
Supplementary Material:
State Space Expectation Propagation

A. Nomenclature

Vectors: bold lowercase. Matrices: bold uppercase.

Symbol Description

n Number of time steps

m Number of latent functions / processes

s State dimensionality

d Output dimensionality

t ∈ R Time (input)

r Space (input, of arbitrary dimension)

k Time index, tk, k = 1, . . . , n
yk ∈ R

d Observation (output)

y ∈ R
d×n Collection of outputs, (y1,y2, . . . ,yn)

θ Vector of model (hyper)parameters

κ(t, t′) Covariance function (kernel)

K(t, t′) Multi-output covariance function

µ(t) Mean function

µ(t) Multi-output mean function

σk Measurement noise

Σk Measurement noise covariance

f(t) : R→ R Latent function (Gaussian process)

f(t) : R→ R
m Vector of latent functions, fk = f(tk)

f ∈ R
m×n Collection of latents, (f(t1), . . . , f(tn))

Hk ∈ R
m×s State→function mapping

h(fk,σk) Measurement model (Rm,Rd)→ R
d

x(t) : R→ R
s State vector, f(t) = Hkx(t)

xk ∈ R
s State variable, xk = x(tk) ∼ N(mk,Pk)

F ∈ R
s×s Feedback matrix (continuous)

L ∈ R
s×v Noise effect matrix (continuous)

Qc ∈ R
v×v White noise spectral density (continuous)

Ak ∈ R
s×s Dynamic model (discrete)

qk ∈ R
s State space process noise (discrete)

Qk ∈ R
s×s Process noise covariance (discrete)

P∞ ∈ R
s×s Stationary state covariance (prior)

mk ∈ R
s×1 State mean

Pk ∈ R
s×s State covariance

Kk ∈ R
s×d Kalman gain

Gk ∈ R
s×s Smoother gain

Jf ∈ R
d×m Jacobian of h w.r.t fk

Jσ ∈ R
d×d Jacobian of h w.r.t σk

α EP power / fraction

Lk log-normaliser of true posterior update

qsite
k (fk) EP site (approximate likelihood)

qsite
k (fk) ∼ N(µsite

k ,Σsite
k )

qcav
k (fk) EP cavity (leave-one-out posterior)

qcav
k (fk) ∼ N(µcav

k ,Σcav
k )

B. Gaussian Filtering

Given observation model p(yk | fk) = N(yk | fk,Σk)
for fk = Hkxk, along with current filter predictions

p(xk |y1:k−1) = N(xk |m
pred
k ,Ppred

k ), the Kalman filter

update equations are,

µk = Hkm
pred
k ,

Sk = HkP
pred
k H⊤

k +Σk,

Ck = P
pred
k H⊤,

Kk = CkS
−1
k ,

mk = m
pred
k +Kk(yk − µk),

Pk = P
pred
k −KkSkK

⊤

k .

(22)

For nonlinear measurement models, yk = h(fk,σk), letting

µcav
k = Hkm

pred

k and Σcav
k = HkP

pred

k H⊤

k , the statistical

linear regression equations for the general Gaussian filtering

methods are,

µk =

∫∫

h(fk,σk)

×N(fk |µ
cav
k ,Σcav

k )N(σk |0,Σk) dfk dσk,

Sk =

∫∫

(h(fk,σk)− µk)(h(fk,σk)− µk)
⊤

×N(fk |µ
cav
k ,Σcav

k )N(σk |0,Σk) dfk dσk,

Ck =

∫∫

(fk − µcav
k )(h(fk,σk)− µk)

⊤

×N(fk |µ
cav
k ,Σcav

k )N(σk |0,Σk) dfk dσk.

(23)

Note that in the additive noise case, h(fk,σk) = h̃(fk)+σk,

these can be simplified to,

µk =

∫

h̃(fk)N(fk |µ
cav
k ,Σcav

k ) dfk,

Sk =

∫

[

(h̃(fk)− µk)(h̃(fk)− µk)
⊤ +Cov[yk | fk]

]

×N(fk |µ
cav
k ,Σcav

k ) dfk,

Ck =

∫

(fk − µcav
k )(h̃(fk)− µk)

⊤N(fk |µ
cav
k ,Σcav

k ) dfk.

