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1. Proof of Theorem 1
We consider the decomposition

ψm,n − ψ0,0 = (ψ0,n − ψ0,0) + (ψm,0 − ψ0,0) + rm,n,
(1)

where

ψm,0 =argmin
ψ∈Rp+1

EQm
(Z(S)ψ − v0,S)2

subject to Gψ = c0

(2)

[ ]

and rm,n := (ψm,n − ψm,0)− (ψ0,n − ψ0,0).

We first control the first term in (1). Since Shapley values
are defined as a linear combination of the predictiveness
vector, let the matrix B(p) encode these weights. Note
that this matrix only depends on p. The first row of B(p),
denoted [B(p)]1, is given by [B(p)]1 = z(∅). The matrix
entry in row j = 2, . . . , p+ 1 and column i = 1, . . . , 2p is

[B(p)]ji :=
1

p
(−1)I{(j−1)/∈si}

(
p− 1

|si| − I{(j − 1) ∈ si}

)−1
,

where column i corresponds to subset s(i). Then

ψ0,0 = B(p)v0 and
ψ0,n := B(p)vn.

Under the collection of conditions implied by (A1)–(A4)
and (B1)–(B2) for each subset s ∈ S, a straightforward
application of the functional delta method and Theorem 2 of
Williamson et al. (2020) yields that ψ0,n is an asymptotically
linear estimator of ψ0,0 with influence function given by

φ0,1 : o 7→ B(p)V̇0(o), (3)
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where V̇0 is the influence function of vn and is defined in
the main manuscript.

We now control the second term in (1). We use the equiv-
alent weighted least squares formulation of the Shapley
values,

ψ0,0 = argmin
ψ:Gψ=c0

EQ0 (Z(S)ψ − v0,S)
2 and (4)

ψm,0 = argmin
ψ:Gψ=c0

EQm (Z(S)ψ − v0,S)2 . (5)

We write the the QR decomposition of G> as

G> = U

[
R
0

]
=
[
U1 U2

] [R
0

]
,

where U is an orthonormal matrix and R is an upper tri-
angular matrix. U1 is a 2-column orthogonal matrix corre-
sponding to the column space of G> and U2 is a (p − 1)-
column orthogonal matrix corresponding to its null space.
As such, we can reparameterize the constrained least squares
problems in (4) and (5) using the vector θ ∈ Rp+1, where
ψ = Uθ. The constraint Gψ = c0 implies that

[
R> 0

]
θ = R>θ1 = c0, (6)

where θ1 is the first 2 elements of θ. Thus θ1 is fixed by
the constraint, while θ2 is not constrained. This implies that
the solutions to (4) and (5) correspond to θ with θ1 as the
solution to (6) and θ2 as the solution to the unconstrained
least squares problems

θ2,0 = argmin
θ2∈Rp−1

EQ0
(Z(S)(U1θ1 + U2θ2)− v0,S)2 and

θ2,m = argmin
θ2∈Rp−1

EQm
(Z(S)(U1θ1 + U2θ2)− v0,S)2 .

A straightforward application of Theorem 5.23 in van der
Vaart (2000) yields that θ2,m is an asymptotically linear
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estimator of θ2,0, with
√
m(θ2,m − θ2,0)

= − 1√
m

m∑
j=1

[
V −1

{
z(Sj)

>(U1θ1 + U2θ2,0)− v0,Sj

}
× U>2 z(Sj)

]
+ oP (1),

where V = U>2 Z
>WZU2. Thus, ψm,0 is an asymptotically

linear estimator of ψ0,0, i.e.,

√
m(ψm,0 − ψ0,0) =

1√
m

m∑
j=1

φ0,2(Sj ; v0) + oP (1)

(7)

where φ0,2(S; v0) is defined as

φ0,2 : s 7→ −U2V
−1 z(s)>ψ0,0 − v0,s U>2 z(s).
[ ]

Finally, we control the remainder term rm,n. By the KKT
conditions in the main manuscript, we have that

ψm,n = C2(Qm)vn

where C2(Qm) is defined as

[
Ip+1 0

] [2Z>mWmZm G>

G 0

]−1  2
√
Wm

e∅
eN − e∅

 

and es ∈ {0, 1}2
p

is a one-hot vector for the set s. Likewise,
define C2(Q0) as

[
Ip+1 0

] [2Z>WZ G>

G 0

]−1  2 W
e∅

eN − e∅
 .

 √ 

Then

rm,n = (ψm,n − ψm,0)− (ψ0,n − ψ0,0)

= {C2(Qm)− C2(Q0)}(vn − v0).

