since it is the expectation of the score function∫
pθ(z|x)∇ log pθ(z|x)dz =

∫
pθ(z|x)

1

pθ(z|x)
∇θpθ(z|x)dz = ∇θ

∫
pθ(z|x)dz = 0.

The first and third terms in (16) combines to give∫
∇θpθ(z|x) log

pθ(z,x)

pθ(z|x)
dz =

∫
∇θpθ(z|x) log pθ(x)dz = log pθ(x)∇θ

∫
pθ(z|x)dz = 0.

We are left with only the second term in (16)

∆θ(x) =

∫
pθ(z|x)∇θ log pθ(z,x) = Epθ(z|x)[∇θ log pθ(z,x)] = ∇θF(pθ(z|x),θ). (17)

To compute the update at the t’th iteration with θ = θt, and the expectation above is taken over a fixed posterior distribution
pθt(z|x). We evaluate the above equation at θt, giving (7),

∆θt(x) := ∆θ(x)
∣∣
θt

= ∇θEpθt (z|x)[log pθ(z,x)]
∣∣
θt

= ∇θF(pθ(z|x),θ)
∣∣
θt
.

One can also pass ∇θ and its evaluation inside the expectation (assuming derivatives exist) to obtain (8)

∆θt(x) = ∇θEpθt (z|x)[log pθ(z,x)]
∣∣
θt

= Epθt (z|x)

[
∇θ log pθ(z,x)

∣∣
θt

]
which is used for direct gradient estimation.

In fact, once we know the result above, going from the right-hand side to the left is much simpler:

Epθt (z|x)

[
∇θ log pθ(z,x)

∣∣
θt

]
= Epθt (z|x)

[
∇θ log pθ(z|x)

∣∣
θt

+∇θ log pθ(x)
∣∣
θt

]
= ∇θEpθt (z|x)[log pθ(z|x)]

∣∣
θt

+∇θ log pθ(x)
∣∣
θt

= 0 + ∆θt(x).

Additionally, a quicker and more direct way to obtain (17) uses the “score trick” as follows

∇ log pθ(x) =
1

pθ(x)
∇θ
∫
pθ(z,x)dz =

1

pθ(x)

∫
pθ(z,x)∇θ log pθ(z,x)dz = Epθ(z|x)[∇θ log pθ(z,x)].

A.4. Miscellaneous results

Theorem A.1 (Gaussian concentration inequality (Boucheron et al., 2013, Theorem 5.6)). Let X = (X1, . . . , Xn) be a
vector of n independednt standard normal random variables. Let f : Rn → R denote an L-Lipschitz function. Then, all
t > 0,

P [f(X)− Ef(X) ≥ t] ≤ e−t
2/(2L2).

Lemma A.2. Let s2 be the sum of the diagonal elements of Σ. Assume EZ [‖NNw(Z)‖2] <∞. For the density function
pθ(x) defined in (14), for all t > 2s , we have

P (|‖X‖ − E‖X‖| ≥ t) ≤ 2(e
− t2

8L2
1 + e

− (t/2−s)2

2L2
2 )
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Proof. Note that
P (|‖X‖ − E‖X‖| ≥ t) ≤ P (‖X‖ − E‖X‖ ≥ t) + P (−‖X‖+ E‖X‖ ≥ t).

We bound the first term below (the second term can be handled similarly).

We have

P (‖X‖2 − E‖X‖2 ≥ t) = EZ
[
P (‖X‖2 − E‖X‖2 ≥ t

∣∣Z)
]

≤ EZ
[
P (‖X‖2 − EX|Z [‖X‖2] ≥ t/2

∣∣Z)
]

+ P (EX|Z [‖X‖2]− E[‖X‖2] ≥ t/2).

By Theorem A.1, as pθ(x|z) = N (NNw(z),Σ),

P (|‖X‖2 − EX|Z [‖X‖2]| ≥ t/2
∣∣Z) ≤ e

− t2

8L2
1 ,

where L1 = ‖Σ1/2‖op is the operator norm of Σ1/2. Therefore,

EZ
[
P (|‖X‖2 − EX|Z [‖X‖2]| ≥ t/2

∣∣Z)
]
≤ e
− t2

8L2
1 .

