
Supplementary Material: Amortized Population Gibbs Samplers
with Neural Sufficient Statistics

A. Gradient of the generative model
We show that the gradient of the marginal ∇θ log pθ(x) can be estimated using self-normalized importance sampling. First
of all, we express the expected gradient of the log joint as

Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ log pθ(x) +∇θ log pθ(z|x)] = Epθ(z|x) [∇θ log pθ(x)] = ∇θ log pθ(x)

Here we make use of a standard identity that is also used in likelihood-ratio estimators

Epθ(z|x) [∇θ log pθ(z|x)] =

∫
pθ(z|x)∇θ log pθ(z|x) dz =

∫
∇θpθ(z|x) dz = ∇θ

∫
pθ(z|x) dz = ∇θ1 = 0

Therefore, we have the the following equality

∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)] '
L∑
l=1

wl∑
l′ w

l′
∇θ log pθ(x, z

l).

which is the self-normalized gradient estimator in Equation 7.

B. Importance weights in sequential importance sampling
We will prove the form of importance weight wk in sequential importance sampling. At step k = 1, we use exactly the
standard importance sampler, thus it is obvious that the following is a valid importance weight

w1 =
γ1(z1)

q1(z1)
.

When step k > 2, we are going to prove that the importance weight relative to the intermediate densities has the form

wk =
γk(z1:k)

q1(z1)
∏k
k′=2 q

k′(zk′ | z1:k′−1)
. (9)

At step k = 2, the importance weight is defined as

wk = v2 w1 =
γ2(z1:2)

γ1(z1) q2(z2 | z1)

γ1(z1)

q1(z1)
=

γ2(z1:2)

q1(z1) q2(z2 | z1)
.

which is exactly that form. Now we prove weights in future steps by induction. At step k ≥ 2, we assume that the weight
has the form in Equation 9, i.e.

wk =
γk(z1:k)

q1(z1)
∏k
k′=2 q

k′(zk′ | z1:k′−1)
.

then at step k + 1, the importance weight is the product of incremental weight and incoming weight

wk+1 = vk+1 wk =
γk+1(z1:k+1)

γk(z1:k) qk+1(zk+1 | z1:k)

γk(z1:k)

q1(z1)
∏k
k′=2 q

k′(zk′ | z1:k′−1)
=

γk+1(z1:k+1)

q1(z1)
∏k+1
k′=2 q

k′(zk′ | z1:k′−1)
.

Thus the importance weight wk has the form of Equation 9 at each step k > 2 in sequential importance sampling.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

C. Derivation of Posterior Invariance
We consider a sweep of conditional proposals at step K as

pθ
(
zk | x, zk−1

)
=

B∏
b=1

pθ(z
k
b | x, zk≺b, zk−1�b), (10)

where z≺b = {zi | i < b} and z�b = {zi | i > b}. Additionally we define z�b = {zi | i ≤ b}.

We will show that any partial update within a sweep, i.e.

pθ
(
zk�b | x, zk−1

)
=

b∏
v=1

pθ(z
k
v | x, zk≺v, zk−1�v), ∀b ∈ {1, 2, ..., B} (11)

will leave the posterior invariant. In fact, for any choice of b we have∫
pθ(z

k−1 | x) pθ(z
k
�b | x, zk−1) dzk−1�b =

∫
pθ(z

k−1
�b , zk−1�b | x) dzk−1�b

b∏
v=1

pθ(z
k
v | x, zk≺v, zk−1�v)

= pθ(z
k−1
�b | x) pθ(z

k
�b | x, zk−1�b)

= pθ(z
k
�b , z

k−1
�b | x).

When we require the APG proposal qφ(z′b |x, z−b) leaves the posterior invariant (by minimizing the inclusive KL divergence
relative to the conditional posterior pθ(zb |x, z−b)), then any sweep or part of one sweep will also leave the posterior
invariant, as what we prove above. This means that at test time we can apply arbitrary number of APG sweeps, each of
which will results in samples that approximate the posterior pθ(z |x).

D. Resampling Algorithm

Algorithm 3 Multinomial Resampler

1: Input Weighted samples {zl, wl}Ll=1

2: for i = 1 to L do
3: ai ∼ Discrete({wl/

∑L
l′=1 w

l′}Ll=1) . Index Selection
4: Set Set z̃ i = za

i

5: Set w̃ i = 1
L

∑L
l=1 w

l . Re-weigh
6: end for
7: Output Equally weighted samples {z̃l, w̃l}Ll=1

E. Proof of the amortized population Gibbs samplers algorithm
Here, we provide an alternative proof of correctness of the APG algorithm given in Algorithm 2, based on the construction of
proper weights (Naesseth et al., 2015) which was introduced after SMC samplers (Del Moral et al., 2006). In section E.1, we
will introduce proper weights; In section E.2, we then present several operations that preserve the proper weighting property;
In section E.3, we will take use of these properties to prove the correctness of APG samplers algorithm (Algorithm 2).

