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Abstract
Optimally solving decentralized partially observ-
able Markov decision processes (Dec-POMDPs)
under either full or no information sharing re-
ceived significant attention in recent years. How-
ever, little is known about how partial informa-
tion sharing affects existing theory and algorithms.
This paper addresses this question for a team of
two agents, with one-sided information sharing,
i.e. both agents have imperfect information about
the state of the world, but only one has access to
what the other sees and does. From the perspec-
tive of a central planner, we show that the original
problem can be reformulated into an equivalent
information-state Markov decision process and
solved as such. Besides, we prove that the optimal
value function exhibits a specific form of uniform
continuity. We also present heuristic search algo-
rithms utilizing this property and providing the
first results for this family of problems.

1. Introduction
Over the last few years, Dec-POMDPs have been used as
the underlying semantics for (optimal) planning and rein-
forcement learning in sequential decision making by a team
of collaborative agents (Foerster et al., 2018; Rashid et al.,
2018; Dibangoye & Buffet, 2018; Bard et al., 2020). In this
setting, every agent acts simultaneously but can neither see
the actual state of the world nor explicitly communicate its
observations with each other, due to communication cost,
latency, or noise (Bernstein et al., 2002). The critical prob-
lem with this assumption is that every decision variable, at
a given point in time, directly influences any other one at
the same point. The mutual influence of decision variables

1Univ Lyon, INSA Lyon, INRIA, CITI, F-69621 Villeurbanne,
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along with their double exponential growth with agents and
time explain the worst-case complexity, i.e. infinite-horizon
cases are undecidable, finite-horizon ones are NEXP-hard,
and finding approximations remains hard (Bernstein et al.,
2002).

Because in Dec-POMDPs, no agent can unilaterally choose
its optimal policy, Dibangoye et al. (2014b) adopted the
viewpoint of a central planner and recast the original prob-
lem into an equivalent non-observable MDP, namely Occu-
pancy MDPs (oMDPs). This framework allows reasoning,
all at once, about mutually dependent decision variables. In
this approach, states are sufficient statistics to jointly find
an optimal assignment to all mutually dependent decision
variables (Szer et al., 2005; Oliehoek, 2013; Nayyar et al.,
2013). In principle, theory and algorithms to optimally
solving MDPs can apply. Unfortunately, given the double
exponential growth of mutually dependent decision vari-
ables with agents and time, even a single update or backup
of a state can be prohibitively expensive (Szer et al., 2005;
Seuken & Zilberstein, 2008; Oliehoek et al., 2013; Mac-
Dermed & Isbell, 2013; Dibangoye et al., 2014c; Kumar
et al., 2015).

In many cases, however, real-world multi-agent environ-
ments contain significant structure. Indeed, several forms of
structure have been investigated in the past, ranging from
loosely coupled dynamics (Becker et al., 2004) and rewards
(Nair et al., 2005) to delayed and full information sharing
(Nayyar et al., 2011). Algorithms that take advantage of
this structure can optimally solve structured problems much
faster than generic ones (Goldman & Zilberstein, 2004;
Oliehoek & Spaan, 2012; Dibangoye et al., 2014a).

While Dec-POMDPs generally assume every agent acts
without full knowledge of what others observe or plan to
do, in many cases, one agent has access to what the others
see and do. In hierarchical organizational structures, for
example, each agent has virtually full knowledge of what
its immediate subordinates see and do. After one agent
takes a decision, its direct subordinates cannot change theirs.
Though these characteristics are embodied in many coop-
erative real-world applications, including military systems,
corporations, and governments, little can be said so far, the
only exceptions being Hadfield-Menell et al. (2016); Malik
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et al. (2018). They considered scenarios where only one
agent has access to (i) the actual state of the world, and (ii)
the action and observation of the other agent. Such a setting
allows one to reason directly upon the belief state—i.e. a
probability distribution over the states of the world. A simi-
lar line of research—beyond the scope of this paper—has
been pursued in (mostly two-player zero-sum) partially ob-
servable stochastic games (Ghosh et al., 2004; Horák et al.,
2017; Horák & Bošanskỳ, 2019).

In this paper, we investigate the problem of optimally solv-
ing two-agent Dec-POMDPs under one-sided information
sharing (one-sidedness for short)—i.e. both agents have im-
perfect information about the state of the world, but only one
agent has public actions and observations. From the central
planner’s perspective, public actions and observations allow
us to move from non-observable oMDPs to partially observ-
able ones, branching on possible public action-observation
pairs. Doing so makes it possible to apply the theory and
algorithms for oMDPs (Dibangoye et al., 2014b), albeit on
(i) more concise state representations, e.g. probability dis-
tributions over belief states, and (ii) a piecewise-linear and
convex (PWLC) value function of states. Perhaps the main
result of this paper is the proof that, under one-sidedness,
one can move from a PWLC value function to a linear one,
though in a higher-dimensional space. Exploiting this prop-
erty leads to improved scalability mainly because decision
variables that previously influence one another can now be
decoupled and independently processed. To support our
findings, we provide three variants of the Heuristic Search
Value Iteration (HSVI) algorithm (Smith, 2007) using either
PWLC or linear value-function representations and compare
them on standard problems from the literature.

2. Optimally Solving Dec-POMDPs
We begin with an overview of the multi-agent Dec-POMDP
formalization. Then its single-agent reformulation, that
allows single-agent theory and algorithms to apply.

2.1. Multi-agent Formulation

Definition 1 (Bernstein et al.). A 2-agent Dec-POMDP is
given by M .

= 〈X,U,Z, r, p〉, where X is a finite set of
hidden states; U i is a finite action set of agent i, where U =
U1×U2 specifies the set of joint actions u = (u1, u2); Zi is
an observation set of agent i, where Z = Z1 ×Z2 specifies
the set of joint observations z = (z1, z2); p describes a
transition function with conditional probability distribution
pu,zx,y defining the probability of transitioning from state x to
y after taking joint action u and seeing z; and r is a reward
model with immediate reward r(x, u).

Throughout the paper, we make the following assumptions.

