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Abstract

We formulate approximate Bayesian inference

in non-conjugate temporal and spatio-temporal

Gaussian process models as a simple parame-

ter update rule applied during Kalman smooth-

ing. This viewpoint encompasses most inference

schemes, including expectation propagation (EP),

the classical (Extended, Unscented, etc.) Kalman

smoothers, and variational inference. We pro-

vide a unifying perspective on these algorithms,

showing how replacing the power EP moment

matching step with linearisation recovers the clas-

sical smoothers. EP provides some benefits over

the traditional methods via introduction of the so-

called cavity distribution, and we combine these

benefits with the computational efficiency of lin-

earisation, providing extensive empirical analysis

demonstrating the efficacy of various algorithms

under this unifying framework. We provide a fast

implementation of all methods in JAX.

1. Introduction

Gaussian processes (GPs, Rasmussen & Williams, 2006)

are a nonlinear probabilistic modelling tool that combine

well calibrated uncertainty estimates with the ability to en-

code prior information, and as such they are an increasingly

effective method for many difficult machine learning tasks.

The well known limitations of GPs are (i) their cubic scaling

in the number of data, and (ii) their intractability when the

observation model is non-Gaussian.

For (i), a wide variety of methods have been proposed (e.g.

Hensman et al., 2013; Salimbeni & Deisenroth, 2017; Wang

et al., 2019), with perhaps the most common being the
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Filtering / Forward pass → ← Smoothing / Backward pass

(a) EKF forward and RTS backward pass

Filtering / Forward pass → ← Smoothing / Backward pass

(b) Extended Expectation Propagation (EEP)

Figure 1. Filtering and smoothing in the Banana classification task.

Training data represented by coloured points, the decision bound-

aries by black lines, and the predictive mean for the class label by

colour map . The vertical dimension is treated as the ‘spatial’

input and the horizontal as the sequential (‘temporal’) dimension.

Forward sweep on the left, backward sweep on the right. Top

panels (a) show the EKF; bottom (b) is the 2nd iteration of EEP.

sparse-GP approach (Quinonero-Candela˜ & Rasmussen,

2005) which summarises the GP posterior through a subset

of ‘inducing’ points. However, when the data exhibits a

natural ordering—as in temporal or spatio-temporal tasks—

many GP priors can be rewritten in closed-form in terms

of stochastic differential equations (SDEs, Sarkk¨ ä & Solin,

2019), allowing for linear-time exact inference via Kalman

filtering (Hartikainen & Sarkk¨ ä, 2010; Reece & Roberts,

2010). This link is beneficial in scenarios such as climate

modelling, or audio signal analysis, which exhibit both high

and low-frequency behaviour. A sparse-GP analogy to the

Shannon–Nyquist theorem (Tobar, 2019) tells us that audio

signals, for example, necessarily require tens of thousands

of inducing points per second of data, rendering sparse ap-
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proximations infeasible for all but the shortest of time series.

This strongly motivates our reformulation of temporal GPs

as SDEs for efficient inference.

For limitation (ii), a wide variety of approximative infer-

ence methods have been considered, with the current gold-

standard being various sampling schemes (see Gelman et al.,

2013, for an overview), variational methods (Opper & Ar-

chambeau, 2009; Titsias, 2009; Wainwright & Jordan, 2008),

and expectation propagation (EP, Bui et al., 2017; Jylanki¨

et al., 2011; Kuss & Rasmussen, 2006; Minka, 2001). De-

spite Minka’s original work having its foundations in filter-

ing and smoothing, all the special characteristics of temporal

models have not been thoroughly leveraged in the machine

learning community. We extend recent work on approxi-

mate inference under the state space paradigm, and provide

a framework that unifies EP and traditional methods such as

the Extended (EKF, Bar-Shalom et al., 2001) and Unscented

Kalman filters (UKF, Julier et al., 1995; 2000). Our frame-

work provides ways to trade off accuracy and computation,

and we show that an iterated version of the EKF with EP-

style updates can be efficient and easy to implement, whilst

providing good performance in cases where the likelihood

model is not locally highly nonlinear. For completeness, we

also formulate variational inference in the same setting.

We show that such tools are not limited to one-dimensional-

input models; instead they only require us to treat a single

dimension of the data sequentially (regardless of whether it

is actually ordered, or represents time). We apply our meth-

ods to multi-dimensional problems such as 2D classification

(see Fig. 1) and 2D log-Gaussian Cox processes.

Our main contributions are: (i) We formulate EP as a

Kalman smoother, showing how it unifies many classical

smoothing methods, providing an efficient framework for

inference in temporal GPs. (ii) We show how to rewrite

common machine learning tasks (likelihoods) into canoni-

cal state space form, and provide extensive analysis demon-

strating performance in many modelling scenarios. (iii) We

show how the state space framework can be extended be-

yond the one-dimensional case, applying it to multidimen-

sional classification and regression tasks, where we still

enjoy linear-time inference over the sequential dimension.

(iv) We provide fast JAX code for inference and learning

with all the methods described in this paper, available at

https://github.com/AaltoML/kalman-jax.

2. Background

Gaussian processes (GPs, Rasmussen & Williams, 2006)

form a non-parametric family of probability distributions

on function spaces, and are completely characterized by a

mean function µ(t) : R → R and a covariance function

κ(t, t′) : R× R→ R. Let {(tk, yk)}
n denote a set ofk=1 n

input–output pairs for a time series (we first consider the 1D

input case), then GP models typically take the form

n

f(t) ∼ GP(µ(t), κ(t, t′)), y | f ∼
k

∏

p(yk | f(tk)), (1)

=1

which defines the prior for the latent function f : R → R

and the observation model for yk. For Gaussian observation

models, the posterior distribution p(f |y) is also Gaussian

and can be obtained analytically, but non-Gaussian like-

lihoods render the posterior intractable and approximate

inference methods must be applied.