E.1. Proper weights

Definition 1 (Proper weights). Given an unnormalized density p̃(z), with corresponding normalizing constant Zp :=∫
p̃(z) dz and normalized density p ≡ p̃/Zp, the random variables z, w ∼ P (z, w) are properly weighted with respect to

p̃(z) if and only if for any measurable function f

EP (z,w) [wf(z)] = ZpEp(z)[f(z)]. (12)

We will also denote this as

z, w
p.w.∼ p̃.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Using proper weights. Given independent samples zl, wl ∼ P , we can estimate Zp by setting f ≡ 1:

Zp ≈
1

L

L∑
l=1

wl.

This estimator is unbiased because it is a Monte Carlo estimator of the left hand side of (12). We can also estimate
Ep(z)[f(z)] as

Ep(z)[f(z)] ≈
1
L

∑L
l=1 w

lf(zl)
1
L

∑L
l=1 w

l
.

While the numerator and the denominator are unbiased estimators of ZpEp(z)[f(z)] and Zp respectively, their fraction is
biased. We often write this estimator as

Ep(z)[f(z)] ≈
L∑
l=1

w̄lf(zl), (13)

where w̄l := wl/
∑L
l′=1 w

l′ is the normalized weight.

E.2. Operations that preserve proper weights

Proposition 1 (Nested importance sampling). This is similar to Algorithm 1 in (Naesseth et al., 2015). Given unnormalized
densities q̃(z), p̃(z) with the normalizing constants Zq, Zp and normalized densities q(z), p(z), if

z, w
p.w.∼ q̃, (14)

then

z,
wp̃(z)

q̃(z)

p.w.∼ p̃.

Proof. First define the distribution of z, w as Q. For measurable f(z)

EQ(z,w)

[
wp̃(z)

q̃(z)
f(z)

]
= ZqEq(z)

[
p̃(z)f(z)

q̃(z)

]
= Zq

∫
q(z)

p̃(z)f(z)

q̃(z)
dz =

∫
p̃(z)f(z) dz = ZpEp(z)[f(z)].

Proposition 2 (Resampling). This is similar to Section 3.1 in (Naesseth et al., 2015). Given an unnormalized density p̃(z)
(normalizing constant Zp, normalized density p(z)), if we have a set of properly weighted samples

zl, wl
p.w.∼ p̃, l = 1, . . . , L (15)

then the resampling operation preserves the proper weighting, i.e.

z′ l, w′ l
p.w.∼ p̃, l = 1, . . . , L

where z′ l = za with probability P (a = i) = wi/
∑L
l=1 w

l and w′ l := 1
L

∑L
l=1 w

l.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Proof. Define the distribution of zl, wl as P̂ . We show that for any f , E[f(za)w′ l] = ZpEp(z)[f(z)].

E(
∏L
l=1 P̂ (zl,wl))p(a|w1:L)

[
f(za)w′l

]
= E∏L

l=1 P̂ (zl,wl)

[
L∑
i=1

f(zi)w′ P (a = i)

]

= E∏L
l=1 P̂ (zl,wl)

[
L∑
i=1

f(zi)w′
wi∑L
l′=1 w

l′

]

= E∏L
l=1 P̂ (zl,wl)

[
1

L

L∑
i=1

f(zi)wi

]

=
1

L

L∑
i=1

EP̂ (zi,wi)

[
f(zi)wi

]
=

1

L

L∑
i=1

ZpEp(z)[f(z)] = Zp Ep(z)[f(z)].

Therefore, the resampling will return a new set of samples that are still properly weighted relative to the target distribution
in the APG sampler (Algorithm 2).

Proposition 3 (Move). Given an unnormalized density p̃(z) (normalizing constant Zp, normalized density p(z)) and
normalized conditional densities q(z′|z) and r(z|z′), the proper weighting is preserved if we apply the transition kernel to a
properly weighted sample, i.e. if we have

zl, wl
p.w.∼ p̃, (16)

z′ l ∼ q(z′ l|zl), (17)

w′ l =
p̃(z′ l)r(zl|z′ l)
p̃(zl)q(z′ l|zl)

wl, l = 1, . . . , L (18)

then we have

z′ l, w′ l
p.w.∼ p̃, l = 1, . . . , L (19)

Proof. Firstly we simplify the notation by dropping the superscript l without loss of generality. Define the distribution of
z, w as P̂ . Then, due to (16), for any measurable f(z), we have

EP [wf(z)] = ZpEp[f(z)].

