
Supplement for Class-Weighted Classification: Trade-offs and Robust
Approaches

A. Organization
Our appendices contain proofs, all of which are omitted from the main text, and additional details on the weighting approach
to imbalanced classification. In Appendix B, we prove our results for plug-in classification. Additionally, we show that a
threshold-shifted version of Tsybakov’s noise condition implies precise rates for the convergence of expected excess risk.
Finally, we briefly discuss the universality of weighting, i.e., the fact that choosing the correct weighting is often the means
to optimizing other classification metrics, for a class of classification metrics.

In Appendix C, we show a result analogous to Proposition 3 for empirical risk minimization. However, the result is less
illuminating, since it depends on the optimal classifiers f∗q f

∗
q′ for weights q and q′ within the class F , which is difficult to

analyze more precisely in any generality.

In Appendix D, we prove our results for robust weighting. This includes both the convergence and duality results. In
Appendix E, we prove the analog of Theorem 1 for the conditional sampling model. The only difference to observe is that
the bounded differences inequality is used with respect to a different number of variables, which leads to a slightly stronger
bound.

In Appendix F, we discuss gradient descent-ascent, which is a standard algorithm for solving robust optimization problems.
This may be used in cases where the uncertainty set Q does not lead to LCVaR or LHCVaR. In Appendix G and Appendix H,
we provide technical and standard lemmas respectively.

Finally, we include additional experiment details, and an algorithm for analytically deriving dual variables in the empirical
LCVaR and LHCVaR formulations in Appendix I.

B. Plug-in Classification Details
In this appendix, we provide additional details surrounding plug-in classification. We first start with the proofs of results
from the main text, and then we provide more concrete results based on an additional assumption of that gives us faster rates
of convergence. Finally, we provide details on the universality of weighting.

For simplicity, we assume that our density estimator η̂ is a local polynomial estimator (Stone, 1982), but the properties that
the estimator must have for the following proofs to succeed can also be satisfied by other nonparametric estimators such as
kernelized regression (Krzyzak & Pawlak, 1987), and nearest-neighbors regression (Györfi, 1981).

B.1. Proofs

Proof of Lemma 1. By the definition of the q-weighted risk and the tower property, we have

R01,q(f) = E[qYRY (f)]

= E [q0(1− η(X))E[1 {f(X) = 1} |Y = 0] + q1η(X)E[1 {f(X) = 0} |Y = 1]]

=E [q0(1− η(X))1 {f(X) = 1}+ q1η(X)1 {f(X) = 0}] .

By inspection, we observe that the f∗ minimizing the q-risk satisfies

f∗(x) =

{
1 q0(1− η(x)) < q1η(x)

0 q0(1− η(x)) > q1η(x).
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When q0(1− η(x)) = q1η(x), we note that the decision may be arbitrary because it does not affect the risk. So, by simple
algebraic manipulation, we have

f∗(x) = 1

{
η(x) ≥ q0

q0 + q1

}
,

which completes the proof.

Now, we turn to Proposition 1, Proposition 2, and Proposition 3. Our proofs rely on the following lemma of (Yang, 1999).
First, we introduce a few additional definitions. Denote the ε-entropy of Σ with respect to the Lp norm for 1 ≤ p ≤ ∞ by
H(ε,Σ, Lp). We define the norm

‖η̂ − η‖L1(PX) =

∫
|η(x)− η̂(x)| dPX

.

Lemma 1 (Theorem 1 of Yang 1999). Let η be an element of Σ where Σ is a class of functions from Rd to [0, 1]. Suppose
the ε-entropy satisfies

H(ε,Σ, Lp) ≤ Cε−ρ,

where C > 0, ρ > 0. Then the minimax upper bound on the mean convergence rate of any regression estimator η̂ is

min
η̂

max
η∈Σ

E
[
‖η − η̂‖L1(PX)

]
≤ O

(
n−

1
2+ρ

)
,

where the expectation is taken over the samples for estimating η̂.

The upper bound converges at a rate of O
(
n−1/(2+ρ)

)
where ρ is a smoothness parameter for η, with standard assumptions

on the function class of η. For the class of β-Hölder functions, ρ = β/d, which is our setting of interest.

Proof of Proposition 1. We start by bounding the excess q-risk for a classifier f by

Eq(f) = Rq(f)−Rq(f∗q )

= (q0 + q1)

∫ ∣∣∣∣η(x)− q0

q0 + q1

∣∣∣∣1{f(x) 6= f∗q (x)
}
dPX

≤ (q0 + q1)

∫
|η(x)− η̂(x)| dPX ,

where the upper bound follows when |η(x) − q0/(q0 + q1)| ≤ |η(x) − η̂(x)| when f(x) 6= f∗q (x). Finally, applying
Lemma 1 for β-Hölder functions as noted above completes the proof.