Assumption 1. Agent 2 has public actions and observa-

tions, i.e. (u2
τ , z

2
τ+1) ⊆ z1

τ+1, for every point in time τ .

Assumption 2. Rewards are two-side bounded, i.e. there
exists some c > 0, such that ‖r(·, ·)‖∞ ≤ c.
Assumption 3. Planning horizon ` is finite, since ∞-
horizon solutions are ε-close to `-horizon optimal solutions,
where ` = dlogγ (1− γ)ε/ce, for discount factor γ ∈ [0, 1)
and some positive scalar ε.

Optimally solving M aims at finding joint policy π, i.e. a
n-tuple of sequences of private decision rules, one per agent,

π
.
= (a1

0:`, a
2
0:`),

maximizing the expected γ-discounted cumulative rewards
starting at initial state distribution b0 onward, and given by

υ0(b0;π)
.
= E{

∑`−1
τ=0 γ

τr(xτ , uτ ) | b0, π}.

For each agent i, private decision rule aiτ : oiτ 7→ uiτ depends
on τ th histories oiτ

.
= (ui0:τ−1, z

i
1:τ ), with 0th private history

being oi0
.
= ∅. Unfortunately, optimally solving M in its

multi-agent formulation is non-trivial, since it is not clear
how to define a right notion of state (Hansen et al., 2004).

To better understand this, notice that every agent acts si-
multaneously, but can neither see the actual state of the
world nor explicitly communicate its actions and observa-
tions with each other. As a consequence, what one agent
sees and does directly affect what the others see and do, thus
the mutual influence of all decision variables aτ

.
= (a1

τ , a
2
τ )

at each time step τ . The motivation for a single-agent re-
formulation is twofold. The primary reason is that it allows
us to reason simultaneously about all mutually dependent
decision variables aτ : oτ 7→ uτ , a set we shall refer to as a
τ th joint decision rule, i.e. a mapping from joint histories
oτ

.
= (o1

τ , o
2
τ ) to joint actions uτ

.
= (u1

τ , u
2
τ ). Besides, it

eases the transfer of theory and algorithms from single- to
multi-agent systems.

2.2. Single-agent Reformulation

This equivalent reformulation aims at recasting M from the
perspective of an offline central planner. Every point in time,
this planner acts all at once on behalf of all agents; taking a
joint decision rule, but receives no feedback. The history of
selected joint decision rules, i.e. a joint policy, describes a
non-observable MDP, namely occupancy MDP.

Definition 2 (Dibangoye et al.). An occupancy MDP w.r.t.
M is given by a tuple M̂ .

= 〈Ŝ, Â, T̂ , R̂〉 where S is the
(occupancy-)state space, where (occupancy) states are con-
ditional probability distribution over hidden states and joint
histories given a joint policy followed so far; Â is the space
of actions describing joint decision rules; T̂ : Ŝ × Â 7→ Ŝ
is the transition rule, where ŝτ+1

.
= T̂ (ŝτ , âτ ),

ŝτ+1(y, (o, u, z))
.
=
∑
x∈X ŝτ (x, o) · δuâτ (o) · p

u,z
x,y
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R̂ : Ŝ × Â 7→ R describes the linear reward function, i.e.

R̂(ŝτ , âτ )
.
=
∑
x∈X

∑
o∈O ŝτ (x, o) · r(x, âτ (o)).

Optimally solving M̂ aims at finding value functions (υ∗τ )τ ,
i.e. mappings states to reals, and solution of Bellman opti-
mality equations: for every ŝ ∈ Ŝ,

υ∗τ (ŝ) = maxâ∈Â(ŝ)

[
R̂(ŝ, â) + γυ∗τ+1(T̂ (ŝ, â))

]
(1)

with boundary condition υ∗` (·) = 0. Given the optimal
value function, one can greedily select an optimal joint
policy. Unfortunately, solving Bellman optimality equations
(1) is not feasible since state space Ŝ describes a continuum.
Instead, Dibangoye et al. (2014b) build on the fact that the
optimal value function is a piecewise linear and convex
function of the state space.

Lemma 1 (Dibangoye et al.). When optimized exactly an op-
timal value function of the Bellman optimality equation is al-
ways a piecewise linear and convex in the history-occupancy
space, i.e. for every sτ ,

υ∗τ (ŝτ ) = maxζτ∈Γτ

∑
(x,o)∈4(ŝτ ) ŝτ (x, o) · ζτ (x, o)

where Γτ is a finite set of vectors ζτ in the probability space
defined by sample space X × Oτ , the σ-algebra X × Oτ ,
and 4(ŝτ ) is the set of state and joint history pairs with
non-zero probability w.r.t. to ŝτ .

Also, they introduced a backup operator that can circum-
vent the exhaustive enumeration of all joint decision rules
using mixed-integer linear programs. To enhance value
generalization from one state to another one, they provided
equivalence relations among private histories. Altogether,
these operations made it possible to use a couple of single-
agent algorithms to solve multi-agent problems. But, the
scalability remains the major issue.

2.3. Limitations w.r.t. One-Sidedness

The theory above also applies under one-sidedness, but the
curse of dimensionality restricts its scalability in the face
of domains of a practical scale. To better understand this,
notice that its complexity depends on two operators: the
Bellman backup operator necessary to improve the value
function; and the estimation operator useful to maintain
history-occupancy states. In either case, this theory is not
geared to exploit the one-sidedness. Thus, it is typical to
have to consider history-occupancy states and value func-
tions over exponentially many variables, though multiple
variables may have little influence on one another.

Performing the exact Bellman backup operator is infea-
sible because the history-occupancy space is a contin-
uum. Instead, Dibangoye et al. (2014b) suggest employing

point-based Bellman backup operator for each encountered
history-occupancy state. Still, each application of this op-
erator requires enumerating exponentially many joint de-
cision rules, which limits its applicability. Mixed-integer
linear programming formulations of the point-based Bell-
man backup operator exist, but the scalability remains lim-
ited. The reason is not only the time required to perform
the backup but also the time necessary to encode the pro-
gram. The estimation operator is also cumbersome. Indeed,
maintaining history occupancy states, i.e. probability distri-
butions over states and joint histories, requires enumerating
exponentially many joint histories. Besides, this operator
quickly becomes intractable with large planning horizons,
let alone the infinite planning horizon. Finally, the gen-
eralization of values from one history occupancy state to
another one applies whenever they share the same support,
e.g. the sawtooth approximation (Hauskrecht, 2000; Smith,
2007; Dibangoye et al., 2014b).

