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1. Kernel Functions
In this section, we present a detailed definition of each of the kernel functions used in GP-SLC:
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where λ∗ is a lengthscale hyperparameter and defined for each dimension of corresponding variables. Here, each dimension
of x is generated independently given u, and k′xk

refers to the kernel function for the kth dimension of x. Intuitively, each
kernel lengthscale determines the relative strength of influence of each variable’s parents in Equation 1. For example, if
λty >> λxyi=1...NX

, the covariance between instances (or counterfactuals) with similar treatments will be greater than the
covariance between instances with similar covariates.

2. Exact Inference: Y ′∗ − Y ′ Details
Here we provide additional details on how to compute GP-SLC’s conditional distribution over individual treatment effects.

Given the expression for

(YY ′
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)

in Section 4.2, conditioning on Y yields the following:
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where,

µ1 = K ′(W,W )K(W,W )
−1
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As the difference of variables that are jointly Gaussian is Gaussian, we have that (Y ′∗ − Y ′|T∗, X, T, Y, U,Θ) ∼
N (µITE,ΣITE), where µITE = µ2 − µ1 and ΣITE = Σ1,1 − Σ1,2 − Σ2,1 + Σ2,2.

3. Asymptotic Posterior Consistency
Here we provide proofs for Proposition 5.1 and Theorems 5.2 and 5.3. The analysis in this section follows the setup
presented in (D’Amour, 2019), with the inclusion of shared latent confounding amongst individual instances. We omit
covariates X from this analysis and assume that NU = 1 for brevity without loss of generality. Note that these theoretical
results also hold for the random intercepts multilevel model (Gelman, 2006).

3.1. Setup

Assuming linear kernels and additive Gaussian exogenous noise, we can equivalently rewrite the GP-SLC model as follows.
This equivalent structural causal model is parameterized by latent variables α, β, τ ∈ R and σ2

U , σ
2
T , σ

2
Y ∈ R+. For all

o ∈ 1, ..., NO and i ∈ 1, ..., NI , we have that:

εuo ∼ N (0, σ2
U )

εti ∼ N (0, σ2
T )

εyi ∼ N (0, σ2
Y )

uo = εuo

ti = αuo=Pa(i) + εti

yi = βti + τuo=Pa(i) + εyi .

In this setting, estimating individual treatment effect reduces to estimating β, as yi,t∗ − yi = β(t∗ − ti). We make the
following observations.

Proposition 5.1 When NO = NI , ITEt∗ is not asymptotically consistent ∀t∗ ∈ R.

For a detailed proof of Proposition 5.1, see Proposition 1 in (D’Amour, 2019). In summary, they show that given any set
of latent parameters Θ = (α, β, τ, σ2

U , σ
2
T , σ

2
Y ), there exists an alternative set of parameters Θ′ such that P (T, Y |Θ) =

P (T, Y |Θ′) and β 6= β′. In other words, the structural causal model forms a linear system of equations that is rank-deficient.
The set of parameters that satisfy this condition construct an ignorance region.

Extending their results to the Bayesian setting, we have that for any two sets of parameters Θ and Θ′ on the same ignorance
region, the posterior odds ratio reduces to the prior odds ratio, P (Θ|T,Y )

P (Θ′|T,Y ) = P (Θ)P (T,Y |Θ)
P (Θ′)P (T,Y |Θ′) = P (Θ)

P (Θ′) . By definition, Θ is not
asymptotically consistent, as the posterior P (Θ|T, Y ) depends on the prior P (Θ). The problem of asymptotic consistency
can be mitigated when NO < NI .

Theorem 5.2 Assume there exists an object o that is the parent of n instances, I ′ = {i′1, ..., i′n}. Then ITEt∗ is asymptotically
consistent as n approaches∞,∀t∗ ∈ R.

Proof. For all i′ ∈ I ′, we have that yi′ = βti′ + C + εyi′ for some constant C ∈ R. Therefore, the covariance between T
and Y in I ′ is uniquely given by β, i.e. cov(ti′∈I′ , yi′∈I′) = β. Estimating the covariance of a bivariate normal has a unique
maximum likelihood solution. Therefore, by the Bernstein-von Mises Theorem (Doob, 1949) we have that the posterior
over β, and thus ITEt∗ , is asymptotically consistent as n approach∞.

Theorem 5.3 Assume there exists n objects O = {o1, ..., on}, each of which are the unique parents of k ≥ 2 instances
I ′o = {i′o,1, ..., i′o,ko}. Then ITEt∗ is asymptotically consistent as n approaches∞.