To prove (19), we show EP̂ (z,w)q(z′|z)[w
′f(z′)] = ZpEp(z′)[f(z′)] for any f as follows:

EP̂ (z,w)q(z′|z)[w
′f(z′)] = EP̂ (z,w)q(z′|z)

[
p̃(z′)r(z|z′)
p̃(z)q(z′|z)

wf(z′)

]
=

∫
P̂ (z, w)q(z′|z) p̃(z

′)r(z|z′)
p̃(z)q(z′|z)

wf(z′) dz dw dz′

=

∫
P̂ (z, w)

p̃(z′)r(z|z′)
p̃(z)

wf(z′) dz dw dz′

=

∫
p̃(z′)f(z′)

(∫
P̂ (z, w)w

r(z|z′)
p̃(z)

dz dw

)
dz′

=

∫
p̃(z′)f(z′)ZpEp(z)

[
r(z|z′)
p̃(z)

]
dz′. (20)

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Using the fact that Ep(z)
[
r(z|z′)
p̃(z)

]
=
∫
p(z) r(z|z

′)
p̃(z) dz =

∫
r(z|z′) dz/Zp = 1/Zp. Equation 20 simplifies to∫

p̃(z′)f(z′) dz′ = ZpEp(z′)[f(z′)].

E.3. Correctness of APG Sampler

We prove the correctness of the APG sampler (Algorithm 2) by induction. We firstly prove the correctness of the initial
proposing step (k = 1, line 4 - line 9); Then we prove that the algorithm is still correct when we perform one Gibbs sweep
step (k = 2, line 11 - line 22), given that the previous step is already proved to be correct. By induction we can conclude
that its correctness still holds if we perform more Gibbs sweeps.

Step k = 1. We initialize the proposal of all the blocks z := z1:B from an initial encoder z ∼ qφ(z|x) (line 5), which is
trained using the wake-φ phase objective in the standard reweighted wake-sleep(Le et al., 2019), where the objective is

Ep̂(x) [KL (pθ(z|x)||qφ(z|x))] .

We take gradient w.r.t. variational parameter φ and compute a self-normalized gradient estimate (line 8) as

gφ : = −∇φ Ep̂(x) [KL (pθ(z | x) || qφ(z | x))] (21)

= Ep̂(x)
[
Epθ(z|x) [∇φ log qφ(z | x)]

]
(22)

=

L∑
l=1

wl∑L
l′=1 w

l′
∇φ log qφ(zl | x), zl ∼ qφ(z | x), wl =

pθ(x, z
l)

qφ(zl | x)
. (23)

Equation 13 will guarantee the validity of this gradient estimate gφ, as long as we show that samples are properly weighted

zl, wl
p.w.∼ pθ(z, x), l = 1, . . . , L. (24)

In fact, {(wl, zl)}Ll=1 are properly weighted because zl are proposed using importance sampling Naesseth et al. (2015),
where qφ(z|x) is the proposal density and pθ(zl, x) is the unnormalized target density. Note that the resampling step (line 13)
will preserve the proper weighting because of Proposition 2.

Step k = 2. Now we iteratively update each block of the variable zb for b = 1, 2, ..., B, using the corresponding conditional
proposal qφ(zb | x, z−b), which is trained by the objective

Kb(φ) := Ep̂(x)pθ(z−b|x)
[

KL (pθ(zb | x, z−b) || qφ(zb | x, z−b))
]
, b = 1, 2, ..., B.

We take gradient w.r.t φ as

gbφ : = −∇φEp(x)
[
Epθ(z−b|x) [KL (pθ(zb|z−b, x)||qφ(zb|z−b, x))]

]
(25)

= Ep(x)
[
Epθ(z1:B |x) [∇φ log qφ(zb|z−b, x)]

]
, b = 1, 2, ..., B. (26)

We compute a self-normalized gradient estimate (line 19) in a propose-weigh-reassign manner (line 15, line 16, line 17).

We will validate this gradient estimate (line 19) using the proper weighting again, i.e. we want to prove that

zl1:B , w
l p.w.∼ pθ(z1:B , x), l = 1, . . . , L. (27)

so that Equation 13 will guarantee the validity of this gradient estimate.