Since the empirical distribution Qm converges weakly to
Q0, then C2(Qm) →p C2(Q0). Moreover, if (A1)–(A4)
and (B1)–(B2) hold for each subset s ∈ S, then vn − v0 =
Op(n

−1/2). Thus

rm,n = oP (n
−1/2). (8)

In view of (3), (7), and (8), we can write
√
n(ψm,n − ψ0,0)

=
√
n(ψ0,n − ψ0,0) +

√
n(ψm,0 − ψ0,0) +

√
nrm,n

=
1√
n

n∑
i=1

φ0,1(Oi) +
1
√
nγn

nγn∑
i=1

φ0,2(Si; v0) + oP (1).

Because O and S are sampled independently and γn →p γ,
then, by Slutsky’s theorem, we have that

√
n(ψm,n − ψ0,0)→d

N
[
0,Cov{φ0,1(O)}+ γ−1 Cov{φ0,2(S; v0)}

]
Finally, note that if γn → ∞, then the second term in the
asymptotic variance is zero.

2. Additional technical details
2.1. Shapley values minimize a weighted least squares

problem

Recall the classical Shapley formula: for j = 1, . . . , p,

ψ0,j =
1

p

∑
s∈N\{j}

p− 1

|s|

−1

(v0,s∪{j} − v0,s).
( )

Our goal is to show that the solution x∗ to the minimization
problem

minimize
x∈Rp+1

1

2
‖
√
W (Zx− v0)‖22

subject to
p∑
j=1

xj = v0,N − v0,∅ and x0 = v0,∅

satisfies x∗j = ψ0,j for j = 1, . . . , p.

Since the classical Shapley values in the first display and the
solution to the constrained, weighted least squares problem
are both linear in v0, if we can prove that the two values
are equivalent for all one-hot vectors v(k) for k = 1, . . . , 2p,
then we will have proved that the two values are equal. Our
first result provides the form of the classical Shapley values
for a one-hot vector. As in the main manuscript, s(k) refers
to the kth ordered subset of N = {1, . . . , p}.
Lemma 1. For j = 1, . . . , p, the classical Shapley value
corresponding to one-hot vector v(k) is given by

ψj(v(k)) =
1

p
1{k = 1, k = 2p}

×
[(

p− 1

|s(k)| − 1

)−1
1{j ∈ s(k)}

−
(
p− 1

|s(k)|

)−1
1{j /∈ s(k)}

]
+

1

p
(v(k),N − v(k),∅).

6 6

Proof. For j = 1, . . . , p, the classical Shapley formula
states that

ψj(v(k)) =
1

p

∑
S⊆N\{j}

p− 1

|S|

−1

(v(k),s∪{j} − v(k),s).
( )
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Since s(k) corresponds to v(k), we have that

ψj(v(k)) =


1
p

(
p−1
|s(k)|−1

)−1
(1− 0) if j ∈ s(k)

1
p

(
p−1
|s(k)|

)−1
(0− 1) if j /∈ s(k)

.



For k = 2, . . . , 2p − 1, we have that v(k),N − v(k),∅ = 0.
Thus, the claim is proved for these values of k. Note that
ψj(v(1)) = −1/p, while for k = 2p, ψj(v(2p)) = 1/p by
the definition above. Thus, the claim is proved for all k.

Our next result provides the solution to the constrained,
weighted least squares problem

minimize
x∈Rp+1

‖
√
W (Zx− v(k))‖22 (9)

subject to
p∑
j=1

xj = v(k),N − v(k),∅ and x0 = v(k),∅.

Lemma 2. For j = 1, . . . , p, the solution to (9) is given by

x∗j (v(k)) =
1

p
1{k = 1, k = 2p}

×
[(

p− 1

|s(k)| − 1

)−1
1{j ∈ s(k)}

−
(
p− 1

|s(k)|

)−1
1{j /∈ s(k)}

]
+

1

p
(v(k),N − v(k),∅).

6 6

Proof. For ease of notation, we use x∗j and x∗j (v(k)) inter-
changeably. Consider the Lagrangian of (9), given by

L(v(k), x, λ) = ‖
√
W (Zx− v(k))‖22 + λ>(Gx− vc),[ ] [ ]

z(∅) 1 0 . . . 0
where G = = and v =[ z(N] )− z(∅) 0 1 . . . 1 c

v(k),∅ . Setting the gradient of the Lagrangian
v(k),N − v(k),∅

equal to zero, we find that x∗ must satisfy

∇xL(v(k), x, λ) = Z>W (Zx− v(k)) +G>λ
set
= 0

⇒ 0 = Z>W (Zx∗ − v(k)) +G>λ∗

∇λL(v(k), x, λ) = Gx− vc
set
= 0

⇒ 0 = Gx∗ − vc.