2.1. State Space Models for Gaussian Processes

In signal processing, the canonical (discrete-time) state

space model formulation is (e.g., Bar-Shalom et al., 2001):

xk = g(xk−1,qk), (2a)

yk = h(xk,σk), (2b)

for time instances tk, where xk ∈
s

R is the discrete-

time state sequence, yk ∈
d

R is a measurement sequence,

qk ∼ N(0,Qk) is the process noise, and σk ∼ N(0,Σk) is

Gaussian measurement noise. The model dynamics (prior)

are defined by the nonlinear mapping g(·, ·), while the obser-

vation/measurement model (likelihood) is given in terms of

the mapping h(·, ·). We restrict the model dynamics g(·, ·)
to be linear-Gaussian—defining an s-dimensional Gaussian

process. The dynamical model Eq. (2a) becomes,

xk = Akxk−1 + qk, qk ∼ N(0,Qk), (3)

which is characterised by the transition matrix Ak and pro-

cess noise covariance Qk. Whilst we restrict our interest

to latent Gaussian dynamics, the inference methods pre-

sented later apply to more general nonlinear state estimation

settings, where the prior is not necessarily a GP (see Sec. 5).

The motivation for linking the machine learning GP for-

malism with state space models comes from the special

structure in temporal or spatio-temporal problems, where

the data points have a natural ordering with respect to the

temporal dimension. If the GP prior in Eq. (1) admits a

Markovian structure, the model can be rewritten in the form

of Eq. (3). We leverage the link between the kernel and state

space forms of GPs (Sarkk¨ ä & Solin, 2019; Sarkk¨ ä et al.,

2013), which comes through linear time-invariant SDEs:

ẋ(t) = Fx(t) + Lw(t), such that f(t) = Hx(t), (4)

where w(t) is a white noise process, and F ∈ s×s
R ,

L ∈ s×v
R , H ∈ m×s

R are the feedback, noise effect, and

measurement matrices, respectively. Many widely used co-

variance functions admit this form exactly or approximately

(e.g., the Matern´ class, polynomial, noise, constant, squared-

exponential, rational quadratic, periodic, and sums/products

https://github.com/AaltoML/kalman-jax
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thereof). Sarkk¨ ä & Solin (2019) discuss methods for con-

structing the required matrices for many GP models. Key

to this formulation is that linear time-invariant SDEs are

guaranteed to have a closed-form discrete-time solution in

the form of a linear Gaussian state space model as in Eq. (3).

We leverage this link in order to apply sequential inference

schemes to temporal and spatio-temporal GP models.

2.2. Extended and Unscented State Estimation

Many nonlinear variants of the Kalman filter have been de-

veloped to deal with the measurement model in Eq. (2b) (see

Sarkk¨ ä, 2013, for an overview). The most widely known are

the EKF (e.g. Bar-Shalom et al., 2001) and UKF (Julier et al.,

1995). The EKF linearises h(xk,σk) via a first-order Taylor

series expansion, which in turn results in linear Gaussian

approximations to all the required Kalman update equations.

We discuss the approach in detail in Sec. 3.2.

The UKF is a member of a wider class of Gaussian filter-

ing methods (Ito & Xiong, 2000), which approximate the

Kalman update equations via statistical linearisation rather

than a Taylor expansion. Statistical linearisation is generally

intractable, involving expectations that must be computed

numerically (shown in App. B). Choosing the Unscented

transform as the numerical integration method results in

the UKF, but other sigma-point methods can also be used

(see, e.g. ˇ, Ito & Xiong, 2000; Kokkala et al., 2016; Simandl

& Dunı́k, 2009; Wu et al., 2005; 2006)—e.g. using Gauss–

Hermite cubature gives the Gauss–Hermite Kalman filter.

2.3. Expectation Propagation

Expectation propagation (EP) is a general framework for

approximating probability distributions proposed by Minka

(2001). EP and its extension Power-EP (PEP, Minka, 2004)

have been extensively studied for Gaussian process mod-

els and shown to provide state-of-the-art results (Bui et al.,

2017; Jylanki¨ et al., 2011; Kuss & Rasmussen, 2006). EP

approximates the target distribution p(f |y) with an approx-

imation q(f) that factorises in the same way as the target,

n n

p(f |y)∝
∏

p(yk | fk)p(f) ≈ q(f)∝
∏

qsite
k (fk)p(f) (5)

k=1 k=1

The likelihood approximations qsite
k (fk) ≈ p(yk | fk) are

usually referred to as sites. For GP models, the sites are

chosen to be Gaussians and hence the global approximation

q(f) is also Gaussian. The sites are updated in an itera-

tive fashion by minimizing local Kullback–Leibler diver-

gences between the so-called tilted distributions, p̂k(fk) =
1
Zk

p(yk | fk)q
cav
k (fk), and its approximation using the site,

∗
qsite
k = arg minKL

qsite
k

[

p̂k(fk) ‖ q
site
k (fk)q

cav
k (fk)

]

, (6)

where qcav
k (fk) is the cavity distribution: qcav

k (fk) ∝
q(fk)/q

site
k (fk). The KL-divergence in Eq. (6) is minimized

using moment matching (Minka, 2001), i.e. qk is chosen

such that the approximation qsite
k qcav matches the first twok

moments of the tilted distribution p̂k. This process is iterated

for all sites until convergence. Power EP is a generaliza-

tion of EP, where the KL-divergence is generalized to the

α-divergence (Minka, 2005). Minka (2004) showed that

PEP can be implemented using the EP algorithm, by raising

the site terms in the tilted distributions to a power of α.