Proof. For all o ∈ O, j ∈ {1, ..., ko} let t′i′o,j = ti′o,j − t̄o and y′i′o,j = yi′o,j − ȳo, where t̄o =
∑
j ti′o,j/ko and ȳo =∑

j yi′o,j/ko, i.e., the sample average over all instances that share a parent object. Therefore, t′i′o,j = αuo+εti′
o,j
−
∑
j(αuo+

εti′
o,j

)/ko = εti′
o,j
−
∑
j εti′

o,j
/ko and y′i′o,j = β(αuo+ εti′

o,j
) + τuo+ εyi′

o,j
−
∑
j(β(αuo+ εti′

o,j
) + τuo+ εyi′

o,j
)/ko =

βt′i′o,j + εyi′
o,j
−
∑
i εyi′

o,j
/ko. As εyi′

o,j
is independent of t′i′o,j , we have that the covariance between t′i′o,j and y′i′o,j is

equal to β. Therefore, the problem of estimating β reduces to estimating the covariance of a bivariate normal distribution,
P (T ′, Y ′), which has a unique maximum likelihood solution. As in the proof of Theorem 5.2, by the Bernstein-von Mises
Theorem (Doob, 1949) we have that the estimate of β, and thus ITEt∗ , is asymptotically consistent as n approach∞.
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4. Bayesian Linear Multilevel Model Baseline
One of the baselines we use in the experiments is Bayesian linear multilevel models (Gelman, 2006). We implement two
multilevel models, which introduce varying degrees of shared parameters across objects. The first multilevel model, also
known as a random slope and intercepts model, (MLM 1) fits the observations using the following structural equations.

σ2
y ∼ γ

−1
(ασy

, βσy
)

α ∼ N (µα,Σα)

βo ∼ N (µβ , σ
2
β) for o = 1 . . . NO

ηo ∼ N (µη, σ
2
η) for o = 1 . . . NO

yi ∼ N (βo=Pa(i)ti + αT xi + ηo=Pa(i), σ
2
y)

This model allows varying intercepts η and treatment effect β across objects while assuming α is held constant across
objects.

The second multilevel model, also known as the random intercepts model, (MLM 2) fits the observations using the following
structural equations.

σ2
y ∼ γ

−1
(ασy

, βσy
)

α ∼ N (µα,Σα)

β ∼ N (µβ , σ
2
β)

ηo ∼ N (µη, σ
2
η) for o = 1 . . . NO

yi ∼ N (βti + αT xi + ηo=Pa(i), σ
2
y)

This model allows varying intercepts η across objects while assuming α and β are held constant across objects. We
implement both models in Gen (Cusumano-Towner et al., 2019). For both models, we use ασy = 4.0, βσy = 4.0, µ(·) =
0, σ2

α = 3.0, σ2
β = 1.0, and σ2

η = 10.0 as priors.

5. Synthetic Experiments
We examine the finite-sample behavior of the GP-SLC model using two synthetic datasets that match GP-SLC’s assumptions
about the existence of object-level latent confounders (U ) that simultaneously influence instance-level observed treatments
(T), covariates (X), and outcomes (Y ). The following structural equations summarize the data generating process:

Wj ∼ N (0, 1I3) for j = 1, 2, 3

uo ∼ N (0, 0.5I3) for o = 1 . . . NO

xi = W · uo=pa(i) + εxi
where εxi

∼ N (0, 0.5I3) for i = 1...NI

ti = gt(xi,uo=pa(i)) + εti where εti ∼ N (0, 0.5) for i = 1...NI

yi = gy(ti, xi,uo=pa(i)) + εyi where εyi ∼ N (0, 0.5) for i = 1...NI

First, we draw u from a multivariate Gaussian distribution. Then, we generate covariates x as linear combinations of u with
additive exogenous noise. We generate treatments t as a function (gt) of x and u with additive noise. Finally, we generate
outcome y as a function (gy) of x, t, and u with additive noise. For multi-dimensional variables, x and u, we first apply the
nonlinear function to each dimension of x and u, then we aggregate them by summing across dimensions.

The nonlinear treatment and outcome functions are shown in Table 1.
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Dataset gt(x,u) gy(t, x,u)

Additive
∑
j x∗,j sin(x∗,j)−

∑
j u∗,j sin(u∗,j) tsin(2t) +

∑
j x∗,j sin(x∗,j) + 3

∑
j u∗,j sin(u∗,j)

Multiplicative 1
10 (
∑
j x∗,j sin(x∗,j))(

∑
j u∗,j sin(u∗,j)) 1

10 (tsin(2t))(
∑
j x∗,j sin(x∗,j))(

∑
j u∗,j sin(u∗,j))

Table 1. The functional form of T and Y for 2 synthetic datasets with continuous treatments and nonlinear outcome functions.
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