Proof of Proposition 2. The proposition follows from basic algebraic manipulations and one common observation in
nonparametric classification. We have

(IE) = E
[
Rq′(f

∗
q′(X))−Rq′(f∗q (X))

]
=

∫
|q′0(1− η(x)) + q′1η(x)| dPX1

{
f∗q′(x) 6= f∗q (x)

}
= (q′0 + q′1)

∫
|η(x)− tq′ |1

{
f∗q′(x) 6= f∗q (x)

}
dPX

≤ (q′0 + q′1) |tq − tq′ |P
(
f∗q′(X) 6= f∗q (X)

)
,

where in the inequality we use the fact that if f∗q′(X) 6= f∗q (X) then η(X) must be in [tq,q′ , tq,q′ ]. Thus, we have
|η(x)− tq′ | ≤ |tq,q′ − tq,q′ | = |tq − tq′ | .
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Proof of Proposition 3. Recall that the expected estimation error is

(EE) = E
[
Rq′(f̂q)−Rq′(f∗q )

]
We can upper bound the term inside the expectation by

R′q(f̂q)−Rq′(f∗q ) =

∫
q′0(1− η(x))1{f̂q(x) = 1}+ q′1η(x)1{f̂q(x) = 0}dPX

−
∫
q′0(1− η(x))1{f∗q (x) = 1}+ q′1η(x)1{f∗q (x) = 0}dPX

=

∫
(q′0(1− η(x))− q′1η(x))1{f̂q(x) = 1, f∗q (x) = 0}dPX

+ (q′1η(x)− q′0(1− η(x)))

∫
1{f̂q(x) = 0, f∗q (x) = 1}dPX

= (q′0 + q′1)

∫ ∣∣∣∣η(x)− q′0
q′0 + q′1

∣∣∣∣1{f̂q(x) 6= f∗q (x)}dPX

≤ (q′0 + q′1)

∫
(|η(x)− tq|+ |tq′ − tq|)1{f̂q(x) 6= f∗q (x)}dPX ,

where we use the triangle inequality in the final line. Next, using the fact that |η(x)−tq| ≤ |η(x)−η̂(x)|when f(x) 6= f∗q (x),
we have

R′q(f̂q)−Rq′(f∗q ) ≤ (q′0 + q′1)

(∫
|η(x)− tq|1

{
f̂q(x) 6= f∗q (x)

}
dPX

+ |tq′ − tq|P
(
f̂q(x) 6= f∗q (x)

))
≤ (q′0 + q′1)

(∫
|η(x)− η̂(x)| dPX + |tq′ − tq|P

(
f̂q(x) 6= f∗q (x)

))
Thus, we obtain the upper bound

(EE) ≤ (q′0 + q′1)

(
E
[∫
|η(x)− η̂(x)| dPX

]
+ |tq′ − tq|E

[
P
(
f̂q(x) 6= f∗q (x)

)])
Therefore we have completed the proof. Applying Lemma 1 to the first term also proves Corollary 1.

B.2. Shifted Margin Assumption

An important tool in nonparametric classification is the Tsybakov margin condition.

Definition 1. A distribution PX,Y satisfies the (α,C)-margin condition if for all t > 0, we have

P
(

0 ≤
∣∣∣∣η(X)− 1

2

∣∣∣∣ ≤ t) ≤ Ctα.
Subsequent works (Audibert & Tsybakov, 2007; Chaudhuri & Dasgupta, 2014) leverage this assumption to provide fast,
explicit rates of convergence for expected risk. The margin condition is naturally suited to standard plug-in classification
because the decision threshold is 1/2; for weighted plug-in classification, we need a shifted margin condition.

Definition 2. A distribution PX,Y satisfies the (q, α, C)-margin condition if for all t > 0, we have

P (0 ≤ |η(x)− tq| ≤ t) ≤ Ctα.
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Using the shifted margin condition, we can obtain better results than we presented in the main paper. However, the shifted
margin condition may be be less interpretable than the original margin condition. Intuitively, the original margin condition
says that there is very little probability mass where distinguishing between Y = 0 and Y = 1 is difficult, i.e., near
η(X) = 1/2. For other tq , the decision may not be difficult in that tq may be far from 1/2, but we would still require little
mass near this point.
Proposition 1. Suppose the distribution PX,Y satisfies the (q, α, C)-margin condition and X has a density that is lower
bounded by some constant µmin on its support. Additionally, suppose that η is β-Hölder. Then, the excess expected q′-risk
of f̂q satisfies the bound