(24)

for σk ∼ N(0,Σk = Cov[yk | fk]). Note that we include

the case where Σk is a nonlinear function of fk, which oc-

curs in our approximations to discrete likelihoods presented

in App. I. Here we have used h̃(fk) = E[yk | fk].



C. Closed-form Site Updates in Sec. 3.2

Here we derive in full the closed form site updates after

analytical linearisation in Sec. 3.2. Plugging the derivatives

from Eq. (15) into the updates in Eq. (10) we get,

µsite
k = µcav

k +
(

J⊤

fk
Σ̂−1

k Jfk

)−1

J⊤

fk
Σ̂−1

k vk,

Σsite
k = −αΣcav

k +
(

J⊤

fk
Σ̂−1

k Jfk

)−1

,

(25)

where vk = yk − h(µcav
k ,0). By the matrix inversion

lemma, and letting Rk = Jσk
ΣkJ

⊤
σk

,

Σ̂−1
k = R−1

k −

R−1
k Jfk

(

(αΣcav
k )−1 + J⊤

fk
R−1

k Jfk

)−1
J⊤

fk
R−1

k , (26)

so that

J⊤

fk
Σ̂−1

k Jfk
= Wk −Wk

(

(αΣcav
k )−1 +Wk

)−1
Wk,

(27)

where Wk = J⊤

fk
R−1

k Jfk
. Applying the matrix inversion

lemma for a second time we obtain

(

J⊤

fk
Σ̂−1

k Jfk

)−1

= W−1
k −W−1

k Wk

(

WkW
−1
k Wk

−
(

(αΣcav
k )−1 +Wk

)

)−1

WkW
−1
k

= W−1
k + αΣcav

k

=
(

J⊤

fk
R−1

k Jfk

)−1
+ αΣcav

k . (28)

We can also write

(

J⊤

fk
Σ̂−1

k Jfk

)−1

J⊤

fk
Σ̂−1

k =
(

(

J⊤

fk
R−1

k Jfk

)−1
+ αΣcav

k

)

× J⊤

fk

(

Rk + αJfk
Σcav

k J⊤

fk

)−1
. (29)

Together the above calculations give the approximate site

mean and covariance as

Σsite
k =

(

J⊤

fk
R−1

k Jfk

)−1
,

µsite
k = µcav

k +
(

Σsite
k + αΣcav

k

)

J⊤

fk

(

Rk + αJfk
Σcav

k J⊤

fk

)−1
vk.

(30)

D. Analytical Linearisation in EP (α = 1)

Results in an Iterated Version of the EKF

Here we prove the result given in Sec. 3.2: a single pass of

the proposed EP-style algorithm with analytical linearisation

(i.e. a first order Taylor series approximation) is exactly

equivalent to the EKF. Plugging the closed form site updates,

Eq. (16), with α = 1 (since the filter predictions can be

interpreted as the cavity with the full site removed), into

our modified Kalman filter update equations, Eq. (11), we

get a new set of Kalman updates in which the latent noise

terms are determined by scaling the observation noise with

the Jacobian of the state. Crucially, on the first forward

pass the Kalman prediction is used as the cavity such that

Σcav
k = HkP

pred
k H⊤

k :

Sk = Σcav
k +

(

J⊤

fk
R−1

k Jfk

)−1
,

Kk = P
pred
k H⊤

k S
−1
k ,

mk = m
pred
k +KkSkJ

⊤

fk

(

Rk + Jfk
Σcav

k J⊤

fk

)−1
vk,

Pk = P
pred
k −KkSkK

⊤

k .