In this paper, we investigate more concise sufficient statistics
and a PWLC property about the optimal value function
by fully exploiting the one-sidedness. In other words, we
address the following question—how can we improve the
representation of history occupancy states and the PWLC
value function and make backups more efficient to optimally
solvingM under one-sidedness? Recently, Hadfield-Menell
et al. (2016) and Malik et al. (2018) investigated the same
question but for M with one-sided partial observability,
i.e. agent 1 (w.l.o.g.) has access to the state of the world
and agent 2’s actions and observations are public. In such a
setting, they demonstrated history-occupancy states could be
restricted to belief states and point-based Bellman operator
made more efficient. While their approach does not apply in
the general case we target, we nonetheless establish strong
connections. In particular, we show that under collective
full observability, i.e. joint observations reveal the actual
state of the world, our approach is equivalent to theirs.

3. From Non- to Partially Observable oMDPs
According to the centralized planning for decentralized exe-
cution theory, a central planner with no observations about
what agents see and do at the online execution phase, can
nonetheless plan on behalf of all agents at the offline plan-
ning phase. To fully exploit the one-sidedness assumption,
we slightly relax this theory in the remainder.

In general, no agent can unilaterally choose its optimal
policy because there is no explicit information sharing. This
assumption explains Dibangoye et al. (2014b) adopted the
viewpoint of a central planner and recast M into equivalent
non-observable oMDP, where sufficient statistics are history
occupancy states. Whatever actions or observations are
made public to all agents allow, however, recastingM into a
partially observable oMDP, thus branching out according to
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possible public actions/observations histories, and reasoning
on more concise sufficient statistics.

3.1. Optimality of Belief-Dependent Policies

The statistics summarizing the information available to the
central planner about the process are called information
states. A straightforward application of Dibangoye et al.
(2014b) shows that the one-sidedness assumption allows
(i) branching on histories of agent 2 and (ii) using, as an
information state at time τ , the probability distribution over
hidden states and agent 1’s histories given history occupancy
state and agent 2’s history, i.e.

ιτ (xτ , o
1
τ )

.
= P (xτ , o

1
τ | ŝτ , o2

τ ).

Also, one can prove that (i) this information state is sufficient
to estimate immediate rewards, and (ii) next information
state ιτ+1

.
= T (ιτ , âτ , z

2) depends on current one ιτ , joint
decision rule âτ

.
= (â1, u2), and next observation z2,

ιτ+1(y, (o1, u1, z1)) = δu
1

â1(o1)

∑
x∈X

ιτ (x, o1) · pu
1,u2,z1,z2

x,y .

Given the information state, the central planner acts on
behalf of both agents by selecting an action for the second
agent and a decision rule for the first one based upon their
histories. However, the primary result of this paper, cf.
Theorem 1, is the proof that one can equivalently condition
the action selection upon either belief states or posterior
probability distributions over belief states for agent 1 and 2,
respectively. Before proceeding any further, we define two
key concepts, namely belief occupancy states and belief-
dependent joint decision rules.

Definition 3. The belief occupancy state is a probability
distribution1 over belief states conditional on the informa-
tion state, i.e. ∀b ∈ 4(X), sτ

.
= P (b|ιτ ) for any time

τ .

We call augmented belief occupancy state a belief occu-
pancy state paired with agent 2’s history o2

τ (denoted h(sτ )).
The latter will prove useful to extract the policy of agent 2
given the optimal value function.

Definition 4. The belief-dependent joint decision rule
aτ

.
= (a1, u2) at any time τ maps belief states to prob-

ability distributions over joint actions, i.e. ∀b ∈ 4(X),
aτ (u|b) .

= (a1(u1|b), u2) and a1 : 4(X) 7→ 4(U1).

The primary result of this paper is the proof that, under
one-sidedness, belief-dependent joint decision rules are as
good as history-dependent ones.

1From Assumption 3, we know the number of joint histories
that belief states summarize is finite, so is the number of reachable
belief states. As a consequence, one can maintain distribution over
reachable belief states.

Theorem 1 (Proof in App. A.1). In Dec-POMDPs with one-
sidedness, optimal policies depend only upon belief states
for agent 1 and belief occupancy states for agent 2.

This theorem shows that agent 1 with access to joint histo-
ries can act optimally based on corresponding belief states.
Instead, agent 2 has to reason on its belief about agent 1’s
belief states, i.e. the belief occupancy states. It is worth
noticing that if agent 2 has private observations, then both
agents’ policies are history-dependent. However, Theorem
1 holds whether or not agent 2’s actions are made public.
That is because actions can be recovered from observation
histories (Oliehoek, 2013). These policies can be made even
more concise, assuming one-sided partial observability as
in Hadfield-Menell et al. (2016), and Malik et al. (2018),
e.g. (i) agent 2’s actions and observations are public, and
(ii) every joint observation reveals the actual state of the
world. The collective full observability assumption turns
all agent 1’s belief states into states, and thus all agent 2’s
belief occupancy states into belief states.

3.2. Sufficiency of Belief Occupancy States

To demonstrate the sufficiency of both belief occupancy
states and belief-dependent joint decision rules to optimally
solve Dec-POMDPs with one-sidedness, it will prove useful
to establish the following preliminary results.

Lemma 2 (Proof in App. A.2). The belief occupancy state
s describes a process that is Markov, i.e. the next belief
occupancy state, s′ .= T (s, a, z2), depends on the current
belief occupancy state s, belief-dependent joint decision
rule a and observation z2,

s′(b′) ∝
∑

b∈4(s)

s(b)
∑
u1

a1(u1|b)
∑
z1

δb
′

bu,z

∑
x,y

b(x) · pu,zx,y,

where4(s)
.
= {b ∈ 4(X) : s(b) > 0} is a finite subset of

the simplex4(X) and bu,z(y) ∝
∑
x∈X b(x) · pu,zx,y .