EEq′(f̂q) ≤ (q′0 + q′1)

(
O

(
log n

n

) β
2β+d

+ |tq′ − tq|O
(

log n

n

) αβ
2β+d

)
+ (IE)

Before proving this proposition, we prove a helpful lemma that leverages the shifted margin condition, similar to one from
(Audibert & Tsybakov, 2007).
Lemma 2. For a fixed density estimate η̂, if PX,Y satisfies the (q, α, C)-margin condition, then following upper bound is
always true:

P
(
f̂q(x) 6= f∗q (x), η(x) 6= tq

)
≤ C ‖η − η̂‖α∞ .

Proof. We use a simple upper bound on the error probability event and apply the margin condition to obtain

P
(
f̂q(x) 6= f∗q (x), η(x) 6= tq)

)
≤ P (0 ≤ |η(x)− tq| ≤ |η(x)− η̂(x)|)

≤ P (0 ≤ |η(x)− tq| ≤ ‖η − η̂‖∞)

≤ C0 ‖η − η̂‖α∞ .

This completes the proof.

Since, by Lemma 2, we have proved an upper bound in terms of ‖η − η̂‖α∞, we now cite an upper bound on that quantity
that is a property of regression estimator.
Lemma 3 (Theorem 1 of Stone 1982). Let η̂ be a local polynomial regression estimator, and suppose X has a density that
is lower bounded by some constant µmin > 0 on its support. Then, we have the following upper bound:

E [‖η − η̂‖α∞] ≤ C
(

log n

n

) αβ
2β+d

. (1)

The above bound is the optimal rate of uniform convergence for nonparametric estimators under the regularity conditions
shown here, and local polynomial regression achieves this optimal rate (Stone, 1982).

Proof of Proposition 1. It suffices to prove an upper bound on the estimation error. We have

(EE) ≤ (q′0 + q′1)

(
E
[∫
|η(x)− η̂(x)| dPX

]
+ |tq′ − tq|E

[
P(f̂q(x) 6= f∗q (x))

])
by the final equation of the proof of Proposition 3. Next, we use the fact that for all x in X we have η(x)− η̂(x) ≤ ‖η − η̂‖∞
and Lemma 2 to obtain

(EE) ≤ (q′0 + q′1) (E [‖η − η̂‖∞] + |tq′ − tq|C0E [‖η − η̂‖α∞])

Finally, we apply Lemma 3 to obtain

(EE) ≤ (q′0 + q′1)

(
C

(
log n

n

) β
2β+d

+ |tq′ − tq|C0C

(
log n

n

) αβ
2β+d

)
,

which completes the proof.
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B.3. Universality of Weighting

Since we may be interested in performance in error metrics other than risk, we discuss other classification metrics here. In
particular, we simply show that weighting is “universal” in that it can be used to optimize these other classification metrics.
The reason for this is that, in plug-in classification, optimizing many classification metrics is equivalent to altering the
threshold for the classification, and this has been observed to lead to the optimal decision rule in many cases (Lewis, 1995;
Menon et al., 2013; Narasimhan et al., 2014; Koyejo et al., 2014). We examine the specific case of metrics considered in
(Koyejo et al., 2014).

Definition 3. Let f be a classifier over X . Define the true positive, false negative, false positive, and true negative
proportions to be

TP = P(Y = 1, f(X) = 1) FP = P(Y = 0, f(X) = 1)

FN = P(Y = 1, f(X) = 0) TN = P(Y = 0, f(X) = 0).

A linear-fractional metric is defined as

L(f, PX , η) =
a0 + a11TP + a10FP + a01FN + a00TN
b0 + b11TP + b10FP + b01FN + b00TN

for constants a0, a11, a10, a01, a00, b0, b11, b10, b01, b00.

(Koyejo et al., 2014) showed that the optimal classifier for any linear-fractional metric is simply a threshold classifier.
Specifically, the following theorem is true.

Theorem 1 (Koyejo et al. 2014). Let L be a linear-fractional metric, and let PX be absolutely continuous with respect to
the dominating measure ν on X . Define

L∗ = max
f
L(f, PX , η)

and

δ∗ =
(b10 − b00)L∗ − a10 + a00

a11 − a10 − a01 + a00 − (b11 − b10 − b01 + b00)L∗
.

Then, the optimal classifier for L is f∗L(x) = 1 {η(x) > δ∗} if

a11 − a10 − a01 + a00 − (b11 − b10 − b01 + b00)L∗ > 0

and f∗L(x) = 1 {η(x) < δ∗} otherwise.