3. Methods

We consider non-conjugate (i.e. non-Gaussian likelihood)

Gaussian process models with input t, i.e. time, which have

a dual kernel (left) and discrete state space (right) form for

the prior (Sarkk¨ ä et al., 2013),

f(t) ∼ GP
(

µ(t), Kθ(t, t
′)
)

, xk = Aθ,kxk−1 + qk, (7)

where f(t) =
( ⊤
f (1)(t), . . . , f (m)(t) ∈ m

R are GPs,
( (1) (m) ⊤

x = x x s
Rk is the

)

latent state vectork , . . . , k ∈
containing the GP dynamics,

)

and yk ∈
d

R are observa-
(i)

tions. Each x contains the state dynamics for one GP.k

Using notation fk = f(tk), we define a time-varying linear

map Hk ∈
m×s

R from state space to function space, such

that fk = Hkxk (the time-varying mapping allows us to

naturally incorporate spacial inducing points when consid-

ering multidimensional input models, see Sec. 3.6). The

likelihood (left) / state observation model (right) are

yk ∼ p(yk | fk) vs. yk = h(fk,σk). (8)

Measurement model h(fk,σk) is a (nonlinear) function of

fk and observation noise σk ∼ N(0,Σk), and can gener-

ally be derived for continuous likelihoods or approximated

for discrete ones by letting h(fk,σk) ≈ E[yk | fk] + εk,

εk ∼ N(0,Cov[yk | fk]). See Sec. 4 and App. I for deriva-

tions of some common models. We aim to calculate the

posterior over the states, p(xk |y1, . . . ,yn), known as the

smoothing solution, which can be obtained via applica-

tion of a Gaussian filter (to obtain the filtering solution

p(xk |y1, . . . ,yk)) followed by a Gaussian smoother. If

h(·, ·) is linear, i.e. p(yk | fk) is Gaussian, then the Kalman

filter and Rauch–Tung–Striebel (RTS, Rauch et al., 1965)

smoother return the closed-form solution.

3.1. Power EP as a Gaussian Smoother

Our inference methods approximate the filtering distribu-

tions with Gaussians, p(xk |y1:k) ≈ N(xk |m
filt
k ,Pfilt

k ).
The prediction step remains the same as in the

pred
standard Kalman filter: mk = Aθ,km

filt , andk−1
pred

Pk = Aθ,kP
filt A⊤
k−1 θ,k +Qθ,k. The resulting distribu-

tion provides a means by which to calculate the EP cavity,
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Figure 2. Comparison between EP, VI and iterated linearisation (EKS, GHKS). When measurement function h is approximately linear in
ˆthe region of the prior (or the cavity / posterior in the full algorithm), (left), linearisation h provides a similar result to EP / VI. When h is

highly nonlinear (right), the posterior approximations have different properties. 20-point Gauss–Hermite quadrature used for all methods

except EKS. All methods are iterated 10 times except EP which does not require iteration for a single data point.

qcav(fk) = N(fk |µ
cav,Σcav), on the first forward pass:k k k

cav pred pred
µk = Hkm , cav ⊤Σk = HkP Hk . (9)k k

In this sense, we can view the first pass of the Kalman

filter as an effective way to initialise the EP parameters.

To account for the non-Gaussian likelihood in the up-

date step we follow Nickisch et al. (2018), introducing

an intermediary step in which the parameters of the sites,

qsite(fk k) = N(fk |µ
site
k ,Σsite

k ), are set via moment matching

and stored before continuing with the Kalman updates.

This PEP formulation, with power α, makes use of the fact

that the required moments can be calculated via the deriva-

tives of the log-normaliser, Lk, of the tilted distribution (see

Seeger, 2005). Letting L ∈ m and 2L ∈ m×m
∇ R ∇ Rk k

be the Jacobian and Hessian of Lk w.r.t. µcav respectively,k

this gives the following site update rule,

Power expectation propagation

Lk = logEN(fk |µcav
k

,Σcav
k

)

[

pα(yk | fk)
]

,

Σsite
k = −α

(

Σcav
k +

(

∇
2Lk

)−1
)

,

µsite
k = µcav

k −
(

∇
2Lk

)−1
∇Lk.

(10)

After the mean and covariance of our new likelihood approx-

imation have been calculated, we proceed with a modified

set of linear Kalman updates,

pred= ⊤ siteSk HkP Hk k +Σk ,
pred

Kk = ⊤ −1P Hk k Sk ,
(11)

filt pred= + ( site pred
mk m Kk µk −Hkmk k ),

filt pred= − ⊤Pk P Kk kSkKk .

As in Wilkinson et al. (2019), we augment the RTS smoother

with another moment matching step where the cavity dis-

tribution is calculated by removing (a fraction α of) the

local site from the marginal smoothing distribution, i.e. the

posterior, p(xk |y1:n) = N(xk |mk ,Pk ),

cavΣk =
[( post )−1 −1 −1⊤ − α siteHkP H Σ (12)k k k ,

[( post )−1 −1cav

( ) ]

µk = cav ⊤ post
Σk HkP Hk Hkmk k − α

(

site siteΣk

)

µk

]

.