(31)

where Rk = Jσk
ΣkJ

⊤
σk

. This can be rewritten to explicitly

show that there are two innovation covariance terms, Sk and

Ŝk, which act on the state mean and covariance separately:

Linearised update step:

Ŝk = Σcav
k +

(

J⊤

fk
R−1

k Jfk

)−1
,

Sk = Jfk
Σcav

k J⊤

fk
+Rk,

K̂k = P
pred
k HkŜ

−1
k ,

Kk = P
pred
k H⊤

k J
⊤

fk
S−1
k ,

mk = m
pred
k +Kkvk,

Pk = P
pred
k − K̂kŜkK̂

⊤

k .

(32)

Now we calculate the inverse of Ŝk:

Ŝ−1
k =

(

Σcav
k +

(

J⊤

fk
R−1

k Jfk

)−1
)−1

= J⊤

fk
R−1

k Jfk
−

J⊤

fk
R−1

k Jfk

(

Σcav
k

−1 + J⊤

fk
R−1

k Jfk

)−1

J⊤

fk
R−1

k Jfk

(33)

and the inverse of Sk:

S−1
k =

(

Jfk
Σcav

k J⊤

fk
+Rk

)−1

= R−1
k −

R−1
k Jfk

(

Σcav
k

−1 + J⊤

fk
R−1

k Jfk

)−1

J⊤

fk
R−1

k

(34)



which shows that

Ŝ−1
k = J⊤

fk
S−1
k Jfk

, (35)

and hence, recalling that Rk = Jrk
ΣkJ

⊤
rk

, Eq. (32) simpli-

fies to give exactly the extended Kalman filter updates:

EKF update step:

Sk = Jfk
HkP

pred
k H⊤

k J
⊤

fk
+ Jσk

ΣkJ
⊤

σk
,

Kk = P
pred
k H⊤

k J
⊤

fk
S−1
k ,

mk = m
pred
k +Kk(yk − h(Hkm

pred
k ,0)),

Pk = P
pred
k −KkSkK

⊤

k .

(36)

E. General Gaussian Filter Site Updates in

Sec. 3.3

Here we derive in full the site updates after statistical linear

regression in Sec. 3.3. The Gaussian likelihood approxima-

tion results in,

Lk = logEqcav
k

[

Nα(yk |µk +C⊤

k (Σ
cav
k )−1(fk − µcav

k ),Rk)
]

= c+ logN
(

yk |µk, α
−1Σ̃k

)

, (37)

where qcav
k = N(fk |µ

cav
k ,Σcav

k ), Rk = Sk −

C⊤

k (Σ
cav
k )−1Ck and Σ̃k = Rk + αC⊤

k (Σ
cav
k )−1Ck for

µk, Sk and Ck given in Eq. (23) with µcav
k = Hkm

pred

k ,

Σcav
k = HkP

pred

k H⊤

k . Taking the derivatives of this log-

Gaussian w.r.t. the cavity mean, we get

∇Lk =
∂Lk

∂µcav
k

= αΩ⊤

k Σ̃
−1
k vk,

∇
2Lk =

∂2Lk

∂µcav
k
∂(µcav

k
)⊤

= −αΩ⊤

k Σ̃
−1
k Ωk,

(38)

where vk = yk − µk and

Ωk =
∂µk

∂µcav
k

=

∫∫

h(fk,σk)(Σ
cav
k )−1(fk − µcav

k )N(fk |µ
cav
k ,Σcav

k )

×N(σk |0,Σk) dfk dσk.

(39)

As in Sec. 3.2, to ensure consistency we have assumed here

that the derivative of Σ̃k is zero, despite the fact that it

depends on µcav
k .

Plugging the derivatives from Eq. (38) into the updates in

Eq. (10) we get,

µsite
k = µcav

k +
(

Ω⊤

k Σ̃
−1
k Ωk

)−1

Ω⊤

k Σ̃
−1
k vk,

Σsite
k = −αΣcav

k +
(

Ω⊤

k Σ̃
−1
k Ωk

)−1

.