Corollary 1. We note by Proposition 1 that for an metric L where

a11 − a10 − a01 + a00 − (b11 − b10 − b01 + b00)L∗ > 0,

if we set define q to be

q0 = (b10 − b00)L∗ − a10 + a00

q1 = (b01 − b11)L∗ − a01 + a11,

then f∗q = f∗L.

Performance metrics that are used in evaluating classifiers such as F1 and arithmetic mean satisfy the the conditions of
Corollary 1. Thus, we can reformulate optimization of a classifier in these error metrics as a specific weighting the risk.

C. The Fundamental Trade-off in Empirical Risk Minimization
Part of our motivation for the robust weighted problem is the fundamental trade-off under different weightings q and q′. We
demonstrated this for plug-in classification in the main text because it elucidates the nature of the problem naturally via
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thresholds, but we should also convince ourselves that this is not simply a quirk of plug-in classification. To this end, we
provide a brief analysis for empirical risk minimization.

Let f̂q and f∗q denote the empirical risk minimizer and risk minimizer within F . Define the excess risk to be the difference
between R(f̂q) and Rq(f∗q ). Suppose that we have a uniform convergence guarantee

Rq(f)− R̂q(f) ≤ O
(
n−

1
2

)
for all f in F . Then, a standard chaining argument reveals that the excess risk decay rate satisfies

Eq(f̂q) = Rq(f̂q)−R(f∗q )

= Rq(f̂q)− R̂q(f̂q) + R̂q(f̂q)− R̂q(f∗q ) + R̂q(f
∗
q )−R(f∗q )

≤ O
(
n−

1
2

)
+ 0 +O

(
n−

1
2

)
= O

(
n−

1
2

)
,

where in the inequality we used our uniform convergence guarantee twice and the fact that f̂q is the empirical q-risk
minimizer. This mirrors the case of q-weighted plug-in estimation in that the excess q-risk still converges to 0 at the standard
rate.

On the other hand, we obtain a constant term when performing a similar analysis for Eq′(f̂q). Specifically, we get

Eq′(f̂q) = Rq′(f̂q)−Rq′(f∗q )

= Rq(f̂q)−Rq(f∗q ) +Rq′(f̂q)−Rq(f̂q) +Rq(f
∗
q )−Rq′(f∗q′)

≤ O
(
n−

1
2

)
+Rq′(f̂q)−Rq(f̂q) +Rq(f

∗
q )−Rq′(f∗q′).

Now, using the prior convergence result for the empirical risk minimizers, we obtain

Eq′(f̂q) ≤ Rq′(f̂q)−Rq(f̂q) +Rq(f
∗
q )−Rq′(f∗q′) +O

(
n−

1
2

)
≤ Rq′(f∗q )−Rq(f∗q ) +Rq(f

∗
q )−Rq′(f∗q′) +O

(
n−

1
2

)
= Rq′(f

∗
q )−Rq′(f∗q′)︸ ︷︷ ︸

A

+O
(
n−

1
2

)
.

Since f∗q′ minimizes Rq′ and f∗q minimizes Rq, we see that A ≥ 0. Thus, even though there is not a clear threshold
interpretation, we do see that there is irreducible error that arises in the empirical risk minimization setting as well.

D. Robust Weighting Proofs
In this section, we prove our results for robust weighting. We start with our generalization and excess risk bounds.

Proof of Theorem 1. Define the risk Ri,1 as

R̂i,1(f) = p̂iR̂i(f) =
1

n

n∑
j=1

`mar(f, zj)1 {yj = i} .

Let Ri,1(f) denote ER̂i,1(f). Note that we have

Ri,1(f) =
1

n

n∑
j=1

E [`mar(f, zj)1 {yj = i}] =
1

n

n∑
j=1

piE [`mar(f, zj)|yj = i] = piRi(f).
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By definition, we have

RQ(f) = sup
q∈Q

k∑
i=1

qipiRi(f) = sup
q∈Q

k∑
i=1

qiRi,1(f),

and so for our purposes, it suffices to analyze R̂i,1. Define the class

Fi,1 = {`mar(f, ·)1 {yj = i} : f ∈ F} .