Let µ(z) = NNw(z). For the second term, as

EX|Z [‖X‖2] ≤
√

EX|Z [‖X − µ(Z)‖22] + ‖µ(Z)‖2 = s+ ‖µ(Z)‖2,

EZ [‖µ(Z)‖2] = EZ
[
‖EX|Z [X]‖2

]
≤ EZ

[
EX|Z [‖X‖2]

]
= EX [‖X‖2],

we have

P (EX|Z [‖X‖2]− E[‖X‖2] ≥ t/2) ≤ P (‖µ(Z)‖ − EZ [‖µ(Z)‖] ≥ t/2− s).

By the Lipschitzness of NNw(z) and pθ(z) = N (0, I), we have for all t > 2s

P (‖µ(Z)‖ − EZ [‖µ(Z)‖] ≥ t/2− s) ≤ e−
(t/2−s)2

2L2 ,

where L2 is the Lipschitz constant of NNw (as a function of z). Combining these bounds gives

P (‖X‖2 − E‖X‖2 ≥ t) ≤ e
− t2

8L2
1 + e

− (t/2−s)2

2L2
2

B. Method details
B.1. Alternative gradient models

To ensure that the estimate of Jθ can be differentiated w.r.t. θ to obtain an estimate of ∆θt(x), the gradient model needs
to depend on model parameter θ. KRR satisfies this condition in an attractive way, because its prediction depends on θ
and γ in two separate factors, see (12). However, though theoretically consistent, KRR estimates the gradient at a cost of
N3 in memory and time, where N is the number of sleep samples. We discuss two alternative gradient models that could
potentially be much faster, but there is no theoretical guarantee that∇θĴθ,γ

∣∣
θt

is close to ∆θt(x).

B.1.1. GENERIC FUNCTION APPROXIMATOR

One can train a generic function estimator, such as a neural network, to estimate Jθ(x). For such parametric models, the
dependence on generative model parameters θ can be encapsulated into gradient model parameters γ through gradient
descent.

γ(θ)← γ(θ)− α∇γL(θ,γ), L(θ,γ) =

N∑
n=1

|Ĵγ(θ)(xn)− log pθ(zn,xn)|2
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where α is the learning rate. As such, the estimator of Jθ is better denoted as Ĵγ(θ) for a neural network with fixed
hyperparameters. Evaluating∇θĴγ(θ)

∣∣
θt

can be implemented, though less straightforwardly compared to the KRR gradient
model. Alternatively, we can consider small perturbations around fixed-point of the loss, and derive a relationship between
γ and θ at a local minimum:

0 =
∂L

∂γ
(θ + dθ,γ(θ + dθ)) =

∂L

∂γ
(θ,γ(θ)) + dθ

∂

∂θ

∂L

∂γ
(θ,γ(θ)) + dγ

∂

∂γ

∂L

∂γ
(θ,γ(θ)).

The first term on the RHS is zero, and rearranging gives dγ(θ)
dθ = −

(
∂2L
∂γ∂γ

)−1
∂2L
∂θ∂γ , assuming the inverse exists. Thus,

dĴγ(θ)(x)

dθ
=
∂Ĵγ(θ)(x)

∂γ

dγ(θ)

dθ
= −

∂Ĵγ(θ)(x)

∂γ

(
∂2L

∂γ∂γ

)−1
∂2L

∂θ∂γ
.

All of the factors can be computed by automatic differentiation since the objects being differentiated are all scalars. However,
for a generic neural network, the Hessian of the loss w.r.t. γ may not exist, and computing it can be unstable.

B.1.2. PARTICLE ESTIMATOR

The prediction of the KRR estimator may not but a valid expectation. In other words, Ĵθ,γ(x) may not correspond to the
expected log joint under any valid probability distribution. To address this issue, we can approximate ∆θt(x) through a set
of particles z′ (in the space of the latent) generated from a simulator Sγ : (x,n) → z′, where γ is the parameter of the
simulator, x is an observation, and n is a noise source distributed as ζ(n). For all x from the generative model, we want
the simulator to produce particles such that Eζ(n)[∇θ log pθ(S(x,n),x)]

∣∣
θt

estimates of ∆θt(x). This can be achieved by
solving

min
γ

Epθt (z,x)