Moment matching is again performed via Eq. (10) using this

new cavity. The site parameters, µsite, Σsite, are stored to bek k

used on the next forward (filtering) pass. App. F discusses

methods for avoiding numerical issues that could occur

due to the subtraction of covariance matrices in Eq. (12).

Algorithm 1 summarises the full learning algorithm, and

App. G describes how the marginal likelihood, p(y |θ), is

computed to enable hyperparameter learning.

3.2. Unifying PowerEP and Extended KalmanFiltering

In the above inference scheme, a computational saving can

be gained by noticing that when h(·, ·) is linear, Lk can be

calculated in closed form. This fact has been exploited previ-

ously to aid inference in GP dynamical systems (Deisenroth

& Mohamed, 2012). Fig. 2 demonstrates that such an ap-

proximation can be accurate when h(·, ·) is locally linear, or

when the cavity variance is small. Using a first-order Taylor

series expansion about the mean µcav, we obtaink

h(fk,σk) ≈ Jfk
(fk−

cavµk )+h( cavµk ,0)+Jσk
σk, (13)

a linear function of fk and σk ∼ N(0,Σk), such that

p(yk | fk) ≈ N(y ˆ
k |h(fk),J

⊤ ˆ
σk

ΣkJσk
), where h(fk) =

Jfk
(f cav cav

k−µ )+h(µ ,0). Here Jk k fk
= Jf |µcav

k
,0 ∈

d×m
R

and Jσk
= Jσ|µcav

k
,0 ∈

d×d
R are the Jacobians of h(·, ·)

w.r.t. fk and σk evaluated at the mean, respectively.

In order to frame approximate inference in the same setting

as EP, we seek the site update rule implied by this linearisa-

tion. If Jf is invertible, then writing down such a rule would

be trivial, but since this is not generally the case we instead

use the EP moment matching steps, Eq. (10), which give,

Lk = logEN(fk |µcav
k

,Σcav
k

)

[

Nα
(

y ˆ
k |h(fk),

⊤Jσk
ΣkJσk

) ]

= c+ logN
(

yk |h(
cavµk ,0), α−1Σ̂k

)

, (14)

post post
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where Σ̂k = Jσk
ΣkJ

⊤
σk

+αJfk
ΣcavJ⊤

fk
. Taking the deriva-k

tives of this log-Gaussian w.r.t. the cavity mean, we get

∂Lk
∇ ˆL ⊤ −1

k = = αJfk
Σ vk k,

∂µcav
k

(15)
∂22 Lk

∇ ˆL ⊤ −1
k = = −αJ Σ J

∂µcav∂(µcav)⊤ f k fkk
,

k k

where vk = yk−h(µcav 0 . It is important to note that wek , )

have assumed the derivative of Σ̂k to be zero, even though it

depends on µcav. This assumption is crucial in ensuring thatk

the updates are consistent, since it reflects the knowledge

that the model is now linear (see Deisenroth & Mohamed

(2012) for detailed discussion). Now we update the site in

closed form (App. C gives the derivation),

Extended expectation propagation

Σsite
k =

(

J⊤
fk

(

Jσk
ΣkJ

⊤
σk

)−1
Jfk

)−1

,

µsite
k = µcav

k +
(

Σsite
k + αΣcav

k

)

J⊤
fk
Σ̂−1

k vk.
(16)

The result when we use Eq. (16) (with α = 1) to modify

the filter updates, Eq. (11), is exactly the EKF (see App. D

for the proof). Additionally, since these updates are now

available in closed form, taking the limit α → 0 is now

possible and avoids the matrix subtractions and inversions

in Eq. (12), which can be costly and unstable. This is not

possible prior to linearisation because the intractable inte-

grals also depend on α. App. H describes our full algorithm.

3.3. Power EP and the Unscented/GH Kalman Filters

We now consider the relationship between EP and general

Gaussian filters, which use the likelihood approximation

p(yk | fk) ≈ N(yk |
⊤ −1µ cav cav

k +Ck (Σk ) (fk − µk ),

Sk −
⊤Ck (Σ

cav −1
k ) Ck), (17)

where µk, Sk and Ck are the Kalman mean, innovation

and cross-covariance terms respectively, given in App. B.

Eq. (17) amounts to statistical linear regression (Sarkk¨ ä,

2013) of h( pred
f cav cav
k,σk). Letting µk = Hkm , Σk k =

pred
HkP H⊤ and using the Unscented transform / Gauss–k k

Hermite to approximate µk, Sk and Ck results in the UKF

/ GHKF. This approximation has a similar form to the EKF

(which uses analytical linearisation, see Fig. 2 for compari-

son), and as in Sec. 3.2 we can insert the Gaussian likelihood

approximation into Eq. (10) to derive an iterated algorithm

that matches the Gaussian filters on the first forward pass,

but then refines the linearisation using EP style updates.