By Lemma 8, we have with probability at least 1− δ/k that

Ri,1(f) ≤ R̂i,1(f) + 2Rn(`mar ◦ Fi,1) +

√
log k

δ

2n

for each f in F . So, it suffices to analyze the Rademacher complexity term. Let σj be iid Rademacher random variables.
We condition on the value of y1, . . . , yn. LetHY be the sigma-field σ(y1, . . . , yn). Suppose without loss of generality that
under the conditioning, we have y1 = · · · = yNi = i and yj 6= i for all j > Ni. Then, we have

Rn(Fi,1) =
1

n
EE

[
sup
f∈F

n∑
i=1

σj`mar(f, zj)1{yj = i}
∣∣∣∣HY

]

=
1

n
EE

sup
f∈F

Ni∑
j=1

σj`mar(f, zj)

∣∣∣∣HY


= E
[
Ni
n
R̂Ni(`mar ◦ F)

]
.

By the proof of Lemma 10, we have

R̂Ni(`mar ◦ F) ≤ 2kR̂Ni(Π1(F)).

Putting everything together completes the proof of the generalization bound; now we turn to the excess (F , q)-risk bound.

Recall that f̂Q is the empirical Q-risk minimizer and f∗Q is the population Q-risk minimizer. By Lemma 9, we have with
probability at least 1− δ/k that

Ri,1(f̂Q) ≤ R̂i,1(f̂Q) + 4Rn(`mar ◦ Fi,1) +

√
log k

δ

2n
.

Summing, we have

Rq(f̂Q) =

k∑
i=1

qipiRi(f̂Q) =

k∑
i=1

qi(Ri,1f̂Q)

≤
k∑
i=1

qi

R̂i,1(f̂Q) + 4Rn(`mar ◦ Fi,1) +

√
log k

δ

2n


≤ R̂q(f̂Q) +

k∑
i=1

qipi

 4

pi
Rn(`mar ◦ Fi,1) +

√
log k

δ

2p2
in

 .

Using the proof of Lemma 10 as before, we then obtain

Rq(f̂Q) ≤ R̂q(f̂Q) +

k∑
i=1

qipi

8kE
[
Ni
pin

R̂Ni(Π1(F))

]
+

√
log k

δ

2p2
in

 .
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Thus, by taking supremums, we observe that

RQ(f̂Q) ≤ R̂Q(f̂Q) + sup
q∈Q

k∑
i=1

qipi

8kE
[
Ni
pin

R̂Ni(Π1(F))

]
+

√
log k

δ

2p2
in

 . (2)

Similarly, by Lemma 9, we have

−Ri,1(f∗Q) ≤ −R̂i,1(f∗Q) + 4Rn(`mar ◦ Fi,1) +

√
log k

δ

2n
.

Summing as before and using the proof of Lemma 10, we have

−Rq(f∗Q) ≤ −R̂q(f∗Q) +

k∑
i=1

qipi

8kE
[
Ni
pin

R̂Ni(Π1(F))

]
+

√
log k

δ

2p2
in

 .

Taking the infimum and using Lemma 7, we have

−RQ(f∗Q) ≤ −R̂Q(f∗Q) + sup
q∈Q

k∑
i=1

qipi

8kE
[
Ni
pin

R̂Ni(Π1(F))

]
+

√
log k

δ

2p2
in

 . (3)

Summing equation (2) and equation (3) and noting that f̂Q minimizes the empirical robust risk, we have

EQ(F) = RQ(f̂Q)−RQ(f∗Q) ≤ 2 sup
q∈Q

k∑
i=1

qipi

8kE
[
Ni
pin

R̂Ni(Π1(F))

]
+

√
log k

δ

2p2
in

 ,

and this completes the proof.

Proof of Corollary 2. The only thing we need to do here is calculate the Rademacher complexity term of Theorem 1. Using
our assumption and Jensen’s inequality, we have

E
[
Ni
n
R̂Ni(Π1(F))

]
≤ C(F)

n
E
[√

Ni

]
≤ C(F)

n
E[Ni]

1/2 = C(F)

√
pi
n
.

This completes the proof of the corollary.

Next, we prove our duality results. We start with LCVaR.

Proof of Proposition 4. The Lagrangian of LCVaR is

L(q, λ) = E[qYRY (f)] + λ(1− E[qY ]) = E [qY (RY (f)− λ)] + λ.

Our goal is to use the minimax theorem, which we state as Theorem 3, to switch the infimum over λ and the supremum over
q. First, we do not need the minimax theorem to obtain

inf
λ∈R

L(q, λ) ≤ inf
λ∈R

sup
q:q(·)∈[0,α−1]

E [qY (RY (f)− λ)] + λ = inf
λ∈R

{
E
[
α−1E(RY (f)− λ)+ + λ

]}
, (4)

since the inequality follows the trivial direction of the minimax theorem and we can solve the inner maximization problem
by setting

qi =

{
0 Ri(f)− λ < 0

α−1 Ri(f)− λ ≥ 0.
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Our present goal is to verify the conditions of the minimax theorem. First, we note that λ 7→ L(q, λ) is linear and therefore
convex for any q, and similarly, q 7→ L(q, λ) is linear and therefore concave for any q. Additionally, the domain of q, in this
case [0, α−1]k, is compact and convex by definition; so we only need to prove that it suffices to consider λ on a compact,
convex domain.