[∥∥∥Ep(n)[∇θ log pθ(Sγ(x,n),x)]
∣∣
θt
−∇θ log pθ(z,x)

∣∣
θt

∥∥∥2
]
,

which is equivalent to

min
γ

Epθt (x)

[∥∥∥Ep(n)[∇θ log pθ(Sγ(x,n),x)]
∣∣
θt
− Epθt (z|x)

[
∇θ log pθ(z,x)

∣∣
θt

]∥∥∥2
]

due to the property of mean squared error (see Appendix A.1). We know that the optimal set of particles is distributed as the
posterior pθt(z|x), but minimising the cost above does not necessarily drive Sγ to produce posterior samples. Nonetheless,
this set of particles is adequate to approximate ∆θt(x). We refer to this scheme as amortised learning by particles (AL-P).
We test this on sample quality experiments and found that the KIDs and FIDs were in general worse than even the vanilla
VAE. Samples from the model trained by AL-P are shown in Figure 15 to Figure 20 in section Appendix C.7.

B.1.3. RELATIONSHIP BETWEEN KRR GRADIENT MODEL AND IMPORTANCE SAMPLING

The KRR gradient model approximates ∆θt(x) by linearly weighting {∇θ log pθ(zn,xn)}Nn=1. This is similar to other
reweighting schemes (e.g. (Dieng & Paisley, 2019)), with the most simple one being importance sampling where the
proposals are from the prior pθ(z) and the weights are normalised density ratios pθ(z,x)/pθ(z). Importance sampling is an
unbiased estimation method, but has huge variance and requires at least exponentially many samples as the KL divergence
between the posterior and prior (Chatterjee et al., 2018).

It would then appear that KRR should perform similarly with importance sampling in estimating ∆(x), but, on closer look,
they uses slightly different sources of information for estimation. KRR uses a set of samples (zn,xn) ∼ pθ(z,x), whereas
importance sampling uses zn ∼ pθ(z) and pθ(z,x∗). In computing the weights for a particular x∗ from the dataset, KRR
compares x∗ with all sleep samples {xn}Nn=1, using a similarity metric determined by the kernel function. The weights α
also takes into account of the similarities between all sleep samples. On the other hand, importance sampling uses pθ(z,x∗)
for a given x∗ and computes the weights for each sample of z independently of each other. In addition, the importance
sampling weights are constrained to be non-negative and sum up to one, whereas the weights in KRR are not constrained
and thus can be more flexible.

B.2. Kernel architecture

In all experiments, we used a squared-exponential kernel k(x,x′) = exp(−0.5‖φw(x) − φw(x′)‖22/σ2). The feature
φw can be the identity function, a linear projection, or a linear projection followed by batch normalisation , see Table 1
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which lists the architectures used for each experiment. The linear projection and batch normalisation are primarily used
on high-dimensional benchmark datasets. Nonlinear projections, such as deep neural networks, did not give significant
improvement while consuming more memory. The bandwidth σ is initialised as the median of the distance between
φw(x(n)) where x(n) ∼ pθt(x).

C. Experimental details
We list the model and training parameters used to run each experiment in Table 1. The batch size is 100 except for dynamical
models and neural process where the batch size is 1.

C.1. Gradient estimation

The toy generative model has z1, z2 ∼ N (0, 1), x|z ∼ N (softplus(w · z)− ‖w‖22, σ2
2). The observations are 100 samples

for drawn form the model with w1 = w2 = 1, σ = 0.1. Note that the ML solution for this synthetic problem is not unique.

For variational learning, the approximate posterior is a factorised Gaussian that minimises the ELBO. The gradient of ELBO
was approximated by samples. The mean and variances are initialised as the standard Gaussian and are optimised by Adam
with step size 0.01 for 300 iterations, which is sufficient for convergence. For ground truth, we estimated the gradient by
importance sampling, with 5× 104 samples proposed from the prior.

C.2. Spherical prior

The data are 16× 16 Gabor images. The orientation is uniformly distributed over one period 0 to π. The generative network
is taken from the first two deconvolutional layers of DCGAN so that the output size is 16 × 16. For VAE, we used the
symmetric convolutional neural network for the encoder and a factorised Gaussian posterior. For S-VAE, a von Mises-Fisher
distribution is used as the posterior.