Next, we show the belief occupancy states and belief-
dependent joint decision rules are sufficient statistics for
estimating immediate rewards.

Lemma 3 (Proof in App. A.2). For any arbitrary informa-
tion state ι and belief-dependent joint decision rule a, the
immediate reward, i.e. R̂(ι, a)

.
= E{r(x, u) | ι, a}, depends

only upon the corresponding belief occupancy state s:

R̂(ι, a) =
∑
b

s(b)
∑
u

a(u|b)
∑
x

b(x) · r(x, u)
.
= R(s, a),

where s(b) .
= P (b|ι) for every b ∈ 4(s).

We also show that the belief occupancy state is a suffi-
cient statistic for estimating the probability that an observa-
tion is made public given an information state and (belief-
dependent) joint decision rule.
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Lemma 4 (Proof in App. A.2). For any arbitrary informa-
tion state ι, belief-dependent joint decision rule a, the prob-
ability that observation z2 is made public, i.e. Ω̂(z2|ι, a)

.
=

P (z2 | ι, a), depends on ι only through the corresponding
belief occupancy state s: Ω̂(z2|ι, a) = Ω(z2|s, a), where

Ω(z2|s, a)
.
=
∑
b∈4(s) s(b)

∑
x,u,y a(u|b) · b(x)

∑
z1 p

u,z
x,y.

Taking all lemmas together, we note that the process the
belief occupancy state describes is a partially observable
oMDP, namely the belief-occupancy MDP (boMDP).

Definition 5. The boMDP is given by M̃ .
= 〈S,A,R, P 〉

where: S defines the set of belief occupancy states, with
initial belief occupancy state being s0

.
= b0; A is the set of

joint decision rules; R : S ×A 7→ R defines the immediate
reward after taking joint decision rule in a belief occupancy
state; P : S × A × S 7→ [0, 1] describes the probability
pas,s′

.
=
∑
z2∈Z2 Ω(z2|s, a)δs

′

T (s,a,z2) of the next belief oc-
cupancy state s′ after taking joint decision rule a in s.

The optimal value function of M̃ is the solution of the
Bellman optimality equation:

υ∗(s) = maxa∈A {R(s, a) + γ
∑
s′∈S p

a
s,s′υ

∗(s′)}. (2)

We are ready to prove another important result of the paper,
which will make it possible to optimally solve M with one-
sidedness by optimally solving M̃ .

Theorem 2 (Proof in App. A.2). The belief occupancy state
constitutes a sufficient statistic of the information state for
optimally solving M̃ . Besides, an optimal solution for M̃ is
also an optimal solution for M with one-sidedness.

Following the centralized planning for decentralized exe-
cution theory, it only remains to exhibit and exploit the
properties of the optimal value function, before one can
transfer algorithms from MDP theory and algorithms to
Dec-POMDPs with one-sidedness.

4. Exploiting Value-Function Properties
This section presents perhaps the main results of the paper,
including the proof that the optimal value function is a
linear function of augmented belief occupancy states. Also,
we investigate practical representations of lower and upper
bounds of the optimal value function.

Lemma 5 (Proof in App. B.1). The optimal value function
(υ∗τ )τ∈{0,...,`−1}, solution of Equation (2), is a piecewise-
linear and convex function of the belief occupancy states.
Moreover, for any time τ , there exists a family (Λτ ) of sets
(βτ ) with |X|-dimensional vectors (called α-vectors) such
that, for any belief occupancy state sτ

υ∗τ (sτ ) = max
βτ∈Λτ

∑
b∈4(sτ )

sτ (b) max
ατ∈βτ

∑
x∈X

b(x)ατ (x). (3)

This property shows Lemma 1 also holds under one-
sidedness but now over belief occupancy states, which are
more concise than history occupancy states. Yet, both prop-
erties remain fundamentally different in their generalization
capabilities. Here, the PWLC function over belief occu-
pancy states is a family of PWLC functions over belief
states. That suggests Lemma 5 has more ability to handle
unseen states than Lemma 1. Yet, as we will show in Sec-
tions 4.1 and 4.2, storing and updating PWLC functions is
non-trivial. Maintaining a value function over the entire
belief occupancy space is cumbersome. Instead, one can
alternatively only keep track of the value function induced
by the current best joint policy, as in Dibangoye & Buffet
(2018). That is, we only store and maintain values for belief
occupancy states visited under that joint policy.

Lemma 6 (Proof in App. B.2). If we let π∗ be an optimal
joint policy ofM with one-sidedness, then the optimal value
function (υ∗τ )τ∈{0,...,`−1}, solution of Equation (2), is a
linear function of augmented belief occupancy states sτ
visited under π∗ .= (π1, π2), i.e.

υ∗τ (sτ ) =
∑
b∈4(s) s(b) · V 1

τ (h(sτ ), b) = V 2
τ (h(sτ )) (4)

where V 1
τ : O2

τ ×4(X) 7→ R and V 2
τ : O2

τ 7→ R denote τ th
value functions under policies π1 and π2.

A careful reader may wonder why do we need two value
functions instead of a single one, as V 1 .

= (V 1
τ )τ∈{0,...,`−1}

seems to subsume V 2 .
= (V 2

τ )τ∈{0,...,`−1}. The knowledge
of V 2 is critical when updating the value function. Intu-
itively, V 2 keeps track of the current best values under the
current best policy of agent 2, which is not explicit in value
function V 1. Thus, before agent 2 commits to another pol-
icy, one can check whether or not the latter improves the
previous one, hence ensuring updates never commit to worst
policies. Overall, Lemma 6 trades generalization capabili-
ties of Lemma 5 for fast point-based backups.