Denote the right hand side of equation (4) by infλ∈RD(λ). Let Ff (λ) denote the cumulative distribution function of RY at
λ. By Lemma 5, the derivative of D(λ) is given by

D′(λ) = 1 + α−1(Ff (λ)− 1),

when Ff is continuous at λ. If it is not, then the same result holds for the left and right limits. Thus by considering signs of
the derivative, we see that λ achieves minimizes D(λ) for a value in the interval [λ∗(f), λ∗(f)] where

λ∗(f) = inf{t : Ff (t) ≥ 1− α} and λ∗(f) = sup{t : Ff (t) ≤ 1− α}.

Note further that when F is compact in, say, sup norm, then we also have finite λ∗ = inff∈F t∗(λ) and λ∗ = inff∈F t
∗(λ).

In any case, we see that it suffices to define λ on a compact set Λ = [λ∗, λ
∗], and so we may assume without loss of

generality that the domain of λ is compact.

This verifies the conditions of the minimax theorem, and so we have

LCVaRα(f) = inf
λ∈R

sup
q:q(·)∈[0,α−1]

E [qY (RY (f)− λ)] + λ = inf
λ∈R

{
E
[
α−1E(RY (f)− λ)+ + λ

]}
,

which completes the proof.

Next, we consider LHCVaR.

Proof of Proposition 5. The proof is similar to that of Proposition 4. The Lagrangian of LHCVaR is

L(q, λ) = E[qYRY (f)] + λ (1− E[qY ]) = E [qY (RY (f)− λ)] + λ.

Next, by the trivial direction of the minimax theorem, we have

LHCVaRα(f) ≤ inf
λ∈R

sup
q:qY ∈[0,α−1

Y ]

L(q, λ) = inf
λ∈R

E
[
α−1
Y (RY (f)− λ)+

]
+ λ. (5)

So, now our goal is to verify the conditions of the minimax theorem. As with LCVaR, the Lagrangian L is linear and
therefore concave in q; is linear and therefore convex in λ; and is defined over a compact domain of values of q given by
[0, α−1]k. Thus, the only difficulty, as with LCVaR, is showing that it suffices to define λ over a compact interval. To this
end, define the right hand side of equation (5) to be infλ∈RH(λ). It suffices to show that D(λ) achieves its infimum on a
closed interval, in which case we can restrict the domain of λ to this compact, convex set.

To prove such an interval exists, we wish to show that there exist constants λ∗ and λ∗ such that H is decreasing for all
λ < λ∗ and increasing for all λ > λ∗. By Lemma 6, we see that the derivative of H is

H ′(λ) = 1− E[α−1
Y 1 {RY (f) > λ}] = 1−

k∑
i=1

α−1
i pi1 {Ri(f) > λ}

when H ′ exists; otherwise the result holds for the left and right derivatives. Let λ∗(f) = mini=1,...,k Ri(f). Then, for
λ ≤ λ∗(f), we have

H ′(λ) = 1−
k∑
i=1

α−1
i pi ≤ 0.

Next, pick λ∗(f) = maxi=1,...,k Ri(f) + 1. Then, for all λ ≥ λ∗(f), we have

H ′(λ) = 1 ≥ 0.

If ` is continuous, then each Ri(f) is continuous in f . Moreover, when F is compact on X in the supremum norm, then we
can define finite constants λ∗ = inff∈F λ∗(f) and λ∗(f) = supf∈F λ

∗(f).

Thus, we may restrict the domain of λ to [λ∗, λ
∗] without loss of generality. The minimax theorem now implies that

equation (5) holds with equality, which completes the proof.
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E. Results for the Conditional Sampling Model
Now, we present the alternative result for the conditional sampling model. Recall that ni is the number of samples of class i,
which is assumed to be fixed.

Theorem 2. Let ` be the multiclass margin loss. With probability at least 1− δ, for every f in F we have

RQ ≤ max
q∈Q

R̂q(f) +

k∑
i=1

qip̂i

2kRni(F) +

√
log k

δ

2ni

 .