C.3. Hierarchical models

The penalty assigned to probability vector m in the categorical distribution is the log pdf of a Dirichlet prior log p(q) =
(α− 1)

∑
i log qi + const, where qi = emi/

∑
j e
mj . We use α = 0.999. Similarly, for the k’th component in the mixture,

the Normal-InverseWishart distribution has log-likelihood that penalises ‖µk‖, log |Σk| and Tr(Σ−1
k ). In addition, we also

penalise the l-2 norm of neural network weights. These penalisation strength are set to 10−4.

The relative maximum mean discrepancy (MMD) test (Bounliphone et al., 2016) is used for model comparison based on
generated samples. Denote the set of real data by D and the set of generated samples from model A by DA. The null
hypothesis for this test is MMD(D,DSIN) < MMD(D,DALWS), where MMD is the MMD distance between two sets of
samples. The test returns a p-value of 0.514 based on 1500 samples from each of the three distributions, suggesting that the
two models perform almost equally well on learning this data distribution. We note that SIN is trained on a full Bayesian
version of the model, and the samples are reconstructions given the real dataset, giving an advantage for SIN.

C.4. Parameter identification

The linear basis (weights) are the top 36 independent components of natural images discovered by the FastICA algorithm.
Each component is subtracted by their mean and normalised to have unit length. The synthesised dataset is standardised
by subtracting the mean and dividing by the standard deviation. The kernel is augmented with an adaptive linear neural
network feature with 300 outputs. Using 200 features produces very similar results. The regularisation strength is fixed at
λ = 0.001. Adapting the filters results in slightly different filters as shown in Figure 9.

C.5. Neural process

Introduction. We briefly review the neural processes (NPs, Garnelo et al. (2018)). Suppose there is a distribution over
function f ∼ P(f), f : X → Y . We observe information a given function f through its potentially noisy values at a set of
inputs (x,y)|f . The task is the following: given a set of context pairs D := {(xCk ,yCk )}Kk=1 drawn from an unobserved
function, infer the distribution of the function value at a set of target inputs {xTm}Mm=1.

NPs represent the posterior of f given C by a random variable z, which is combined with xTm to predict the function value.
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truth ALWS VAE

Figure 9. Same as Figure 5 but with λ adaptive.

During training, the training data comprises multiple sets of input-output pairs, and each set is always conditioned on one
particular f ∼ P . The training data are split into a context set C, used to condition the representation z, and a target set
{(xTm,yTm)}Mm=1, used to evaluate the likelihood of yTm given z and xTm. Formally, the generative model is specified by

r =
1

K

K∑
k=1

ρθ(xCk ,y
C
k )

pθ(z|r) = N (z|µCθ (r),ΣC
θ (r))

pθ({yTm}|{xTm}, z) =

M∏
m=1

N (yTm|µTθ (z,xTm),ΣT
θ (z,xTm)).

In short, a latent representation of the context z is drawn from a normal distribution with parameters formed by an
exchangeable function of the context set C, and the likelihood on the target outputs are i.i.d. Gaussian conditioned on z and
xTm. The objective for learning is to maximise the likelihood of the target output conditioned on the corresponding context
set from the same underlying f and the target input. Once trained, the neural process is able to produce samples from the
distribution of function values (target outputs) at context inputs.

The encoding function ρθ plays the role of an inferential model, but we can view it as a function that parametrises the “prior”
distribution on z given the context set, and the parameters in ρ can be regarded as belonging to the generative model. The
gradient model trained by KRR also needs to be conditioned on each context set, but for simplicity, we train a gradient
model for a single context followed by θ update. Garnelo et al. (2018) trained the neural processes by maximising an ELBO
with posteriors of the form

q(z|C, T ) = pθ(z|rCT ), rCT =
1

K

K∑
k=1

ρθ(xCk ,y
C
k ) +

1

M

M∑
m=1

ρθ(xTm,y
T
m),

which is an approximation.

Experiments. We train a neural process on a P(f) that have samples as shown in Figure 10 (top). They are sinusoids
with random amplitudes and phase shifts and supported on [−π, π]. The observations are contaminated with Gaussian noise
with standard deviation 0.1. Conditioning the function with a context input around −π, 0.0 and π induces large uncertainty
over f ; thus, we can use this to probe the representation of uncertainty.