Theorem 3 (Proof in App. B.2). The point-based backup
of the value functions (V 1, V 2) at point s satisfies

V 1
τ (h(s), b) =

{
V 1
τ (h(s), b), if V 2

τ (h(s)) ≥W 2
τ (h(s))

Q1
τ (h(s), b, as(b)), otherwise,

V 2
τ (h(s)) = max{V 2

τ (h(s)),W 2
τ (h(s))}

where ρ(b, u)
.
= 〈b, r(·, u)〉, and as, W 2

τ , Q1
τ are given by:

W 2
τ (h(s))

.
=
∑
b∈4(s) s(b)Q

1
τ (h(s), b, as(b))

as
.
= arg max(u2,a1)

∑
b∈4(s) s(b) ·Q1

τ (h(s), b, a1(b), u2)

Q1
τ (h(s), b, u)

.
= ρ(b, u) + γEbu{V 1

τ+1((h(s), u2, z2), bu,z)}

Intuitively, Theorem 3 establishes a policy improvement
strategy of the joint policy embodied into the current lin-
ear value function. It makes possible to perform point-
based backups in polynomial time, i.e. O(|4(s)||U ||Z|), cf.
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Lemma 7 in App B.2, mainly because it performs local im-
provements of a single joint policy. This result generalizes
to M with one-sidedness a recent efficient backup operator
for M with one-sided partially observability, cf. Malik et al.
(2018). Next, we provide different representations of the
optimal value function using either piece-wise linearity and
convexity or linearity properties, along with update rules.

4.1. Lower-Bound Representations

This section presents lower-bound representations of the op-
timal value function using either PWLC or linear properties
from Lemmas 5 and 6, respectively.

The family of sets representation is not commonly used to
update and store lower bounds on the optimal value func-
tion. In such a representation, the value at time τ of belief
occupancy state s is the maximum projection of s onto a
family Λτ of sets (βτ ) of α-vectors, cf. Figure 1 in App.
B.1: υτ (s)

.
= maxβτ∈Λτ

∑
b∈4(s) s(b) maxα∈βτ 〈b, α〉.

Theorem 5 shows a family of sets can represent the opti-
mal value function (υ∗τ )τ∈{0,...,`−1} exactly. Initially, fam-
ily of sets Λτ contains a singleton βτ , which includes
α-vector ατ given by: for all state x ∈ X , ατ (x)

.
=

(`− τ) minu∈U r(x, u). Updating υτ consists in adding a
novel set of α-vectors into Λτ .
Corollary 1 (Proof in App. B.3). The backup operator of
the lower bound υτ , represented as a family of sets, gener-
ates a new set β∗s of α-vectors for a given belief occupancy
state s, i.e. backup(υτ , s) = Λτ ∪ {β∗s}, where

β∗s = arg max
βas : a∈A

∑
b∈4(s)

s(b) max
α∈βas
〈b, α〉

βas
.
= {αab | ∀b ∈ 4(s)}

αab
.
=
∑
z2∈Z2

α
a(b),z2

b,βa
z2

βaz2
.
= arg max

β∈Λτ+1

∑
b∈4(s)

s(b)〈b, αa(b),z2

b,β 〉

αu,z
2

b,β
.
=
R(u)

|Z2|
+ γ

∑
z1∈Z1

arg max
αu,z : α∈β

〈b, αu,z〉

where αu,z(·) .
=
∑
y∈X α(y)pu,z·,y , and R(u)

.
= r(·, u), for

any u ∈ U and z ∈ Z.

Corollary 1 describes an approach to update the family
of sets by computing possibly a novel set of α-vectors
for each belief occupancy state. However, this operation
can be extremely expensive. Indeed the full complex-
ity of a point-based backup of a family of sets is about
O(|A||4(s)||X|2||Z2|+|U ||X|2|Z||4(s)||β∗||Λ|), where
|β∗| ≥ maxβ∈Λ |β|, cf. Lemma 8 in App B.3. One can
slightly mitigate this drawback using mixed-integer linear
programming, cf. Corollary 2 in App. B.3. But the scala-
bility remains a major issue as the number of sets increases.

Finally, it is necessary to maintain a concise representation
of the lower-bound value function through pruning. Here,
we perform pruning incrementally. We first prune each
set β of α-vectors to preserve only α-vectors in β that are
non-dominated by other α-vectors in β using, for example,
point-wise dominance criterion (Smith, 2007). Next, we
prune sets β ∈ Λ that are dominated by another set β′ in Λ,
e.g. all α-vectors in set β are point-wise dominated by some
α-vector in set β′. More efficient pruning procedures exist,
but their application often comes with prohibitive costs.

As for the lower-bound representation using the linearity
property, one relies on tabular representations. Initially,
V 1
τ (·) = V 2

τ (·) = (` − τ) minu∈U r(x, u). We update
these value functions as discussed in Theorem 3. No-
tice that, for every updated augmented belief-occupancy
state s, we need to update value function V 1

τ (h(s), ·) over
the entire belief space. In the tabular representation, we
backup all belief states in 4(s) and assign lower bound
(` − τ) minu∈U r(x, u) to any other belief state, yet a set
of α-vectors could advantageously replace the tabular rep-
resentation. To mitigate the number of histories stored in
value functions V 1 and V 2, we retain only a portion of
the entire history. Dibangoye et al. (2014b) show policies
dependent on finite-memory can achieve performances as
good as that of full-length histories. This approach may lead
to approximate solutions.

4.2. Upper-Bound Value Functions

Here, we present upper-bound representations of the optimal
value function using either PWLC or linear properties from
Lemmas 5 and 6, respectively.