Proof. The proof is similar to that of (Cao et al., 2019). We apply Lemma 8 and Lemma 10 to obtain

Ri(f) ≤ R̂i(f) + 2kRni(F) +

√
log k

δ

2ni
.

Multiplying by qip̂i, summing over i, and taking a supremum over Q completes the proof.

F. Gradient Descent-Ascent
In general, the robust classification problem is a saddle-point problem. For our purposes, define a saddle-point problem to
be an optimization problem of the form

inf
a∈A

sup
b∈B

f(a, b). (6)

One of the seminal results in game theory is that the minimax problem is equivalent to the maximin problem.

Theorem 3 (minimax theorem). Let A and B be compact convex sets. Let f : A × B → R be a function such that
a 7→ f(a, b) is convex and b 7→ f(a, b) is concave. Then, we have

inf
a∈A

sup
b∈B

f(a, b) = sup
b∈B

inf
a∈A

f(a, b).

Algorithm 1: Online Gradient Descent
Input :Convex domain A, a1 ∈ A, step sizes ηt, number of rounds T
for t = 1, . . . , T do

Play at and observe cost ft(at).
Update and project

xt+1 = at − ηt∇ft(at)
at+1 = ΠA(xt+1).

end
Output :The average iterate āT = 1

T

∑T
t=1 at.

Lemma 4 (Theorem 3.1 of Hazan 2016). Let f1, . . . , fT : A → R be a sequence of L-Lipschitz convex functions. If the
step size for online gradient descent is chosen to be

ηt =
D

L
√
t
,

then we have
T∑
t=1

ft(at)− min
a∗∈A

T∑
t=1

ft(a
∗) ≤ 3

2
DL
√
T .
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Algorithm 2: Gradient Descent-Ascent
Input :Convex-concave function f , step sizes ηa,t and ηb,t, number of rounds T
for t = 1, . . . , T do

Play (at, bt) and observe cost f(at, bt).
Update and project

xt+1 = at − ηt∇af(at, bt)

at+1 = ΠA(xt+1).

Update and project

yt+1 = bt + ηt∇bf(at, bt)

bt+1 = ΠA(yt+1).

end
Output :The average iterates āT = 1

T

∑T
t=1 at and b̄T = 1

T

∑T
t=1 bt.

Now we return to the saddle-point problem. We give the gradient descent-ascent algorithm in Algorithm 2 and the
convergence result in Proposition 2.

Proposition 2. Let A and B be convex, compact sets. Suppose that A has diameter Da and B has diameter Db. Let
f : A× B → R be convex-concave, La-Lipschitz in its first argument, and Lb-Lipschitz in its second argument. Let (a∗, b∗)
denote the solution to the saddle-point problem of equation (6). If (āT , b̄T ) is the output of Algorithm 2, then we have

f(a∗, b∗)− 3(LaDa + LbDb)

2
√
T

≤ f(āT , b̄T ) ≤ f(a∗, b∗) +
3(LaDa + LbDb)

2
√
T

.

First, we want to use a lemma from online convex optimization. For this, we also state the standard online gradient descent
algorithm. Here, we use ΠA to denote projection onto the set A.

Proof. The proof is fairly straightforward from pre-existing results on online gradient descent; so we state it here. We start
first with the upper bound. Define the “regret” to be

RT =

T∑
t=1

[f(at, bt)− f(a∗, b∗)]

where (a∗, b∗) is a solution to the saddle-point problem. Then, we have the decomposition

RT =

T∑
t=1

[f(at, bt)− f(a∗, bt)] +

T∑
t=1

[f(a∗, bt)− f(a∗, b∗)] ≤ 3

2
LaDa

√
T + 0, (7)

where the inequality follows from applying Lemma 4 and noting that the second summand is nonpositive by the definition
of b∗. Similarly, we have

−RT =

T∑
t=1

[f(a∗, b∗)− f(at, bt)] +

T∑
t=1

[f(at, bt)− f(at, bt)] ≤ 0 +
3

2
LbDb

√
T . (8)
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So, now we consider the averaged iterates. We have

f(āT , b̄T ) ≤ max
b∈B

f(āT , b)

≤ 1

T
max
b∈B

T∑
t=1

f(at, b)

= f(a∗, b∗) +
1

T
max
b∈B

T∑
t=1

[f(at, b)− f(at, bt)] +
1

T

T∑
t=1

[f(at, bt)− f(a∗, b∗)]

≤ f(a∗, b∗) +
3LbDb

2
√
T

+
3LaDa

2
√
T

.

Note that the second inequality is due to convexity, and the third is due to Lemma 4 and equation (7).