This provides the following site update rule (see App. E):

Algorithm 1 Sequential inference & learning algorithm

Input: {tk,yk}
n
k=1, θ0, α, and learning rate ρ,

update rule← Eq. (10), Eq. (16), Eq. (18) or Eq. (20)

for i = 1 to num iters do

build model, Eq. (7), with θi−1. mfilt
0 ,Pfilt

0 ← 0,P∞

for k = 1 to n do

m
pred

k ,Ppred

k ← predict (mfilt
k−1,P

filt
k−1)

if i = 1 then

initialise µsite
k , Σsite

k via update rule using

α = 1 and m
pred

k ,Ppred

k as cavity / posterior

end if

mfilt
k ,Pfilt

k ← update(mpred

k ,Ppred

k ,µsite
k ,Σsite

k )
ek = − log p(yk |y1:k−1,θi−1) see App. G

end for

for k = n− 1 to 1 do

m
post
k ,Ppost

k ← smooth(mpost
k+1 ,P

post
k+1 ,m

filt
k ,Pfilt

k )

update µsite
k , Σsite

k via update rule

end for

θi = θi−1 + ρ∇θ

∑

k ek update hyper.

end for

Return: posterior mean and covariance: mpost, Ppost

Statistically linearised expectation propagation

Σsite
k = −αΣcav

k +
(

Ω⊤
k Σ̃

−1
k Ωk

)−1

,

µsite
k = µcav

k +
(

Ω⊤
k Σ̃

−1
k Ωk

)−1

Ω⊤
k Σ̃

−1
k vk.

(18)

where vk = yk−µk, Σ̃k = S ⊤ cav −1
k+(α−1)C (Σ ) Ck k k,

∂µk
= = ( , )( cav)−1Ωk h fk σk Σ (f − cav

k µ )
∂µcav

k

∫∫

k k

×N(fk |
cavµk , cavΣk )N(σk |0,Σk) dfk dσk. (19)

3.4. Nonlinear Kalman Smoothers

Iterated versions of nonlinear filter-smoothers have been

developed to address the fact that the forward prediction,

N( pred
xk | pred

mk , pred
Pk ), may not be the optimal distribution

about which to perform linearisation. It is argued that the
post post post

posterior, N(xk |mk ,Pk ), obtained via smoothing,

provides a better estimate of the region in which the likeli-

hood affects the posterior (Garcı́a-Fernandez´ et al., 2015).

These iterated smoothers (Bell, 1994) can be seen as spe-

cial cases of the algorithms described in Sec. 3.2 and

Sec. 3.3, where the posterior is used to perform the lin-

earisation in place of the cavity, i.e. α = 0. The classical

smoothers seek a linear approximation to the likelihood

p(yk | fk) ≈ N(yk |Bkfk+bk,Ek) via a Taylor expansion,

Eq. (13), or SLR, Eq. (17), and then store parameters Bk,

bk, Ek to be used during the next forward pass. Instead, we
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use the current posterior approximation to compute the site

parameters via Eq. (16) or Eq. (18), which differs slightly

from the standard presentation of these algorithms. We ar-

gue that framing the Kalman smoothers as site update rules

is beneficial in that it allows for direct comparison with EP,

but also that introduction of the cavity is beneficial. The

cavity may be a better distribution about which to linearise

than the posterior, since it does not already include the effect

of the local data. However, Table 1 shows that setting α = 0
typically provides the best performance.

3.5. Variational Inference with Natural Gradients

Variational inference (VI) is an alternative to EP, often

favoured due to its convergence guarantees and ease of

implementation. If VI is formulated such that the varia-

tional parameters of the approximate posterior q(f) are the

likelihood (i.e. site) mean and covariance, as in Eq. (5), then

it can also be framed as a site update rule during Kalman

smoothing (Chang et al., 2020). This parametrisation is

in fact the optimal one, as discussed in Opper & Archam-

beau (2009), but is often avoided because the resulting op-

timisation problem is non-convex (instead it is common

to declare a variational distribution over the full posterior,

q(f) = N(m,K), and optimise m, K with respect to the

evidence lower bound. Adam et al. (2020) show how to

perform natural gradient VI under this parametrisation).

We present here the VI site update rule, based on conjugate-

computation variational inference (CVI, Khan & Lin, 2017),

in order to show their similarity to EP, and to enable di-

rect comparison between the algorithms. CVI sidesteps the

issues with the optimal parametrisation by showing that nat-

ural gradient VI can be performed via local site parameter

updates that avoid directly differentiating the evidence lower

bound. The updates can be written,

Variational inference (with natural gradients)

L̃k = EN(fk |µpost

k
,Σpost

k
)

[

log p(yk | fk)
]

,

Σsite
k = −

(

∇
2L̃k

)−1

,

µsite
k = µ

post
k −

(

∇
2L̃k

)−1

∇L̃k,

(20)

where ∇L̃k ∈
m

R and 2
∇ L̃k ∈

m×m
R are the Jacobian

and Hessian of ˜ postLk w.r.t. µ respectively.k

3.6. Spatio-Temporal Filtering and Smoothing

The methodology presented in the previous sections for

temporal models directly lends itself to generalisations in

spatio-temporal modelling. We consider a GP prior which is

separable in the sequential (temporal) input t and the remain-

ing (spatial) input(s) r: κ(r, t; r′, t′) = κr(r, r
′)κt(t, t

′).

Following Sarkk¨ ä et al. (2013), we extend the state x(t)
of the system via m coupled temporal processes. These

processes are associated with inducing points {ru,j}
m
j=1 in

the spatial domain. The measurement model matrix now

projects the latent state at time tk from the inducing pro-

cesses in the state to function space by,

Hk = [ −1Kfk,u Ku,u]⊗Ht, (21)

with Gram matrices Kfk,u = κr(rk, ru,j) and Ku,u =
κr(ru,j , ru,j) for j = 1, 2, . . . ,m, where Ht is the measure-

ment model matrix for the GP prior. If the data lies on a fixed

set of spatial points {rj}
m
j=1 (an irregular grid of m points),

the above expression simplifies to Hk = Im ⊗Ht and

the models becomes exact (see, Hartikainen, 2013; Solin,

2016, for further details and discussion, also covering non-

separable models).