In the NP model, the representation r and z are both 50-dimensional. And the encoding and decoding networks are fully
connected with ReLU nonlinearities. During training, the number of context pairs K = 4, and the target set contains the
context pairs and an additional four pairs, so M = 8 and C ⊂ T . The gradient model is trained for each given context set,
and hence the batch size is 1. A small learning rate of 0.0001 is used for all models and parameters. The gradient model is
trained to take sleep samples yTm evaluated for this single C at each xTm. The kernel takes {ym}8m=1 as a single vector. We
note that other kernels on sets could be used.

During test time, we evaluate the predicted function value of a dense grid of points in [−π, π] given 1 to 4 context pairs.
As shown in Figure 10 (lower panels), when the number of context points is small, the model trained with ALWS makes
more accurate predictions, and better reflects the uncertainty of the function value when the context set is uninformative.
Given four context pairs (as in training), we test the learned model on 500 functions from P(f) and evaluate how close
samples of P(f |C,xTm) are to the true function at M = 100 target locations. We use either the posterior mean or a random
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Figure 10. Neural processes. Top: samples from prior distribution of functions. Black: Latent function. Grey: noisy observations. Bottom:
posterior samples (blue lines) from ALWS (odd columns) and the original variational method (even columns). Orange lines are true latent
functions f . Black dots are context pairs.

posterior sample from the posterior as a point estimate, and measure the performance by mean squared error. We find that
the errors are significantly smaller for ALWS-trained model based on paired tests for the posterior mean prediction (paired
t-test, t = −3.47, p = 0.00056; mean of ALWS, -5.11; variational, -4.99. Wilcoxson test, W = 44837.0, p = 3.7× 10−8,
median of ALWS, -5.11, variational, -4.98) and the random sample prediction (paired t-test, t = −2.09, p = 0.037; mean of
ALWS, -4.87; variational, -4.77. Wilcoxson test, W = 53762.0, p = 0.0061, median of ALWS, -4.91, variational, -4.69).

C.6. Nonlinear dynamic model

We run ALWS for generative models whose priors are defined through nonlinear transitions in time. In all of the experiments,
we treat each sequence as a single multi-dimensional data point.

C.6.1. NONLINEAR OSCILLATIONS

We generate data from a nonlinear oscillation process according to the following equations used by Wenliang & Sahani
(2019)

zt = Rot(zt−1) + ε
(z)
t , xt = Img(zt,1) + ε

(x)
t

Rot(zt) = Rαzt
r(‖zt‖2)

‖zt‖2
, r(a) = sigmoid(4(a− 0.3)), [Img(z)]i = exp(−0.5(z − z̄i)2/0.32)

whereRα is a rotation matrix by α radians, Img maps one of the latent dimensions into a 20-pixel image through Gaussian
bumps with evenly spaced centers at z̄i, i ∈ {1, . . . , 20}. Intuitively, the latent z is rotated by α and scaled radially so that
its length remains close to 1. Samples of xt for all t ∈ {1, . . . , T} can be plotted side by side as a 20× T image, which is
shown in Figure 11 (top).
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Figure 11. Nonlinear oscillations. Top: an example trajectory. Only the first 30 time steps marked by the red line is used for training.
Three such 30 time step traces are used for training. Middle: latent space learned by ALWS. Bottom: Generated trajectory.

We train the following generative model:

pθ(zt|zt−1) = N (zt; NN(z)
w (zt−1),Σz), pθ(xt|zt) = N (xt; NN(x)

w (zt),Σx),

where the parameters are the weights and biases in the neural networks (NN), and the diagonal covariance matrices Σ(·)’s.
The number of units are fully connected with 2→ 20→ 2 neurons for NN(z) and 2→ 20→ 20 for NN(x). The tanh is
used as the nonlinearity. We train the model on a single sequence of 30 time steps and then generate a 100-step sequence of
the learnt latents and observations shown in Figure 11. The latents correctly capture the position, which directly sets the
data, and the velocity, which needs to be learned from data.