To prove that one Gibbs sweep (line 11 - line 22) also preserves proper weighting, we will show that each block update
satisfies all the 3 conditions (Equation 16, 18 and 27) in Proposition 3, by which we can conclude the samples are still
properly weighted after each block update.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Without loss of generality, we drop all l superscripts in the rest of the proof. Before any block update (before line 15), we
already know that samples are properly weighted, i.e.

z, w
p.w.∼ pθ(z, x). (28)

which corresponds to Equation 16. Next we define a conditional distribution q(z′ | z) := qφ(z′b|x, z−b)δz−b(z′−b), from
which we propose a new sample

z′ ∼ qφ(z′b|x, z−b)δz−b(z′−b), (29)

where the density of z′−b is a delta mass on z−b defined as δz−b(z
′
−b) = 1 if z−b = z′−b and 0 otherwise. In fact, this form

of sampling step is equivalent to firstly sample z′b ∼ qφ(zb | x, z−b) (line 15) and let z′−b = z−b (line 17), which is exactly
what the APG sampler assumes procedurally in Algorithm 2. This condition corresponds to Equation 17.

Finally, we define the weight w′

w′ =
pθ(x, z

′
b, z
′
−b)r(zb|x, z−b)δz−b(z−b)

pθ(x, zb, z−b)qφ(z′b|x, z−b)δz−b(z′−b)
w, (30)

where the terms in blue are treated as densities (normalized or unnormalized) of z′1:B and the terms in red are treated as
densities of z1:B . Since both delta mass densities evaluate to one, this weight is equal to the weight computed after each
block update (line 16). This condition corresponds to Equation 18.

Now we can apply the conclusion (19) in Proposition 3 and claim

z′1:B , w
′ p.w.∼ pθ(z

′
1:B , x).

since z−b = z′−b and zb = z′b due to the re-assignment (line 17). Note that the resampling step (line 13) will preserve the
proper weighting because of Proposition 2.

Based on the fact that proper weighting is preserved at both the initial proposing step k = 1 and one Gibbs sweep k = 2, we
have proved that both gradient estimates (line 8 and line 19) are correct.

F. Architectures of Amortized Population Gibbs samplers using Neural Sufficient Statistics
Based on our proposed parameterization in terms of neural sufficient statistics (see section 4), we will explain how we
design the approximate Gibbs (neural) proposals in the experiments in section 6.

In general, we consider a structured model pθ(x, z) where we can partition the latent variables z = {zG, zL} into global
variables zG and local variables zL. The dimensionality of global variables is typically constant, whereas local variables
zL = {zL

1, . . . , z
L
N} have a dimensionality that increases with the instance size N . For models with this structure, the local

variables are typically conditionally independent

zL
n⊥zL

−n | x, zG. (31)

We assume that the priors p(zG;λG) and p(zL;λL) are in the exponential family form, where λG and λL are natural parameters
of the corresponding distributions. By the conditional independencies, we parameterize the conditional neural proposals
(i.e. variational distributions) using neural sufficient statistics Tφ(·) as

λ̃G = λG +

N∑
n=1

T G
φ (xn, z

L
n), λ̃L

n = λL
n + T L

φ(xn, z
G). (32)

where λ̃G and λ̃L are natural parameters of proposals of the global variables zG and local variables zL respectively.

In the Gaussian mixture model we know the analytic forms of conditional (conjugate) posteriors. This means that we have
analytic expressions for true sufficient statistics in equation 33. Here, the APG sampler learns neural sufficient statistics that
approximate the true statistics. In the deep generative mixture model and the time series model in bouncing MNIST, we no
longer know the analytic forms of the conditionals. As a result, the APG samplers for these two models will employ neural

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

networks f G
φ and f L

φ that take the (learned) neural sufficient statistics and the parameters of the priors as input, and predict
the parameters of the proposals as output, i.e.

λ̃G = λG +

N∑
n=1

T G
φ (xn, z

L
n) ≈ f G

φ(λG,

N∑
n=1

T G
φ (xn, z

L
n)), λ̃L

n = λL
n + T L

φ(xn, z
G) ≈ f L

φ(λL
n, T

L
φ(xn, z

G)).

Since there is always a deterministic transformation between a natural parameter and the corresponding distribution
parameters (i.e. the parameters in canonical form), we can always convert any exponential family to a canonical form. For
convenience, our networks output the canonical parameters directly, rather than returning natural parameters that then need
to be converted to canonical form.