This yields that

Z>WZx∗ = Z>Wv(k) −G>λ∗. (10)

Note that Z>Wv(k) = ws(k)
z(s(k)), where ws(k)

is the
weight for subset s(k), and for ease of notation we set wS =(
p−2 )−1
|S|−1 , with w∅ = 1. We now find the value of λ∗. We

denote the index of the first row of Z>WZx∗ by zero, to
match with x∗0. Expanding the matrix notation in (10), the
first row of (10) states that

ws(k)
− λ∗1 = [Z>WZx∗]0

=

(∑
S∈S

wS

)
x∗0 +

p∑
j=1

 ∑
S∈S : j∈S

wS

x∗j

=

(∑
S∈S

wS

)
v(k),∅

+

( ∑
S∈S : 1∈S

wS

)
(v(k),N − v(k),∅),

where we have made use of the constraints from (9) and the
symmetry of the weights. Thus,

λ∗1 = ws(k)
−

∑
S∈S

wS v(k),∅

−

( ∑
S∈S : 1∈S

wS

)
(v(k),N − v(k),∅).

( )

For row ` = 1, . . . , p, we have that

[Z>WZx∗]` =
2p∑
i=1

1{` ∈ s(i)}ws(i)x∗0

+
2p∑
i=1

1{` ∈ s(i)}ws(i)
p∑
j=1

x∗j1{j ∈ s(i)})

=

( ∑
S : 1∈S

wS

)
x∗0

+

 ∑
S : 1,2∈S

wS

 (v(k),N − v(k),∅)

+

 ∑
S : 1∈S

wS −
∑

S : 1,2∈S
wS

x∗` ,

using the symmetry of the weights. Thus, row ` of (10) is

ws(k)
1{` ∈ s(k)} − [G>λ∗]` = [Z>WZx∗]`

⇒ws(k)
1{` ∈ s(k)} − λ∗2 =( ∑
S : 1∈S

wS

)
x∗0

+

 ∑
S : 1,2∈S

wS

 (v(k),N − v(k),∅)

+

 ∑
S : 1∈S

wS −
∑

S : 1,2∈S
wS

x∗` . (11)
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Summing (11) across ` = 1, . . . , p yields

λ∗2 =
1

p

p∑
`=1

ws(k)
1{` ∈ s(k)} −

∑
S : 1∈S

wS x∗0

−

 ∑
S : 1,2∈S

wS

 (v(k),N − v(k),∅)

−

 ∑
S : 1∈S

wS −
∑

S : 1,2∈S
wS

x∗`

]

=
1

p
ws(k)

|s(k)| −

( ∑
S : 1∈S

wS

)
v(k),∅

−

 ∑
S : 1,2∈S

wS +
p− 1

p

 (v(k),N − v(k),∅),

[ ( )

where we have again made use of the constraints and the
symmetry of W , as well as the difference-of-weights result∑ ∑
that S : 1∈S wS − −S : 1,2∈S wS = (p 1). Plugging this
result into (11) and rearranging terms yields that, for each
` = 1, . . . , p,

x∗` =
ws(k)

p− 1
1{` ∈ s(k)} −

1

p
|s(k)| +

1

p
(v(k),N − v(k),∅),

(12)

{ }

where we have again made use of the constraints, the sym-
metry of W , and the difference-of-weights result.

Note that for k = 2, . . . , 2p− 1, v(k),N = v(k),∅ = 0. Thus,
for k = 2, . . . , 2p − 1, and ` = 1, . . . , p, if ` ∈ s(k) then

x∗` =
ws(k)

p− 1

{
1− 1

p
|s(k)|

}
=

1

p

(
p− 1

|s(k)| − 1

)−1
;

if ` ∈/ s(k) then

x∗` =
ws(k)

p− 1

{
−1

p
|s(k)|

}
= −1

p

(
p− 1

|s(k)|

)−1
.

Also, (12) implies that if k = 1 then x∗` = − 1
p , while if

k = 2p then x∗` =
1
p . Thus,

x∗` (v(k)) =
1

p
1{k = 1, k = 2p}

×
[(

p− 1

|s(k)| − 1

)−1
1{` ∈ s(k)}

−
(
p− 1

|s(k)|

)−1
1{` /∈ s(k)}

]
+

1

p
(v(k),N − v(k),∅),

6 6

precisely what we wished to show.