C.6.2. HODGKIN-HUXLEY (HH) EQUATIONS

The HH equations are described by

CmV̇ (t) = −gl[V (t)− El]− ḡNm3(t)h(t)[V (t)− EN ]− ḡKn4(t)[V (t)− EK ] + Iin(t) + ε(t)

ė(t) = αe(V (t))[1− e(t)]− βe(V (t))e(t), e ∈ {m,h, n}

where αe and βe are nonlinear functions of V (t) involving a parameter VT that sets the threshold for action potentials, see
(Pospischil et al., 2008) for details.

We used forward-Euler method for simulation with a time step of ∆t = 0.05ms. At each step of the simulation, we
add a small Gaussian noise of standard deviation σz = 0.1mV to Vt as process noise. The measurements noise added to
observations (but not propagated to Vt+1) is Gaussian with standard deviation 1.0mV. There 10 parameters for the resulting
discrete-time state-space model: θ = {Cm, gl, El, ḡN , En, ḡK , EK , Vt, σz, σx}.

We train and test the model under different input current sequences Iin. The results are shown in Figure 12. We simulate a
single trajectory from the model with some true parameters and a noisy current injection shown in Figure 12(1st row). This
sequence is used as the training data Figure 12(2nd row, dotted). We then perturb these parameters, making the simulated
trajectories unrealistic Figure 12(3rd row). After training, the simulated trajectories look almost identical to the training data
Figure 12(2nd row, solid). To test whether the learned model can be used for prediction under a different current injection,
we simulate trajectories given an unseen test current Figure 12(4th row). The responses of membrane potential under true
parameters are shown in Figure 12(5th row). Samples from the trained model Figure 12(6th row, solid) under this unseen
current are very similar to the trajectories given real parameters, showing generally correct phase, periodicity and amplitude.
The simulated responses have less variation between trajectories, which could be due to training under a single sequence.
Indeed, not all parameters converge to the true parameters Figure 12 (bottom panels).
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Figure 12. Hodgkin Huxley simulations. Top seven panels: 1st row, input current Iin during training. 2nd-3rd rows, trajectories given
learnt and initial parameters under training input current. 4th row, test input current. 5th-7rd rows, trajectories given true, learnt and initial
parameters under test input current. Bottom 10 panels: Blue solid: parameter value at each iteration. Yellow dashed: true parameter
values.
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Figure 13. Evolution of parameters in the ecological model for blowfly population.

C.6.3. ECOLOGICAL DATA

We train a model that describes the evolution of blowfly population size under food limitation (Wood, 2010). The model is
given by

τ ∼ Categorical(m), τ ∈ {1, . . . , 20}, et ∼ Gamma(
1

σ2
p

, σ2
p), εt ∼ Gamma(

1

σ2
d

, σ2
d),

zt = Pxt−τ exp(−xt−τ
N0

) + xt exp(−δεt), p(xt|zt) = LogNormal(log(zt), σ
2
n)

Note that τ is a discrete delay drawn from a categorical distribution with logit parameters m, et and εt are stochastic
variations in births and deaths following Gamma distribution with a common mean 1.0 and standard deviations σ2

p and
σ2
d, respectively. The observation is noisy with log-normal noise so that xt remains positive. Observations in the first 20

time steps depend on some past data that is not observed, so we modelled these past data x−20:−1 as parameters, which are
constrained to be between 0 and 1.0. Thus, this model has parameters θ = {m, σd, σp, P,N0, δ, σn, x−20:−1}

We fit the model on a data sequence of length 180, normalised to be between 0 and 1.0. The evolution of parameters is
shown in Figure 13. As our training objective is different from that of ABC methods, we do not make direct quantitative
comparison with them. But compared with the samples from three ABC methods shown in (Park et al., 2016) (Figure 2B), it
is clear that samples from ALWS are visually more similar to the training data.

C.7. Sample quality on benchmark datasets

C.7.1. DATA PROCESSING

All images have 32 × 32 pixels by their original sizes (Natural, CIFAR-10), or by zero-padding (MNIST,F-MNIST) or
interpolation (CelebA). The binarised MNIST is statically binarised once before training. Each pixel is set to 1 with
probability equal to the pixel value after rescaling to between 0 and 1. The natural images 9 are patches from large natural
scenes. No clipping is applied. Original MNIST Fashion MNIST, CIFAR-10 and CelebA images are rescaled to between
−1.0 and 1.0.