F.1. Gaussian Mixture Model

In the APG sampler for the Gaussian mixture model (GMM), we employ neural proposals of the form

qφ(µ1:M , τ1:M | x1:N) =

M∏
m=1

NormalGamma
(
µm, τm

∣∣∣ α̃m, β̃m, µ̃m, ν̃m), (33)

qφ(µ1:M , τ1:M | x1:N , c1:N) =

M∏
m=1

NormalGamma
(
µm, τm

∣∣∣ α̃m, β̃m, µ̃m, ν̃m), (34)

qφ(c1:N | x1:N , µ1:M , τ1:M) =

N∏
n=1

Categorical
(
cn

∣∣∣ π̃n). (35)

where M = 3 is the number of clusters in a GMM. We use the tilde symbol ˜ to denote the parameters of the conditional
neural proposals (i.e. approximate Gibbs proposals). The NormalGamma on the vector-valued mean µm ∈ R2 and diagonal
precision τm ∈ R2

+ follows the standard definition

τm ∼ Gamma(α0, β0), µm ∼ Normal(µ0, 1/(ν0τ)). (36)

where µ0 = 0, ν0 = 0.1, α0 = 0.2, β0 = 0.2. The natural parameters λG := (λG
1 , λ

G
2 , λ

G
3 , λ

G
4) of this distribution are defined

in terms of the canonical parameters as

λG
1 = α0 −

1

2
, λG

2 = −β0 −
ν0µ

2
0

2
, λG

3 = ν0µ0, λG
4 = −ν0

2
. (37)

We employ neural sufficient statistics that approximate the true pointwise sufficient statistics{
I[cn=m], I[cn=m]xn, I[cn=m]x2n

∣∣∣m=1, 2, . . . ,M
}

We use fully-connected networks for the statistics T G
φ (xn) of the initial proposal qφ(µ1:M , τ1:M | x1:N) and the statistics

T G
φ (xn, cn) for the conditional qφ(µ1:M , τ1:M | x1:N , c1:N),

T G
φ (xn), xn ∈ R2

FC. 2. (sn) FC. 3. Softmax. (tn)

T G
φ (xn, cn), xn ∈ R2, cn ∈ {0, 1}3

Concatenate[xn, cn]
FC. 2. (sn) FC. 3. Softmax. (tn)

The output of each network consists of two elements sn and tn. sn approximates the variable xn; tn,m approximates the
identity function I[cn =m]. Then we sum over all the points and compute the parameters of the conjugate posterior in
analytic forms

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Nm =

N∑
n=1

tn,m, x̃m =

N∑
n=1

tn,m · sn, x̃2m =

N∑
n=1

tn,m · s2n, (38)

α̃m = α0 +
Nm
2
, (39)

β̃m = β0 +
1

2

(
x̃2m −

(x̃m)2

Nm

)
+

Nmν0
Nm + ν0

(x̃mNm − µ0)2

2
, (40)

µ̃m =
µ0ν0 + x̃m
ν0 +Nm

, (41)

ν̃m = ν0 +Nm. (42)

We assume a Categorical prior on the assignment of each point cn of the form

cn ∼ Categorical(π) (43)

where π = (1
3 ,

1
3 ,

1
3). The natural parameter is

λL = log π (44)

We employ a vector of neural statistics

T L
φ(xn, µ1:M , τ1:M) :=

(
T L
φ(xn, µ1, τ1), T L

φ(xn, µ2, τ2), . . . , T L
φ(xn, µM , τM)

)
, (45)

where each element is parameterized by the network

T L
φ(xn, µm, τm), xn ∈ R2, µm ∈ R2, τm ∈ R2

+

Concatenate[xn µm, τm]

FC. 32. Tanh. FC. 1.

We add these statistics to the natural parameters. The canonical parameters of the approximate posterior π̃ are then simply
the Softmax normalization of the resulting sum

π̃n = Softmax
(

log π + T L
φ(xn, µ1:M , τ1:M)

)
. (46)

F.2. Deep Generative Mixture Model

The APG sampler in the deep generative mixture model (DMM) employs neural proposals of the form

qφ(µ1:M | x1:N) =

M∏
m=1

Normal
(
µm

∣∣∣ µ̃m, σ̃2
mI
)
, (47)

qφ(µ1:M | x1:N , c1:N , h1:N) =

M∏
m=1

Normal
(
µm

∣∣∣ µ̃m, σ̃2
mI
)
, (48)

qφ(c1:N , h1:N | x1:N , µ1:M) = qφ(c1:N | x1:N , µ1:M) qφ(h1:N | c1:N , , x1:N , µ1:M) (49)

=

N∏
n=1

Categorical
(
cn

∣∣∣ π̃n) Beta
(
hn

∣∣∣ α̃n, β̃n). (50)

where M = 4 is the number of clusters in a GMM. We use the tilde symbol ˜ to denote the parameters of the conditional
neural proposals (i.e. approximate Gibbs proposals).