Similarly, we have

f(āT , b̄T ) ≥ min
a∈A

f(a, b̄T )

≥ 1

T
min
a∈A

T∑
t=1

f(a, bt)

= f(a∗, b∗) +
1

T
min
a∈A

T∑
t=1

[f(a, bt)− f(at, bt)] +
1

T

T∑
t=1

[f(at, bt)− f(a∗, b∗)]

≥ f(a∗, b∗)− 3LaDa

2
√
T
− 3LbDb

2
√
T
.

The second inequality follows from concavity, and the final inequality is a result of Lemma 4 applied to the sequence at and
equation (8). This completes the proof.

G. Additional Lemmas
Lemma 5. Define D(λ) = α−1E(RY (f) − λ)+ + λ, and let Ff denote the cumulative distribution function of RY (f).
Then, we have

D′(λ) = 1 + α−1(Ff (λ)− 1).

Proof. We compute the derivative directly. We obtain

D′(λ) = 1 + α−1 lim
ε→0

1

ε
{E [(RY (f)− λ− ε)+ − (RY (f)− λ)+]}

= 1 + α−1 lim
ε→0

1

ε
{E [−ε1 {RY (f)− λ > 0}]}

= 1− α−1E1 {RY (f) > λ}
= 1 + α−1(Ff (λ)− 1).

This completes the proof.

Lemma 6. Define H(λ) = E
[
α−1(RY − λ)+

]
+ λ. Then, the derivative of H(λ) is

H ′(λ) = 1− E
[
α−1
Y 1 {RY (f) > λ}

]
.
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Proof. We again compute directly, obtaining

H ′(λ) = 1 + lim
ε→0

1

ε
E
[
α−1
Y (RY (f)− λ− ε)+ − α−1

Y (RY (f)− λ)+

]
= 1 + lim

ε→0

1

ε
E
[
α−1
Y (−ε)1 {RY (f) > λ}

]
= 1− E

[
α−1
Y 1 {RY (f) > λ}

]
,

as desired.

Lemma 7. We have the inequality

inf
q∈Q
{A(q) +B(q)} ≤ inf

q∈Q
A(q) + sup

q∈Q
B(q).

Proof. We have the inequality A(q) +B(q) ≤ A(q) + supq′∈QB(q′), and taking infimums completes the proof.

H. Standard Lemmas
Lemma 8 (Theorem 3.1 of Mohri et al. 2012). Let G be a family of functions mapping from R to [0, 1]. Then for δ > 0 and
all g in G, with probability at least 1− δ, we have

Eg(Z) ≤ 1

n

n∑
i=1

g(Zi) + 2Rn(G) +

√
log 1

δ

2n
.

For our excess (F , q)-risk bounds, we also use a slight variant, the proof of which is nearly identical to that of Lemma 8.

Lemma 9. Let G be a family of functions mapping from R to [0, 1]. Then for δ > 0 and all g in G, with probability at least
1− δ, we have ∣∣∣∣∣Eg(Z)− 1

n

n∑
i=1

g(Zi)

∣∣∣∣∣ ≤ 4Rn(G) +

√
log 1

δ

2n
.

The following learning bound handles the multi-class margin loss more effectively in the number of classes (Kuznetsov
et al., 2015).

Lemma 10. Let F be a set of f : X × Y → R. Recall that

Π1(F) = {x 7→ fy(x) : y ∈ Y, f ∈ F} .

Then, under the margin loss, we have the bound

R(f) ≤ R̂(f) + 4kRn(Π1(F)) +

√
log 1

δ

2n

for all f in F with probability at least 1− δ.

I. Additional Experiment Details
For all methods and datasets, we optimized a logistic regression model with gradient descent over the entire data.

For all datasets, we chose a learning rate of 0.01 that was linearly annealed to 0.0001 over 2000 epochs.
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I.1. Optimizing LCVaR/LHCVaR formulation

Note that in the formulation for LHCVaR described in Eq. (3), despite its convexity, the optimization is over a non-smooth
loss. Thus, λ can be explicitly calculated given the classes of each risk. Let R(i) be the ith largest class risk.

λ = min

R(i) : i ∈ [k],

i∑
j=1

p̂iα
−1
i ≤ 1

 ∪ {0}


An algorithm for computing this can be akin to water filling in order from largest to smallest class risk. When optimizing by
some form of gradient descent the parameters of the classifier, this analytic form of the LHCVaR formulation can be quickly
computed and avoid gradient computations on λ itself. Empirically, we used this formulation to speed up our experiments
and leads to faster convergence than performing gradient descent on λ in addition to the model parameters. This algorithm
is also applicable when optimizing LCVaR as well.
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