(40)

F. Avoiding Numerical Issues When

Computing the Cavity

Computing the cavity distribution in Eq. (12) involves the

subtraction of two PSD covariance matrices. The result is

not guaranteed to be PSD and not guaranteed to be invertible,

which can lead to numerical issues. If fk is one-dimensional,

then no such issue occurs. In the higher-dimensional case

issues can be avoided by discarding the cross-covariances

such that Eq. (12) involves only element-wise subtraction

of scalars. If using cubature to perform moment matching /

linearisation, then this results in a loss of accuracy. However,

for the Taylor series approximations (EKF / EKS / EEP) the

cross-covariances are discarded anyway.

An alternative approach which does not trade off accuracy

is to instead compute the cavity by taking the product of the

forward and backward filtering distributions, an approach

known as two-filter smoothing (Särkkä, 2013), and then

include a fraction (1 − α) of the local site. This method

only involves products of PSD matrices which is more nu-

merically stable. We did not implement this approach here.

G. Marginal Likelihood Calculation During

Filtering

The marginal likelihood, p(y |θ), is used as an optimisa-

tion objective for hyperparameter learning. The marginal

likelihood can be written as a product of conditional terms

(dropping the dependence on θ for notational convenience),

p(y) = p(y1) p(y2 |y1) p(y3 |y1:2)

n
∏

k=4

p(yk |y1:k−1).

(41)

Each term can be computed via numerical integration during

the Kalman filter by noticing that,

p(yk |y1:k−1)=

∫

p(yk |xk,y1:k−1)p(xk |y1:k−1) dxk

=

∫

p(yk | fk = Hxk)p(xk |y1:k−1) dxk.

(42)

The first component in the integral is the likelihood, and the

second term is the forward filter prediction.

The Taylor series methods (EKF / EKS / EEP) aim to avoid

numerical integration, and hence use an alternative approx-

imation to the marginal likelihood based on the linearised

model, as shown in Algorithm 2.



H. The EEP Algorithm

Algorithm 2 EEP: Extended Expectation Propagation, a globally iterated Extended Kalman filter with power EP-style

updates such that linearisation is performed w.r.t. the cavity mean.

Input: {tk,yk}
n
k=1, Ak, Qk, P∞, Σk data, discrete state space model and obs. noise

h, Hk, Jf , Jσ , α measurement model, Jacobian and EP power

m0 ← 0, P0 ← P∞, e1:n = 0 initial state

while not converged do iterated EP-style loop

for k = 1 to n do forward pass (FILTERING)

mk ← Ak mk−1 predict mean

Pk ← Ak Pk−1 A
⊤

k +Qk predict covariance

if has label yk then

Σcav
k ← HkPkH

⊤

k predict = forward cavity

µcav
k ← Hkmk

vk ← yk − h(µcav
k ,0) residual

Jfk
← Jf |µcav

k
,0; Jσk

← Jσ|µcav
k

,0 evaluate Jacobians

if first iteration then

Σsite
k ←

(

J⊤

fk

(

Jσk
ΣkJ

⊤
σk

)−1
Jfk

)−1

match moments to get site covariance...

µsite
k ← µcav

k +
(

Σsite
k +Σcav

k

)

J⊤

fk

(

Jσk
ΣkJ

⊤
σk

+ Jfk
Σcav

k J⊤

fk

)−1
vk and site mean (α = 1)

end if

Sk ← HkPkH
⊤

k +Σsite
k innovation

Kk ← PkH
⊤

k S
−1
k Kalman gain

mk ←mk +Kk(µ
site
k − µcav

k ) update mean

Pk ← Pk −KkSkK
⊤

k update covariance

Ek ← Jσk
ΣkJ

⊤
σk

+ Jfk
Σcav

k J⊤

fk

ek ←
1
2 log |2πEk|+

1
2v

⊤

k E
−1
k vk energy

end if

end for

for k = n− 1 to 1 do backward pass (SMOOTHING)

Gk ← Pk A
⊤

k+1 (Ak+1 Pk A
⊤

k+1 +Qk+1)
−1 smoothing gain

mk ←mk +Gk (mk+1 −Ak+1 mk) update

Pk ← Pk +Gk (Pk+1 −Ak+1 Pk A
⊤

k+1 −Qk+1)G
⊤

k

if has label yk then

Σcav
k ←

(

(HkPkH
⊤

k )
−1 − α

(

Σsite
k

)−1
)−1

remove site to get cavity covariance...