3.7. Fast Implementation Using JAX

Sequential inference in GPs is extremely efficient, however

optimising the model hyperparameters involves differentiat-

ing functions with large loops. When using automatic dif-

ferentiation this typically results in a massive computational

graph with large compilation overheads, memory usage and

runtime. Previous approaches have avoided this issue either

by using finite differences (Nickisch et al., 2018), which are

slow when the number of parameters is large, or by reformu-

lating the model to exploit linear algebra methods applicable

to sparse precision matrices (Durrande et al., 2019).

We utilise the following features of the differential pro-

gramming Python framework, JAX (Bradbury et al., 2018):

(i) we avoid ‘unrolling’ of for-loops, i.e. instead of build-

ing a large graph of repeated operations, a smaller graph

is recursively called, reducing the compilation overhead

and memory, (ii) we just-in-time (JIT) compile the loops,

to avoid the cost of graph retracing, (iii) we use accel-

erated linear algebra (XLA) to speed up the underlying

filtering/smoothing operations. Combined, these features

result in an extremely fast implementation, and based

on this we provide a fully featured temporal GP frame-

work with all models and inference methods, available at

https://github.com/AaltoML/kalman-jax.

4. Empirical Analysis

Table 1 examines the performance of 17 methods from our

GP framework on 7 benchmark tasks of varying data size

and model complexity. Blanks (—) in the table represent

scenarios where the method does not scale practically to

the size of the task. First we demonstrate that state space

approximate inference schemes are competitive with two

state-of-the-art baseline methods on three small data sets.

https://github.com/AaltoML/kalman-jax
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Table 1. Normalised negative log predictive density (NLPD) results with 10-fold cross-validation. Smaller is better. Blank entries (—)

represent scenarios where the method does not scale to the size of the task. EEP, UEP, and GHEP are the iterated smoothers with

linearisation. EP(U) and EP(GH) are state space EP, where the intractable moment matching is performed via the Unscented transform or

Gauss–Hermite, respectively. Linearisation performs poorly on the heteroscedastic noise task, however EEP performs well on the audio

task since it is the only method capable of maintaining full site cross-covariance terms without compromising stability. The state space

methods are able to match the performance of the non-sequential (batch) EP and VGP baselines.

MOTORCYCLE COAL BANANA BINARY AUDIO AIRLINE RAINFOREST

# DATA POINTS

INPUT DIMENSION

LIKELIHOOD

133

1

HETEROSCEDASTIC

333

1

POISSON

400

2

BERNOULLI

10K

1

BERNOULLI

22K

1

PRODUCT

36K

1

POISSON

125K

2

POISSON

V
I

M
O

M
E

N
T

M
A

T
C

H
L

IN
E

A
R

IS
A

T
IO

N

EEP (α = 1)

EEP (α = 0.5)

EEP (α = 0) / EKS

UEP (α = 1)

UEP (α = 0.5)

UEP (α = 0) / UKS

GHEP (α = 1)

GHEP (α = 0.5)

GHEP (α = 0) / GHKS

EP(U) (α = 1)

EP(U) (α = 0.5)

EP(U) (α ≈ 0)

EP(GH) (α = 1)

EP(GH) (α = 0.5)

EP(GH) (α ≈ 0)

VI(U)

VI(GH)

0.855±0.25

0.855±0.25

0.855±0.25

0.745±0.28

0.745±0.28

0.745±0.28

0.750±0.26

0.747±0.27

0.746±0.27

0.696±0.59

0.479±0.30

0.465±0.29

0.569±0.41

0.531±0.38

0.444±0.32

0.444±0.31

0.495±0.34

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.924±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.922±0.11

0.228±0.07

0.228±0.07

0.229±0.07

0.217±0.08

0.217±0.08

0.217±0.08

0.217±0.08

0.217±0.08

0.217±0.08

0.217±0.08

0.217±0.08

0.222±0.08

0.217±0.08

0.217±0.08

0.217±0.08

0.217±0.08

0.217±0.08

0.536±0.01

0.536±0.01

0.537±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

0.536±0.01

−0.433±0.04

−0.499±0.03

−0.570±0.04

−0.471±0.02

−0.474±0.02

−0.484±0.02

—

—

—

−0.321±0.15

−0.327±0.20

0.011±0.30

—

—

—

−0.204±0.02

—

0.142±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.143±0.01

0.143±0.01

0.143±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.142±0.01

0.325±0.01

0.321±0.01

0.309±0.01

—

—

—

—

—

—

—

—

—

—

—

—

—

—

B
A

S
E

L
.

EP(BATCH, GH)

VGP(BATCH, GH)

0.441±0.30

0.444±0.30

0.922±0.11

0.922±0.11

0.216±0.10

0.219±0.09

—

—

—

—

—

—

—

—

We compare against batch EP (see Sec. 2.3) and a varia-

tional GP (VGP, Opper & Archambeau, 2009, with order

n+n2 parameters to ensure convexity of the objective, as in

GPflow, Matthews et al., 2017). We then compare our meth-

ods on four large data tasks to which the baselines are not

applicable. Note that sparse variants of EP and VGP are not

suited to these long time series containing high-frequency

behaviour (e.g., Fig. 3c) that cannot be summarised by a few

thousand inducing points (see Sec. 1 for discussion).