C.7.2. MODEL AND TRAINING DETAILS

All methods use the same neural network as the DCGAN without the last convolutional layer to make the image size 32.
Batch size is 100 for each update of generative and gradient model parameters. We run each algorithm on each dataset with
10 different initialisations. The neural network in the generative model has ReLU nonlinearities in intermediate layers. The

9github.com/hunse/vanhateren

github.com/hunse/vanhateren
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Figure 14. KID and FID scores at the end of each epoch for selected algorithms on convolutional architecture. Top two rows show
distances during a run of 50 iterations at every iteration, and the bottom two rows show another run of 500 iterations at every 10th iteration.

nonlinearity for the final layer depends on the dataset: it is sigmoid for binary MNIST, linear natural images, and tanh for
the other datasets.

All methods are trained for 50 epochs except for SIVI which was trained for 1 000 epochs. The optimizer is Adam with a
fixed learning rate of 0.001. For ALWS, we use 2 000 sleep samples for training the gradient model. The kernel is augmented
by linear projection to 300 dimensions for all datasets. A larger number of output dimension produced better results, but
induces longer run time. The weights of the projection are updated after the first five epochs. The regularisation parameter λ
is fixed at 0.1; this helps sample quality for CIFAR and CelebA, but does not affect or worsens sample quality for the other
datasets. For ALWS-F, a fixed random projection is used throughout training. For ALWS-A, the linear weights are training
at each parameter update after 5 epochs, using the two-stage training.

For VAE, the encoder network is symmetrical to the generative network and is appended with a final linear layer for posterior
statistics.

For Syl-VAE. We change the gated convolutional layer in the decoder network to the same network as all the other methods.
Other parts of the model remain the same. We use the orthogonal flow. A lower learning rate of 0.0005 is used for stability.

For SIVI, we find the model is unstable for learning rate of 0.001, so we change it to 0.0001. It also takes more epochs to
produce good samples, so we train for 1000 epochs. We use J = 10 proposals from the Gaussian posterior.

For RWS, each parameter update is accompanied with both wake and sleep updates of the encoder parameters, usingK = 50
proposals. A larger K can cause lower signal-to-noise ratio of the update for the encoder network.

For WGAN-GP, learning is unstable for a learning rate of 0.001, so we train the model using a learning rate of 0.0001 for 50
epochs, which was not sufficient for it to produce good images. We also run WGAN-GP for 500 epochs on all datasets and
show the samples from Figure 15 to Figure 20. We show the results of WGAN-GP just for reference, as it is not trained
using the maximum likelihood objective.

To evaluate the quality, we use standard metrics FID and KID, which are computed using features of penultimate layers
of neural networks pre-trained on relevant datasets. For both MNISTs, the features are from the LeNet trained to classify
MNIST digits. For Fashion, we used the LeNet network trained to classify the objects. For Natural, CIFAR-10 and CelebA,
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we use inception network trained on ImageNet classification. For Natural, we duplicate the image along the channel axis to
fill the three colour channels.

ALWS-A has lower FID and KID than other maximum likelihood methods in most cases, especially on original MNIST and
Fashion MNIST, but does not reach the level of WGAN-GP.

The KID and FID values during training are shown in Figure 14. ALWS performs consistently better at every training epoch
on all datasets except B-MNIST. On MNIST, ALWS-A converged the fastest and generates samples with stable quality. On
CIFAR, ALWS-A and RWS converged faster than the others, but VAE and Syl-VAE converge very slowly. We note that
these figures are plotted against epochs, not wall-clock time. The run time of ALWS is much longer than the other methods,
taking around 3.5 seconds per iteration on a GeForce 1080 GPU, or 2.5 seconds on a Quadro P5000 with kernel adaptation.
Nonetheless, this cost is worth the improvement over other maximum likelihood methods.

The samples from all methods are shown in Figure 15 to Figure 20. These include samples from models presented in the
main text, the WGAN-GP for 500 epochs, and the AL-P algorithm introduced in Appendix B.1.2.
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real AL-F AL-A VAE SF-VAE SIVI(1000) RWS WGAN-GP WGAN-GP(500) AL-P

Figure 15. Samples for B-MNIST. Our main algorithms presented in the main text are highlighted in box. Each model is trained for 50
epochs, except otherwise indicated in parenthesis next to algorithm name.

real AL-F AL-A VAE SF-VAE SIVI(1000) RWS WGAN-GP WGAN-GP(500) AL-P

Figure 16. Samples for MNIST. Our main algorithm is highlighted in box. Each model is trained for 50 epochs, except otherwise indicated
in parenthesis next to algorithm name.