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

We assume a Gaussian prior on mean of each cluster µm of the form

µm ∼ Normal(µ, σ2
0I) (51)

where the hyper-parameters are µ = 0 and σ0 = 10. To compute the parameters of neural proposals, we firstly employ some
MLPs that predict neural sufficient statistics T G

φ (xn) and T G
φ (xn, cn, hn) as

T G
φ (xn), xn ∈ R2

FC. 32. Tanh. FC. 8. (sn) FC. 32. Tanh. FC. 4. Softmax. (tn)

T G
φ (xn, cn, hn), xn ∈ R2, cn ∈ {0, 1}4, hn ∈ [0, 1]1

Concatenate[xn, cn, hn]
FC. 32. Tanh. FC. 8. (sn) FC. 32. Tanh. FC. 4. Softmax. (tn)

The architectures here are similar to those in the GMM in the sense that output of each network also consists of two features:
sn and tn. The intuition is that the we can extract useful features in the same way, but without conjugacy relationship. Then
we compute the outer product of these two features, resulting in a weighted average like the ones in equation 38 as

sn ⊗ tn :=

sn,1tn,1 sn,1tn,2 sn,1tn,3 sn,1tn,4
sn,2tn,1 sn,2tn,2 sn,2tn,3 sn,2tn,4
· · ·

sn,8tn,1 sn,8tn,2 sn,8tn,3 sn,8tn,4

 (52)

We aggregate this outer products over all the points by taking an elementwise sum
∑N
n=1 sn ⊗ tn. Then we normalize the

aggregation by taking an elementwise division with the sum
∑N
n=1 tn, i.e.

T̃ G
φ :=

∑N
n=1 sn ⊗ tn∑N

n=1 tn
(53)

where we call the normalized aggregation T̃ G
φ ∈ R8×4, where its second dimension corresponds to the number of cluster

M = 4. Next we employ MLPs f G
φ(·) to predict variational distribution of each cluster given the aggregated neural sufficient

statistics and the parameters of the priors as

µ̃m, σ̃
2
m ←− f G

φ

(
T̃ G
φ (xn)[:,m], µ, σ0

)
, µ̃m, σ̃

2
m ←− f G

φ

(
T̃ G
φ (xn, cn, hn)[:,m], µ, σ0

)
. (54)

where m = 1, 2, ...,M . The notation [:,m] mean we take the m-th slice along the second dimension which corresponds the
m-th cluster.

We parameterize the f G
φ(·) using two separate MLPs, each of which is concatenated with the corresponding pointwise neural

sufficient statistics networks, i.e. T G
φ (xn) and T G

φ (xn, cn, hn) respectively

f G
φ

(
T̃ G
φ (xn)[:,m], µ, σ0

)
, T̃ G

φ (xn)[:,m] ∈ R8, µ ∈ R2, σ0 ∈ R2

Concatenate[T̃ G
φ (xn)[:,m], µ, σ0]

FC. 2× 32. Tanh. FC. 2× 2

f G
φ

(
T̃ G
φ (xn, cn, hn)[:,m], µ, σ0

)
, T̃ G

φ (xn, cn, hn)[:,m] ∈ R8, µ ∈ R2, σ0 ∈ R2

Concatenate[T̃ G
φ (xn, cn, hn)[:,m], µ, σ0]

FC. 2× 32. Tanh. FC. 2× 2

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

We assume a Categorical on mixture assignments cn and a Beta prior on the embedding of each point hn,

cn ∼ Categorical(π), hn ∼ Beta(α, β). (55)

where π = (1
4 ,

1
4 ,

1
4 ,

1
4), α = 1 and β = 1.

The neural sufficient statistics is defined as

T L
φ(xn, µ1:M) :=

(
T L
φ(xn, µ1), T L

φ(xn, µ2), ..., T L
φ(xn, µM)

)
(56)

where each element is parameterized by the network

T L
φ(xn, µm), xn ∈ R2, µm ∈ R2

Concatenate[xn, µm]

FC. 32. Tanh. FC. 1.