µcav
k ← Σcav

k

(

(HkPkH
⊤

k )
−1Hkmk − α

(

Σsite
k

)−1
µsite

k

)

and cavity mean

Jfk
← Jf |µcav

k
,0; Jσk

← Jσ|µcav
k

,0 evaluate Jacobians

vk ← yk − h(µcav
k ,0) residual

Σsite
k ←

(

J⊤

fk

(

Jσk
ΣkJ

⊤
σk

)−1
Jfk

)−1

match moments to get site covariance...

µsite
k ← µcav

k +
(

Σsite
k + αΣcav

k

)

J⊤

fk

(

Jσk
ΣkJ

⊤
σk

+ αJfk
Σcav

k J⊤

fk

)−1
vk and site mean

end if

end for

end while

Return: E[f(tk)] = Hkmk; V[f(tk)] = HkPkH
⊤

k posterior marginal mean and variance

log p(y |θ) ≃ −
∑n

k=1 ek log marginal likelihood



I. Continuous Measurement Model

Approximations for Sec. 4

The next subsections provide further details of the model for-

mulations used in the experiments (i.e., how to write down

approximative measurement models for common tasks such

as heteroscedastic noise modelling, Poisson likelihoods, or

logistic classification).

I.1. Heteroscedastic Noise Model

The heteroscedastic noise model contains one GP for the

mean, f (1), and another for the time-varying observation

noise, f (2), both with Matern-3/2 covariance functions. The

GP priors are independent,

f (1)(t) ∼ GP(0, κ(t, t′)),

f (2)(t) ∼ GP(0, κ(t, t′)),
(43)

and the likelihood model is

y | f (1), f (2) ∼

n
∏

k=1

N(yk | f
(1)
k , [φ(f

(2)
k )]2). (44)

The corresponding state space observation model is

h(fk, σk) = f
(1)
k + φ(f

(2)
k )σk, (45)

where σk ∼ N(0, 1) and φ(f) = log(1+exp(f − 1
2 )). The

Jacobians w.r.t. the (two-dimensional) latent GPs fk and the

noise variable σk are,

Jf (fk, σk) =
∂h̄

∂f⊤k
=

[

1, φ′
(

f
(2)
k

)

σk

]

, (46a)

Jσ(fk, σk) =
∂h̄

∂σ⊤

k

= φ
(

f
(2)
k

)

, (46b)

where the derivative of the softplus is the sigmoid function:

φ′(f) =
1

1 + exp(−f + 1
2 )
. (47)

In practice a problem arises when using the above linearisa-

tion. Since the mean of σk is zero, the Jacobian w.r.t. f (2)

disappears when evaluated at the mean regardless of the

value of f (2). This means that the second latent function is

never updated, which results in poor performance, as shown

in Table 1. We found that statistical linearisation suffers

from a similar issue, providing little importance to the latent

function that models the noise, which highlights a potential

weakness of linearisation-based methods.

Fig. 7 plots a breakdown of the different components in the

posterior for the motorcycle crash data set.

I.2. Log-Gaussian Cox Process

For a log-Gaussian Cox process, binning the data into subre-

gions and assuming the process has locally constant intensity

in these subregions allows us to use a Poisson likelihood,

p(y | f) ≈
∏n

k=1 Poisson(yk | exp(f(t̂k))), where t̂k is the

bin coordinate and yk the number of data points in it. How-

ever, the Poisson is a discrete probability distribution and

the EKF and EEP methods requires the observation model

to be differentiable. Therefore we use a Gaussian approxi-

mation, noticing that the first two moments of the Poisson

distribution are equal to the intensity λk = exp
(

fk
)

.