The state-value mappings, i.e. Ψ
.
= {(s(κ) 7→ v(κ))}, are

commonly used to represent upper-bound value functions
ῡτ such that for any arbitrary belief occupancy state s at
time τ , υ∗τ (s) ≤ ῡτ (s) where ∀s, b, κ

ῡτ (s)
.
= min{υMDP(s), υSAWTOOTH(s, κ) | κ ∈ Ψ}

υSAWTOOTH(s, κ)
.
= υMDP(s) + max

b∈4(sκ)
s(b)/credit(κ, b)

credit(κ, b)
.
= sκ(b)/(vκ − υMDP(sκ))

where υMDP : S 7→ R defines the value induced by the opti-
mal policy of the underlying MDP; and υSAWTOOTH : S×Ψ 7→
R describes the sawtooth approximation of the convex hull
of points in Ψ (Smith, 2007), which is preferred to the
convex-hull to make it possible to write the update of the
upper-bound value function as a mixed-integer linear pro-
gram. Updating the upper-bound value function consists in
adding one point in the point set The update requires the
exhaustive enumeration of all joint decision rules, which
is extremely expensive for large domains. Similarly to the
lower bound, one can slightly mitigate this drawback us-
ing mixed-integer linear programming, cf. Corollary 3 in
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App. B.3. But the scalability remains a major issue as the
number of sets increases. Finally, it is necessary to maintain
a concise representation of the upper-bound value function
through pruning. We prune points that are dominated if their
values are higher or equal to that obtained using the other
points (Smith, 2007).

Let us now turn our attention to the upper-bound represen-
tation using the linearity property. We proceed as in lower-
bound value functions. Initially, V 1

τ (·) = V 2
τ (·) = υMDP(·).

Then, we backup these value functions as discussed in The-
orem 3. For every encountered point s, we update all belief
states in4(s) and assign upper bound υMDP(b) to any other
belief state b. One can alternatively use the sawtooth ap-
proximation to generalize from one belief to another one.

4.3. Optimally Solving boMDPs

In principle any algorithm that applies in information-state
MDPs should also apply in M̃ (resp. M with one-sidedness).
Here, we adapt a state-of-the-art solver for information-
state MDPs, namely heuristic search value iteration (HSVI)
(Smith, 2007), cf. Algorithm 1. We choose HSVI because
it is guaranteed to find an optimal solution in finite time,
cf. (Smith, 2007; Dibangoye et al., 2014b), in contrast to
other alternatives like PBVI (Shani et al., 2013) or POMCP
(Silver & Veness, 2010).

Algorithm 1: The HSVI Algorithm for boMDP M̃ .

function HSVI(s0, ε)begin
Initialize ῡ and υ.
while gap(s0) > ε do

Explore(s0, 0).

function Explore(s, τ)begin
if gap(s) > εγ−τ then

as ∈ arg maxa {R(s, a) + γ
∑
s′∈S p

a
s,s′ ῡ(s′)}.

s∗ ∈ arg maxs′ p
as

s,s′(ῡ(s′)− υ(s′)− ε/γτ+1).
Explore(s∗, τ + 1).
Update ῡ and υ at s.

All variants of HSVI proceed as follows. They generate
trajectories of states greedily guided by upper bounds and
iteratively update lower υ and upper bounds ῡ over states.
Each trajectory starts at the initial state, and continues until
either the planning horizon has been reached or the gap
between bounds, i.e. gap(sτ )

.
= ῡτ (sτ )− υτ (sτ ), is zero.

Once a trajectory terminates, it updates upper and lower
bounds over states along the trajectory in the reversed order
of visit. The algorithm stops whenever the gap between
bounds at the initial belief occupancy state is zero. In all
our variants, states are (augmented) belief occupancy states
and actions are belief-dependent joint decision rules. They
remain, however, fundamentally different. They differ in

the way they represent and update lower and upper bounds.

We shall distinguish between three variants, i.e. HSVI1(m),
HSVI2 and HSVI3. Algorithm HSVI1(m) uses linear repre-
sentations and corresponding update rules. Its convergence
may, however, be significantly affected by the exponential
growth of histories of agent 2 with time. To study this issue,
we will consider m-length histories. Algorithms HSVI2 and
HSVI3 use PWLC representations, but employ exhaustive
enumeration and MILP to greedily select actions, respec-
tively.

5. Experiments
5.1. Setup

Algorithms. We ran our variants of HSVI algorithm on
an Ubuntu machine with 3.0GHz Xeon E5 CPU and 32GB
available RAM. We solved the MILPs using ILOG CPLEX
Optimization Studio. While algorithms for general Dec-
POMDPs exist, there is no reason they can compete against
our variants since they are not geared to exploit the one-
sidedness. Indeed, the state-of-the-art solver for general
Dec-POMDPs, namely FB-HSVI (Dibangoye et al., 2014b),
shares the same algorithmic schemes with our variants, yet
our variants use more concise notions of states and thus more
efficient update operators. For the sake of completeness,
we report performances for solving underlying MDP and
Dec-POMDP problems using value-iteration and FB-HSVI
algorithms, respectively.

Tested domains. We evaluate our algorithms on multiple
2-agent benchmarks from the literature of Dec-POMDPs
recast into Dec-POMDPs with one-sidedness. All used
domains are available at masplan.org including mabc,
Recycling, Grid3x3corners, boxPushing, Mars, and
tiger. These are the largest and most challenging bench-
marks from the Dec-POMDP literature, cf. Table 1 for their
dimensions, i.e. number of states |X|, joint actions |U |, ob-
servations |Z|, and histories |O| .=

∑`−1
τ=0 |Oτ |, perhaps the

most important feature to assess the complexity of a bench-
mark. For each of them we compare our variants of HSVI
for planning horizon ` = 10 and discount factor γ = 1
and report different statistics, i.e. time, memory, number of
trials, value, and gap. We set the time limit at 5 hours.