Amortised Learning by Wake-Sleep

real AL-F AL-A VAE SF-VAE SIVI(1000) RWS WGAN-GP WGAN-GP(500) AL-P

Figure 17. Samples for Fashion. Our main algorithms presented in the main text are highlighted in box. Each model is trained for 50
epochs, except otherwise indicated in parenthesis next to algorithm name.

real AL-F AL-A VAE SF-VAE SIVI(1000) RWS WGAN-GP WGAN-GP(500) AL-P

Figure 18. Samples for Natural. Our main algorithm is highlighted in box. Each model is trained for 50 epochs, except otherwise indicated
in parenthesis next to algorithm name.
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real AL-F AL-A VAE SF-VAE SIVI(1000) RWS WGAN-GP WGAN-GP(500) AL-P

Figure 19. Samples for CIFAR-10. Our main algorithms presented in the main text are highlighted in box. Each model is trained for 50
epochs, except otherwise indicated in parenthesis next to algorithm name.

real AL-F AL-A VAE SF-VAE SIVI(1000) RWS WGAN-GP WGAN-GP(500) AL-P

Figure 20. Samples for CelebA. Our main algorithms presented in the main text are highlighted in box. Each model is trained for 50
epochs, except otherwise indicated in parenthesis next to algorithm name.
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Figure 21. Same as Figure 21 but using fully connected networks. None of the SIVI runs on CIFAR-10 converge.
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Figure 22. Top, the graphical representations of the generative models. Circles indicate random variables, with zd as discrete Bernoulli
and zc as continuous Gaussian. Squares indicate deterministic nodes that are ReLU neurons activated by nodes with incoming arrows.
The dimensionality of zd is 10, zc is 16, zd

1 and zd
2 are 5, and zc

1 and zc
2 are 8. The node h has 512 neurons. Bottom, FID and KID

scores of generated images from architecturally complex models

C.7.3. RESULTS ON FULLY CONNECTED NETWORKS

We repeat the experiments for fully connected layers, with architecture 16→ 512→ 512→ image dimension. The results
are shown in Figure 21. According to FID, models trained by ALWS out-perform other ML methods on all datasets except
Natural. KID agrees with FID except on CIFAR-10 where KID values are roughly the same for all ML methods.
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C.7.4. RESULTS ON COMPLEX GENERATIVE NETWORKS

The goal here is to test how model architecture affects the quality of the generated samples. Discrete variables can be used
to capture features such as object category, so including these in the generative model may be beneficial. In order to train
models with discrete latent variables, explicit reparameterisation schemes have been developed in the past by continuous
relaxation or overlapping transformation (Jang et al., 2017; Vahdat et al., 2018; Rolfe, 2017), and has shown differential
performances. On the other hand, amortised learning is agnostic to the discrete or continuous nature of the latents.

We set out to explore different architectures while fixing the number of Bernoulli and Gaussian latent variables, respectively,
and keep the number of parameters roughly the same. The different graphs are depicted in Figure 22 (top) and described in
the legend. The direct model is a simple chain graph. The top Bernoulli layer connects to a Gaussian layer, where the mean
is a function of the Bernoulli, and the variance is fixed at 1.0. The skip model is similar to the direct model, except that it
adds an additional connection from the discrete latents to the hidden units in the network. The merged model combines the
Bernoulli and Gaussian latents at the top layer, which goes through a first hidden h1 layer of 16 units before feeding into the
wide h2 layer. The feedback model has an architecture inspired by (Vahdat et al., 2018). The latent zc1 parametrises the
logits for zd2 . The feedback-skip model is based on feedback and adds a skip connection to h from the top Bernoulli layer.

The results are shown in Figure 22 (bottom). Interestingly, we did not find any strong effect of model architecture on FID or
KID. But the direct, merged and feedback architectures are clearly better than the other two for the two MNIST datasets
according to FID.