We have a GP prior over f :

f(t) ∼ GP(0,K(t, t′)), (48)

and the approximate Gaussian likelihood is

p(y | f) =

n
∏

k=1

N(yk | exp(fk), diag[exp(fk)]) , (49)

where diag[exp(fk)] is a diagonal matrix whose entries are

the elements of exp(fk). This implies the following state

space observation model:

h(fk,σk) = exp(fk) + diag[exp(fk/2)]σk, (50)

where σk ∼ N(0, I). The EKF and EEP algorithms require

the Jacobian of h(fk,σk) with respect to fk and σk, which

are given by,

Jf (fk,σk) =
∂h

∂f⊤k

= diag

[

exp(fk) +
1

2
diag[exp(fk/2)]σk

]

, (51a)

Jσ(fk,σk) =
∂h

∂σ⊤

k

= diag[exp(fk/2)] . (51b)

I.3. Bernoulli (Logistic Classification)

As in standard GP classification we place a GP prior over the

latent function f , and use a Bernoulli likelihood by mapping

f through the logistic function ψ(f) = 1
1+exp(−f) ,

f(t) ∼ GP(0, κ(t, t′)), (52a)

y | f ∼

n
∏

k=1

Bern(ψ(f(tk))). (52b)

As with the Poisson likelihood, we wish to approximate

the Bernoulli with a distribution that has continuous sup-

port. We form a Gaussian approximation whose mean

and variance are equal to that of the Bernoulli distribu-

tion, which has mean E[y | f ] = ψ(f), and variance

Var[y | f ] = ψ(f)(1− ψ(f)), giving:

y | f ∼
n
∏

k=1

N
(

yk |ψ(fk), ψ(fk)(1− ψ(fk))
)

. (53)



Therefore the approximate state space observation model is

h(fk, σk) =
1

1 + exp(−fk)
+

exp(fk/2)

1 + exp(fk)
σk, (54)

and the Jacobians are

Jf (fk, σk) =
∂h

∂fk

=
exp(fk)

(1 + exp(fk))2
+

exp(fk/2)− exp(3fk/2)

2(1 + exp(f))2
σk,

(55a)

Jσ(fk, σk) =
∂h

∂σk
=

exp(fk/2)

1 + exp(fk)
. (55b)

I.4. Bernoulli (Probit Classification)

The Probit likelihood can be constructed similarly to the Lo-

gistic model above, by simply swapping the logistic function

for the Normal CDF: ψ(f) = Φ(f) =
∫ f

−∞
N(x | 0, 1) dx.

J. Supplementary Figures for Sec. 4
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Figure 5. The data (a) are 12,929 tree locations in a rainforest.

They are binned into a grid of 500 × 250 and we apply a log-

Gaussian Cox process using EEP for inference. The posterior

log-intensity is shown in (b).

J.2. Audio
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Figure 6. Analysis of a recording of female speech (a), duration 0.5

seconds, sampled at 44.1 kHz, n = 22,050. The three-component

GP prior is overly simple given the true harmonic structure of the

data, but the model is able to uncover high-, medium-, and low-

frequency behaviour (b)-(d) along with their positive amplitude

envelopes (shown in red). Only the posterior means are shown. The

posterior for the signal (not shown) is produced by multiplying

the periodic components by their amplitudes and summing the

three resulting signals (see Sec. 4 for more details regarding the

model). The sub-components have been rescaled for visualisation

purposes.



J.3. Motorcycle
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Figure 7. Model components for the motorcycle crash experiment. Left is the SLEP method (with Gauss-Hermite cubature, i.e. GHEP)

and right is the EP equivalent. The linearisation-based methods fail to incorporate the heteroscedastic noise, whereas EP captures rich

time-varying behaviour. The top plots are the posterior for f (1)(t) (the mean process), the middle plots show the posterior for f (2)(t)
(the observation noise process), and the bottom plots show the full model.
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