We compute the parameters of the conditional proposal π̃n by computing the logits normalizing it using Softmax activation

π̃n = Softmax
(

log π + T L
φ(xn, µ1:M)

)
. (57)

Then we can sample assignments cn from the variational distribution cn ∼ Categorical(π̃n). The neural proposal for
embedding variable hn is conditioned on the assignments cn in a way that it takes as input the mean of the cluster µm, to
which each point belongs to, i.e.

qφ(hn | xn, µ1:M , cn) = qφ(hn | xn, µcn). (58)

As a result, the network for this neural proposal is

qφ(hn | xn, µcn), xn ∈ R2, µcn ∈ R2

xn − µcn
FC. 2× 32. Tanh. FC. 2× 1.

Since the Beta distribution requires its parameters to be positive, this network will output the logarithms of proposal
parameters for hn of the form

log α̃n, log β̃n ←− qφ(hn | xn, µcn). (59)

In this experiment we also learn a deep generative model of the form

pθ(x1:N |µ1:M , c1:N , h1:N) :=

N∏
n=1

Normal
(
xn

∣∣∣ gθ(hn) + µcn , σ
2
ε I
)
. (60)

where σε = 0.1 is a hyper-parameter. The architecture of the MLP decoder gθ(hn) is

gθ(hn), hn ∈ R1

FC. 32. Tanh. FC. 2.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

F.3. Time Series Model – Bouncing MNIST

We learn a deep generative model of the form

pθ(x1:T | zwhat
1:D , zwhere

1:T) =

T∏
t=1

Bernoulli
(
xt

∣∣∣ σ(∑
d

ST
(
gθ(z

what
d), zwhere

d,t

)))
(61)

Given each digit feature zwhat
d , the APG sampler reconstruct a 28× 28 MNIST image using a MLP decoder, the architecture

of which is

gθ(z
what
d), zwhat

d ∈ R10

FC. 200. ReLU.
FC. 400. ReLU.
FC. 784. Sigmoid.

Then we put each reconstructed image gθ(zwhat
d) onto a 96× 96 canvas using a spatial transformer ST which takes position

variable zwhere
d,t as input. To ensure a pixel-wise Bernoulli likelihood, we clip on the composition as

For each pixel pi ∈
(∑

d

ST
(
gθ(z

what
d), zwhere

d,t

))
, σ(pi) =

pi = 0 if pi < 0

pi = pi if 0 ≤ pi ≤ 1

pi = 1 if pi > 1

(62)

The APG sampler in the bouncing MNIST employs neural proposals of the form

qφ(zwhere
1:D,t | xt) =

D∏
d=1

Normal
(
zwhere
d,t

∣∣∣ µ̃where
d,t , σ̃where 2

d,t I
)
, for t = 1, 2, . . . , T, (63)

qφ(zwhere
1:D,t | xt, zwhat

1:D) =

D∏
d=1

Normal
(
zwhere
d,t

∣∣∣ µ̃where
d,t , σ̃where 2

d,t I
)
, for t = 1, 2, . . . , T, (64)

qφ(zwhat
1:D | x1:T , zwhere

1:T) =

D∏
d=1

Normal
(
zwhat
d

∣∣∣ µ̃what
d , σ̃what 2

d I
)
. (65)

We train the proposals with instances containing D = 3 digits and T = 10 time steps and test them with instances containing
up to D = 5 digits and T = 100 time steps. We use the tilde symbol ˜ to denote the parameters of the conditional neural
proposals (i.e. approximate Gibbs proposals).

The APG sampler uses these proposals to iterate over the T + 1 blocks

{zwhat
1:D }, {zwhere

1:D,1 }, {zwhere
1:D,2 }, . . . , {zwhere

1:D,T }.

For the position features, the proposal qφ(zwhere
1:D,t | xt) and proposal qφ(zwhere

1:D,t | xt, zwhat
1:D) share the same network, but

contain different pre-steps where we compute the input of that network. The initial proposal qφ(zwhere
1:D,t | xt) will convolve

the frame xt with the mean image of the MNIST dataset; The conditional proposal qφ(zwhere
1:D,t | xt, zwhat

1:D) will convolve the
frame xt with each reconstructed MNIST image gθ(zwhat

d). We perform convolution sequentially by looping over all digits
d = 1, 2, ..., D. Here is pseudocode of both pre-steps:

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Algorithm 4 Convolution Processing for qφ(zwhere
1:D,t | xt)

1: Input frame xt ∈ R9216, mean image of MNIST dataset mm ∈ R784

2: for d = 1 to D do
3: xconv

d,t ←− Conv2d(xt) with kernel mm, stride = 1, no padding.
4: end for
5: Output Convolved features {xconv

d,t ∈ R4761}Dd=1

Algorithm 5 Convolution Processing for qφ(zwhere
1:D,t | xt, zwhat

1:D)

1: Input frame xt ∈ R9216, reconstructed MNIST digits {gθ(zwhat
d) ∈ R784}Dd=1

2: for d = 1 to D do
3: xconv

d,t ←− Conv2d(xt) with kernel gθ(zwhat
d), stride = 1, no padding.