5.2. Results and analysis

Results. In all tested benchmarks, HSVI1 outperforms
both HSVI2 and HSVI3, providing near-optimal (if not op-
timal) values at the initial state. For small domains, e.g.
mabc, where all algorithms find an optimal solution, HSVI1
is 5 and 200 times faster than HSVI2 and HSVI3, respec-
tively. For large domains, e.g. Mars, only HSVI1 can find
an optimal solution, and it takes about 2 and 3 orders of mag-
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nitude less time than both HSVI2 and HSVI3, respectively.
Another important observation is that HSVI1 performs ex-
tremely cheap trials compared to HSVI2 and HSVI3—e.g.
for tiger, HSVI1(9) performs about 652 trials per second
whereas HSVI2 and HSVI3 perform about 0.55 and 0.005
trials per second, respectively. However, HSVI2 and HSVI3
exhibit faster rates of convergence than HSVI1, e.g. for
Recycling, all variants find an optimal solution, yet with
#it being 83, 50, and 50 for HSVI1(1), HSVI2 and HSVI3,
respectively. In all tested benchmarks, the only exception
being Grid3x3corners, HSVI2 outperforms HSVI3. For
the domain with the largest |O|, i.e. Grid3x3corners,
HSVI2 runs out of memory and was killed by the system.
We also studied affect of hyper-parameter m on the perfor-
mances of HSVI1(m). Of course, the smaller m the more
efficient is HSVI1(m). Non surprisingly, HSVI1(1) finds an
optimal solution for all tested domains, the only exception
being tiger, which required HSVI1(7). However, using
small m may lead to erratic performances. For example on
tiger, HSVI1(m) has lower bounds slightly higher than
upper bounds for m ∈ {1, 2, 6}.

Analysis. Clearly, the experimental results support our
theoretical findings. First, they show HSVI1 outperforms
both HSVI2 and HSVI3 mainly because HSVI1 makes use
of a polynomial-time backup operator while its competi-
tors employ exponential ones. Next, HSVI2 and HSVI3
demonstrate faster rates of convergence w.r.t. HSVI1 as
they take full advantage of the generalization capabilities
of the PWLC property of the optimal value function. Un-
fortunately, this advantage does not manifest in the over-
all running time because maintaining—i.e. updating and
pruning—a PWLC representation is prohibitively expensive.
Using the linear representation, HSVI1 trades generaliza-
tion capabilities for efficient backups. Also, HSVI2 outper-
forms HSVI3 in small- and medium-sized domains, as the
enumeration procedures are cheaper than solving MILPs.
Whenever we face large domains, the enumeration is no
longer feasible, but we can still solve MILPs, up to a cer-
tain point, of course. Finally, we notice erratic behaviors
for small hyper-parameters m than the ones necessary to
preserve optimality. We are pursuing our investigations to
understand better how to choose good hyper-parameters in
HSVI1(m) for the problem at hand. To complete the anal-
ysis, we also provided experiments for domains with and
without information sharing, i.e. MDPs and Dec-POMDPs.
Non surprisingly, results show MDPs are much easier than
Dec-POMDPs with one-sidedness, which in turn are much
easier than Dec-POMDPs.

6. Discussion
This paper provides the first theory and algorithms to solve
two-agent Dec-POMDPs with one-sided information shar-

Algorithm t (#it) ῡ0(s0) υ0(s0) gap(s0) size(ῡ) size(υ)
mabc |X| = 4, |U | = 16, |Z| = 16, |O| ≈ 2 · 10173

HSVI1(1) 0.004 (10) 9.2901 9.2901 0.0 20 20
HSVI1(2) 0.008 (18) 9.2901 9.2901 0.0 37 37
HSVI2 0.02 (1) 9.2901 9.29 0.0001 10 11
HSVI3 0.8 (1) 9.2901 9.29 0.0001 10 11
MDP 0.0 – 9.7856 9.7856 0.0 1 1
Dec-POMDP 0.78 – 9.30 9.29 0.1 – –

tiger |X| = 2, |U | = 9, |Z| = 4, |O| ≈ 2.3 · 1034

HSVI1(1) 0.04627 (34) 35.0464 35.185 −0.139 117 117
HSVI1(2) 0.08167 (55) 36.7758 36.8574 −0.082 269 269
HSVI1(3) 0.18503 (123) 38.1152 36.4025 1.7127 622 622
HSVI1(4) 0.32220 (217) 38.1582 35.6555 2.5027 1159 1159
HSVI1(5) 0.85365 (570) 37.6476 35.8861 1.7615 2684 2684
HSVI1(6) 1.53857 (987) 37.4912 37.5 −0.0088 4909 4909
HSVI1(7) 2.3 (1477) 37.5 37.5 0.0 8061 8061
HSVI1(8) 3.12085 (2022) 37.5 37.5 0.0 11171 11171
HSVI1(9) 3.57568 (2333) 37.5 37.5 0.0 12283 12283
HSVI2 491.5 (274) 37.5 37.5 0.0 1090 653
HSVI3 17916 (88) 39.42 37.5 1.9 432 354
MDP 0.0 – 200.0 200.0 0.0 1 1
Dec-POMDP 65.57 – 15.194 15.184 0.01 – –

Grid3x3corners |X| = 81, |U | = 25, |Z| = 81, |O| ≈ 1.3 · 101019

HSVI1(1) 16.8 (71) 4.779 4.751 0.028 1769 1769
HSVI1(2) 50.5533 (218) 4.78459 4.75261 0.03198 5593 5593
HSVI2 — out of memory —
HSVI3 20806 (11) 4.831 4.588 0.243 75 99
MDP 0.02 – 4.8819 4.8819 0.0 1 1
Dec-POMDP 34.42 – 4.69 4.68 0.01 – –

Recycling |X| = 4, |U | = 9, |Z| = 4, |O| ≈ 1014

HSVI1(1) 0.016 (14) 32.1953 32.0743 0.13 83 83
HSVI1(2) 0.056 (36) 32.2636 31.9072 0.3564 273 273
HSVI2 0.81 (49) 32.1893 32.1893 0.0 150 50
HSVI3 212 (20) 32.1893 32.1893 0.0 89 50
MDP 0.0 – 33.8208 33.8208 0.0 1 1
Dec-POMDP 0.52 – 31.873 31.863 0.01 – –

boxPushing |X| = 100, |U | = 16, |Z| = 25, |O| ≈ 10271

HSVI1(1) 1.06659 (48) 228.035 228.035 0.0 367 367
HSVI1(2) 2.00303 (102) 228.032 228.031 0.001 677 677
HSVI1(3) 4.67623 (226) 228.031 228.031 0.0 1269 1269
HSVI2 4883.38 (29) 228.303 228.067 0.236 165 248
HSVI3 18195.7 (7) 228.696 210.155 18.54 52 67
MDP 0.019 – 244.849 244.849 0.0 1 1
Dec-POMDP 293.7 – 223.75 223.74 0.01 – –