We evaluate all methods via negative log predictive den-

sity (NLPD) using 10-fold cross-validation, with each

method run for 250 iterations (baselines are run until conver-

gence). Gauss–Hermite integration uses 20q cubature points,

whereas the Unscented transform uses 2q2 + 1 (we use the

symmetric 5th order cubature rule, i.e. UT5, Kokkala et al.,

2016; McNamee & Stenger, 1967), where q is the dimen-

sionality of the integral (typically the number of GPs that

are nonlinearly combined in the likelihood). For standard

EP, where a power of zero is not possible, we set α = 0.01.

We optimise the model hyperparameters by maximising the

marginal likelihood p(y |θ) separately for each method (see

App. G), hence the results in Table 1 are affected by both

training and inference, demonstrating their practical appli-

cability. The baseline methods scale as O(n ), while all the

sequential schemes scale as O(ns3).

Results Table 1 confirms it is possible to achieve state-

of-the-art performance with sequential inference. The log-

Gaussian Cox process and classification experiments return

consistent results across all methods. However, Audio and

Rainforest involve multidimensional sites, making them dif-

ficult tasks. In such cases, EEP performs well because it

is the only method capable of maintaining full site covari-

ance terms whilst remaining stable. Statistical linearisation

suffers less from a reduction of cubature points than EP mo-

ment matching or VI updates, as shown by the performance

of UEP on Audio. EP generally performed well, but EEP

matches its performance sometimes whilst being the only

method applicable to the Rainforest task. In other cases,

cubature methods outperform linearisation, particularly on

the Motorcycle task.

Motorcycle (heteroscedastic noise) The motorcycle crash

data set (Silverman, 1985) contains 131 non-uniformly

spaced measurements from an accelerometer placed on a

motorcycle helmet during impact, over a period of 60 ms. It

is a challenging benchmark (e.g., Tolvanen et al., 2014), due

3
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Figure 3. Examples of non-conjugate GP models. (a) In the mo-

torcycle task (heteroscedastic noise), EP is capable of modelling

the time-varying noise component. The log-Gaussian Cox pro-

cesses (b)–(d) are well approximated via linearisation, and iterating

improves the match to the EP posterior.

to the heteroscedastic noise variance. We model both the

process itself and the measurement noise scale with indepen-
(1) (2)

dent GP priors with Matern-´ 3/2 kernels: yk | fk , fk ∼
N(yk | f

(1)(tk), [φ(f
(2)(tk))]

2), with softplus link function

φ(f) = log(1 + ef ) to ensure positive noise scale. The full

EP and VGP baselines were implemented and hand-tailored

for this task. For VGP, we used GPflow 2 (Matthews et al.,

2017) with a custom model. VI and EP (α ≈ 0) performed

well, however the linearisation-based methods failed to cap-

ture the time-varying noise (see App. I for discussion).

Coal (log-Gaussian Cox process) The coal mining dis-

aster data set (Vanhatalo et al., 2013) contains 191 explo-

sions that killed ten or more men in Britain between 1851–

1962. We use a log-Gaussian Cox process, i.e. an inho-

mogeneous Poisson process (approximated with a Pois-

son likelihood for n = 333 equal time interval bins).

Table 2. Run times in seconds (mean across 10 runs). We report

time to evaluate the marginal likelihood on the forward pass and

perform the site updates on the smoothing pass.
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so
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EEP 0.015 0.013 0.135 0.100 1.176 23.941 37.441

UEP 0.017 0.015 0.144 0.113 1.661 24.583 —

GHEP 0.020 0.016 0.146 0.120 — 23.709 —

EP(U) 0.018 0.015 0.143 0.108 1.713 23.492 —

EP(GH) 0.019 0.016 0.150 0.127 — 23.777 —

VI(U) 0.017 0.017 0.142 0.098 1.619 23.796 —

VI(GH) 0.018 0.016 0.145 0.123 — 23.611 —

Time steps 133 333 400 10000 22050 35959 500

State dim. 6 3 45 4 15 59 500

We use a Matern-´ 5 2 GP prior with likelihood y f
∏n

k=1 Poisson(yk | exp(f(t̂k))), where t̂k is the bin coor-

dinate and yk the number of disasters in the bin. This model

reaches posterior consistency in the limit of bin width going

to zero (Tokdar & Ghosh, 2007). Since linearisation re-

quires a continuous likelihood, we approximate the discrete

Poisson with a Gaussian by noticing that its first two mo-

ments are equal to the intensity λ(t) = exp(f(t)), giving
approx.

yk | fk ∼ N(yk |λ(t̂k), λ(t̂k)). See App. I for details.

Airline (log-Gaussian Cox process) The airline accidents

data (Nickisch et al., 2018) consists of 1210 dates of com-

mercial airline accidents between 1919–2017. We use a log-

Gaussian Cox process with bin width of one day, leading

to n = 35,959 observations. The prior has multiple compo-

nents, κ(t, t′) = κ(t, t′
ν=
)

5/2
Mat. + κ(t, t′ 1) year

per. κ(t, t′
ν=
)

3/2
Mat. +

κ(t, t′)1 week
per. κ(t, t′

ν=
)

3/2
Mat. , capturing a long-term trend, time-

of-year variation (with decay), and day-of-week variation

(with decay). The state dimension is s = 59.

Binary (1D classification) As a 1D classification task,

we create a long binary time series, n = 10,000, using
12 sin(4πt)

the generating function y(t) = sign{ + σt}, with0.25πt+1

σt ∼ N(0, 0.252). Our GP prior has a Matern-´ 7/2 kernel,

s = 4, and the sigmoid function ψ(f) = (1+ e−f )−1 maps

R 7→ [0, 1] (logit classification). See App. I for deriva-

tion of approximate continuous state observation model,

h(fk, σk) = ψ(fk) +
√

ψ(fk)(1− ψ(fk))σk.