4: end for
5: Output Convolved features {xconv

d,t ∈ R4761}Dd=1

We employ a MLP encoder f L
φ(·) that takes the convolved features as input and predict the variational parameters for

positions {zwhere
d,t }Dd=1 at step t, i.e. vector-valued mean µ̃where

d,t and logarithm of the diagonal covariance log σ̃where 2
d,t as

µ̃where
d,t , log σ̃where 2

d,t ←− f L
φ(xconv

d,t), d = 1, 2, . . . , D. (66)

The architecture of the MLP encoder f L
φ(·) is

f L
φ(xconv

d,t), xconv
d,t ∈ R4761

FC. 200. ReLU.
FC. 2× 100. ReLU.
FC. 2× 2.

For the digit features, the APG sampler performs conditional updates in the sense that we crop each frame xt into a 28× 28
subframe according to zwhere

d,t using the spatial transformer ST as

xcrop
d,t ←− ST

(
xt, z

where
d,t

)
, d = 1, 2, . . . , D, t = 1, 2, . . . , T. (67)

we employ a MLP encoder T G
φ (·) that takes the cropped subframes as input, and predicts frame-wise neural sufficient

statistics, which we will sum up over all the time steps. The architecture of this network is

T G
φ (xcrop

d,t), xcrop
d,t ∈ R784

FC. 400. ReLU.
FC. 200. ReLU.

Then we employ another network f G
φ(·) that takes the sums as input, and predict the variational parameters for digit features

{zwhat
d }Dd=1, i.e. the vector-valued means {µ̃what

d }Dd=1 and the logarithms of the diagonal covariances {log σ̃what 2
d }Dd=1.

The architecture of this network is

f G
φ(
∑T
t=1 T

G
φ (xcrop

d,t)),
∑T
t=1 T

G
φ (xcrop

d,t) ∈ R200

FC. 2× 10

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

G. Analytical inclusive KL divergence during Training in GMM
In GMM experiment, we train the model with different number of sweeps K under fixed computational budget K ·L = 100.
Figure 5 shows that more number of sweeps results in slightly faster convergence.

Figure 5. Inclusive KL divergence as a function of gradient steps. Each model is trained with 20000 gradient steps, K · L = 100

H. Comparison between APG sampler and RWS method in Bouncing MNIST
We visualize the inference results and reconstruction from the APG sampler and reweighted wake-sleep method. We can see
that APG sampler significantly improves both tracking inference results and the reconstruction on instances with T = 20
time steps and D = 5 digits. We can see that the APG sampler achieves substantial results while the RWS method does not
make reasonable prediction at all.

Reconstruction

Inference on tracking

Reconstruction

Inference on tracking

A
P

G
 K

=
1
0

R
W

S

Figure 6. Example 1.

I. Inference Results and Reconstruction on large time steps Bouncing MNIST
We show the inference results on tracking and the reconstruction on test instances with T = 100 time steps and D = 3, 4, 5
MNIST digits, using models that is trained with instances containing only T = 10 time steps and D = 3 digits. In each
figure below, the 1st, 3rd, 5th, 7th, 9th rows show the inference results, while the other rows show the reconstruction of
the series above. We can see the APG sampler is scalable with much large number of latent variables, achieving accurate
inference and making impressive reconstruction.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Reconstruction

Inference on tracking

Reconstruction

Inference on tracking
A

P
G

 K
=

1
0

R
W

S

Figure 7. Example 2.

Reconstruction

Inference on tracking

Reconstruction

Inference on tracking

A
P

G
 K

=
1
0

R
W

S

Figure 8. Example 3.

Figure 9. Full reconstruction for a video where T = 100, D = 3.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Figure 10. Full reconstruction for a video where T = 100, D = 4.

Figure 11. Full reconstruction for a video where T = 100, D = 5.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics

Figure 12. Full reconstruction for a video where T = 100, D = 5.