Mars |X| = 256, |U | = 36, |Z| = 64, |O| ≈ 2.6 · 10896

HSVI1(1) 34.0906 (64) 26.5991 26.5983 0.0008 557 557
HSVI1(2) 27.8468 (62) 26.5482 26.5482 0.0 543 543
HSVI2 13196.4 (34) 27.4218 26.5723 0.85 135 204
HSVI3 19045.7 (30) 27.4295 26.5545 0.875 121 187
MDP 0.398 – 28.6133 28.6133 0.0 1 1
Dec-POMDP 62.7 – 26.32 26.31 0.01 – –

Table 1. Running time t (in seconds), number of iterations #it,
upper and lower bound values at the initial state, the gap between
bounds, and sizes of upper and lower bounds.

ing optimally. Findings include proofs that (i) a sufficient
statistic for optimal decision making is the belief occupancy
state, (ii) the optimal value function is PWLC in the belief-
occupancy space and linear in a higher-dimensional space,
and (iii) a polynomial-time point-based backup operator
exists. We also present three HSVI variants utilizing these
properties, hence providing the first experimental results on
this family of problems. This paper specializes a previous
work on Dec-POMDPs (Dibangoye et al., 2014b; Dibangoye
& Buffet, 2018) by providing more concise sufficient statis-
tics and efficient backup operators. Besides, it generalizes a
recent work on two-agent Dec-POMDPs with one-sided par-
tial observability (Hadfield-Menell et al., 2016; Malik et al.,
2018)—here, however, we assume both agents have partial
observations about the state of the world. We hope this work
will serve as a theoretical building block for the growing
field of cooperative multi-agent reinforcement learning (Fo-
erster et al., 2018; Rashid et al., 2018; Dibangoye & Buffet,
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2018; Bard et al., 2020).

At the core of most methods in this field is the planner-
centric viewpoint, which allows a central planner to turn
the original problem into an information-state MDP, where
the information state is a partial joint policy (Szer et al.,
2005). Another critical step was the proof that this reformu-
lation allows (i) planning based on sufficient statistics of the
partial joint policies, i.e. history-occupancy states, and (ii)
exploiting the uniform-continuity property of the optimal
value function (Dibangoye et al., 2014b). This paper shows
that improved scalability can be achieved by (i) using the
linearity property of the optimal value function as in (Diban-
goye & Buffet, 2018), (ii) performing local improvements
of this value function as in (Malik et al., 2018), and (iii)
properly selecting the right history length of interest for the
given problem at hand. We are currently investigating the
question of how to take full advantage of the PWLC optimal
value function while still preserving efficient backups. We
shall extend our theory to hierarchical information-sharing
structures—i.e. agent n knows all agent (n-1) knows, agent
(n-1) knows all agent (n-2) knows, and so on—by reducing
them into acyclic structures similarly to topological ordering
approaches (Dibangoye et al., 2008; 2009). Several other
questions are still open, including the ability to apply these
insights to broader settings, e.g. in non-cooperative settings
(Horák et al., 2017; Horák & Bošanskỳ, 2019), or under
incomplete knowledge about the model.

Software and Data
The software and data we used to generate the experi-
ments are available at https://gitlab.inria.fr/jdibango/osis-
dec-pomdps.
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search value iteration for one-sided partially observable
stochastic games. In AAAI, 2017.

Kumar, A., Zilberstein, S., and Toussaint, M. Probabilistic
Inference Techniques for Scalable Multiagent Decision
Making. JAIR, 53:223–270, 2015.

MacDermed, L. C. and Isbell, C. Point Based Value Iteration
with Optimal Belief Compression for Dec-POMDPs. In
NIPS, 2013.

Malik, D., Palaniappan, M., Fisac, J., Hadfield-Menell, D.,
Russell, S., and Dragan, A. An efficient, generalized
Bellman update for cooperative inverse reinforcement
learning. In ICML, 2018.

Nair, R., Varakantham, P., Tambe, M., and Yokoo, M. Net-
worked Distributed POMDPs: A Synthesis of Distributed
Constraint Optimization and POMDPs. In AAAI, 2005.

Nayyar, A., Mahajan, A., and Teneketzis, D. Optimal Con-
trol Strategies in Delayed Sharing Information Structures.
TAC, 56, 2011.

Nayyar, A., Mahajan, A., and Teneketzis, D. Decentralized
stochastic control with partial history sharing: A common
information approach. TAC, 58, 2013.

Oliehoek, F. A. Sufficient Plan-Time Statistics for Decen-
tralized POMDPs. In IJCAI, 2013.

Oliehoek, F. A. and Spaan, M. T. J. Tree-Based Solution
Methods for Multiagent POMDPs with Delayed Commu-
nication. In AAAI, 2012.

Oliehoek, F. A., Spaan, M. T. J., Amato, C., and Whiteson, S.
Incremental Clustering and Expansion for Faster Optimal
Planning in Dec-POMDPs. JAIR, 46, 2013.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G.,
Foerster, J. N., and Whiteson, S. QMIX: monotonic value
function factorisation for deep multi-agent reinforcement
learning. In ICML, 2018.

Seuken, S. and Zilberstein, S. Formal models and algorithms
for decentralized decision making under uncertainty. JAA-
MAS, 17, 2008.

Shani, G., Pineau, J., and Kaplow, R. A survey of point-
based POMDP solvers. JAAMAS, 27, 2013.

Silver, D. and Veness, J. Monte-Carlo Planning in Large
POMDPs. In NIPS, 2010.

Smith, T. Probabilistic Planning for Robotic Exploration.
PhD thesis, The Robotics Institute, Carnegie Mellon Uni-
versity, 2007.

Szer, D., Charpillet, F., and Zilberstein, S. MAA*: A
Heuristic Search Algorithm for Solving Decentralized
POMDPs. In UAI, 2005.