Audio (product of GPs) We apply a simplified version

of the Gaussian Time-Frequency model from Wilkinson

et al. (2019) to half a second of human speech, sampled

at 44.1 kHz, n = 22,050. The prior consists of 3 quasi-

periodic (κexp(t, t
′)κcos(t, t

′)) ‘subband’ GPs, and 3 smooth

(κMat-5/2(t, t
′)) ‘amplitude’ GPs. The likelihood consists of

a sum of the product of these processes with additive noise

and a softplus mapping φ(·) for the positive amplitudes:

yk | fk ∼ N(
∑3

i=1 f
sub.
i,k φ(f

amp.

i,k ), σ2
k). The nonlinear inter-

/ p( | ) ≈
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(a) VGP (Full) (b) VGP (Sparse) (c) EKF (d) EEP (e) EEP

Figure 4. Inference schemes on the two-dimensional Banana classification task. The coloured points represent training data and the black

lines are decision boundaries. (a) is the baseline variational GP method (VGP in Table 1). (b) shows the sparse variant of the VGP baseline

(Generalized FITC) with 15 inducing points (black dots). In (c)–(e), the vertical dimension is treated as the ‘spatial’ input (m = 15

inducing points shown with lines) and the horizontal as the sequential (‘temporal’) dimension. Our formulation using the EKF (c) works

well, but is further improved by the EP-like iteration in (d). In (e), the method is applied to the full data set (n = 5400).

4.1. Spatio-Temporal Models

As presented in Sec. 3.6, the sequential inference schemes

are also applicable to spatio-temporal problems. We illus-

trate this via two spatial problems, treating one spatial input

as the sequential dimension (‘time’) and the other as ‘space’.

Banana (2D classification) The banana data set, n =
400, is a common 2D classification benchmark (e.g.,

Hensman et al., 2015). We use the logit likelihood

with a separable space-time kernel: κ(r, t; r′, t′) =

κ(t, t′
ν=
)

5/2
Mat. κ(r, r′

ν=
)

5/2
Mat. . The vertical dimension is treated

as space r and the horizontal as the sequential (‘temporal’)

dimension t. We use m = 15 inducing points in r (see

Sec. 3.6), visualised by lines in Fig. 4(c)–(e). The state

dimension is s = 3m = 45. Fig. 4 shows that the EKF

provides a similar solution to the VGP baseline of Hensman

et al. (2015), and an even closer match is obtained by EEP

(3 iterations). The forward and backward passes are visu-

alised in Fig. 1. The method is also applicable to the larger

(n = 5400) version of the data set (Fig. 4e).

Rainforest (2D log-Gaussian Cox process) We study the

density of a single tree species, Trichilia tuberculata, from

a 1000 m × 500 m region of a rainforest in Panama (Condit,

1998; Hubbell et al., 1999; 2005). We segment the space into

4m2 bins, giving a 500× 250 grid with 125,000 data points

(n = 500 time steps), and use a log-Gaussian Cox process

(Fig. 3d). The space-time GP has a separable Matern-´ 3/2
kernel. We do not use a sparse approximation in r, instead

we have m = 250 temporal processes, so s = 2m = 500.

Run Times Table 2 compares time taken for all methods to

make a single training step on a MacBook Pro with 2.3 GHz

Intel Core i5 and 16 GB RAM using JAX. For tasks with

one-dimensional sites all methods are similar, however EEP

action of 6 GPs (s = 15) in the likelihood makes this a

challenging task. EEP performs best since it is capable of

maintaining full site covariance terms without compromis-

ing stability. UEP outperforms EP and VI since statistical

linearisation is still accurate when using few cubature points.

is faster than the cubature methods for the Audio task which

involves 6-dimensional sites. The gridded data of the Rain-

forest task requires a 250-dimensional site parameter update

which is impractical for most methods. Conversely, in the

Banana task data points are handled one by one, such that

only one-dimensional updates are required.

5. Discussion and Conclusions

We argue that development of methods capable of naturally

handling sequential data is crucial to extend the applicability

of GPs beyond short time series. EP was originally inspired

by, and derived from, Kalman filtering and here we make

the case that a return to sequential methods is desirable

for large spatio-temporal problems. We present a flexible

and efficient framework for sequential learning that encom-

passes many state-of-the-art approximate inference schemes,

whilst also illuminating the connections between modern

day inference methods and traditional filtering approaches.

Our theoretical contributions confirm that using linearisation

in place of EP moment matching results in iterated algo-

rithms that exactly match the classical nonlinear Kalman

filters on the first pass, and also generalise the classical

smoothers by refining the linearisations via multiple passes

through the data. These algorithms are fast and scale to high-

dimensional spatio-temporal problems more effectively than

EP and VI. The methods based on Taylor series approxi-

mations only require one evaluation of the likelihood (and

its Jacobian) for each data point, as opposed to cubature

methods, and these algorithms make it particularly straight-

forward to prototype and implement new likelihood models.

We provide a detailed examination of the different properties

of all these methods on five time series and two spatial

tasks, showing that the state space framework for GPs is

applicable beyond one-dimensional problems. We have also

highlighted the scenarios in which such methods might fail:

linearisation is a poor approximation when the cavities are

diffuse (high variance) and the likelihood is highly nonlinear,

but cubature methods do not scale well to high dimensions.
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