Combining the results of Lemma 1 and Lemma 2, we have
that x∗j (v(k)) = ψj(v(k)) for all one-hot vectors v(k), k =
1, . . . , 2p. Thus, the Shapley values are equivalent to the
solution of the weighted least squares problem.

2.2. SHAP values versus SPVIM

Under certain conditions, the mean absolute SHAP value
is related to the SPVIM value. Recall that for each feature
subset s ⊆ ˆN and corresponding fitted models fs, the SHAP
value for the jth feature at x is defined as

∑
s∈N\{j}

1

p

(
p− 1

|s|

)−1
{f̂s∪j(x)− f̂s(x)}.

Suppose there exists a factor c > 0 such that for all feature
subsets s, the scaled norm between oracle prediction models
f0,s∪j and f0,s provides a lower bound on the difference
between their predictiveness measures, i.e.,

‖f0,s∪j − f0,s‖1 . c (V (f0,s∪j , P0)− V (f0,s, P0)) .
(13)

Then it is easy to show that the mean absolute SHAP value
for the oracle model implies large SPVIM values. The lower
bound (13) holds if the predictiveness measure V is convex
in its first argument, such as when V is the mean squared
error.

3. Additional numerical results
In the main manuscript, we ran a 200-variable simulation
with a continuous outcome. In Figure 1, we provide the
estimated SPVIM value and mean absolute SHAP value for
each sample size and feature considered in that analysis.
The vertical bars denote the Monte-Carlo error based on
1000 replicates of the experiment for each sample size.

4. Additional details for predicting mortality
of patients in the intensive care unit

In this section, we describe our analysis of data on patients’
stays in the intensive care unit (ICU) (Silva et al., 2012) in
more detail.

First, we computed the minimum, weighted mean, and max-
imum value of the 15 time-series variables presented in
Table 1. The weighted mean corresponds to a linear regres-
sion fit to the time series. We then dropped any variable that
had a proportion of missing values greater than or equal to
30%. This procedure resulted in a total of 37 features that
we used to predict mortality: the summaries of the time-
series variables along with all general descriptors measured
at admission.
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Figure 1. Average estimated SPVIM values (left) and mean absolute SHAP values (right) with Monte-Carlo error bars for the two
hundred-variable simulation conducted in the main manuscript. Filled and crossed circles and filled and crossed diamonds denote X1, X3,
X5, and X6 and X14, respectively; filled squares, filled triangles, and crossed squares denote X11, X12, and X13, respectively. The true
SPVIM values are approximately (0.192, 0.291, 0.228, 0.037, 0.01, 0.01, 0) for the non-noise features (1, 3, 5, 11, 12, 13, 14) and zero
for X6.

Variable group Variable name Summary measure Included in analysis1

Glasgow Coma Scale (GCS) GCS min, weighted mean2, max Included
HCO3 (serum bicarbonate) min, weighted mean, max Included
BUN (blood urea nitrogen) min, weighted mean, max Included

Metabolic panel Na (serum sodium)
K (serum potassium)

min, weighted mean, max
min, weighted mean, max

Included
Included

Glucose min, weighted mean, max Included
Systolic arterial blood pressure (SysABP) SysABP min, weighted mean, max Not included

Complete blood count test White blood cell count (WBC)
Hematocrit (HCT)

min, weighted mean, max
min, weighted mean, max

Included
Included

Temperature (Temp) Temp min, weighted mean, max Included
Lactate Lactate min, weighted mean, max Not included

Heart rate (HR) HR min, weighted mean, max Included
Respiration rate (RespRate) min, weighted mean, max Not included

Respiration Mechanical ventilation (MechVent) min, weighted mean, max Not included
O2 (oxygen) ratio of FiO2, PaO2 Not included

Urine output Urine min, weighted mean, max Included
Gender identity3 Included
Height identity Not included

General descriptors Weight identity Included
Age identity Included
ICU admission type identity Included

Table 1. Available features in the MIMIC-II database, along with summary measures computed and an indicator of whether or not the
feature was included in the analysis. Impossible values (e.g., ≤ 0 for many variables) were dropped. Summary measures (minimum value,
weighted mean, and maximum value) were computed for all time-series variables. Any variable with proportion missing > 0.3 was not
included in the analysis, leading to a final analysis dataset with 37 variables.
1Features with a proportion of missing values > 0.3 were dropped from the analysis.
2Estimated response at mean measurement time from a linear regression of response on time.
3All general descriptors were measured a single time, at admission.
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