
A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation

A. Proof of Supporting Lemmas
In this section, we present the omitted proof of the technical lemmas used in out main theorems.

A.1. Proof of Lemma 6.1

Before we prove the error bound for the local linearization, we first present some useful lemmas from recent studies of
overparameterized deep neural networks. Note that in the following lemmas, {Ci}i=1,... are universal constants that are
independent of problem parameters such as d,✓,m, L and their values can be different in different contexts. The first lemma
states the uniform upper bound for the gradient of the deep neural network. Note that by definition, our parameter ✓ is a long
vector containing the concatenation of the vectorization of all the weight matrices. Correspondingly, the gradient r✓f(✓;x)
is also a long vector.
Lemma A.1 (Lemma B.3 in Cao & Gu (2019b)). Let ✓ 2 B(✓0,!) with the radius satisfying C1d

3/2
L
�1

m
�3/2 !

C2L
�6(logm)�3/2. Then for all unit vectors in Rd, i.e., x 2 S

d�1, the gradient of the neural network f defined in (4.2) is
bounded as kr✓f(✓;x)k2 C3

p
m with probability at least 1� L

2 exp(�C4m!
2/3

L).

The second lemma provides the perturbation bound for the gradient of the neural network function. Note that the original
theorem holds for any fixed d dimensional unit vector x. However, due to the choice of ! and its dependency on m and d, it
is easy to modify the results to hold for all x 2 S

d�1.
Lemma A.2 (Theorem 5 in Allen-Zhu et al. (2019b)). Let ✓ 2 B(✓0,!) with the radius satisfying

C1d
3/2

L
�3/2

m
�3/2(logm)�3/2 ! C2L

�9/2(logm)�3
.

Then for all x 2 S
d�1, with probability at least 1� exp(�C3m!

2/3
L) over the randomness of ✓0, it holds that

kr✓f(✓;x)�r✓f(✓0;x)k2 C4!
1/3

L
3
p

logmkr✓f(✓0;x)k2.

Now we are ready to bound the linearization error.

Proof of Lemma 6.1. Recall the definition of gt(✓t) and mt(✓t) in (4.5) and (6.2) respectively. We have

kgt(✓t)�mt(✓t)k2 =
��r✓f(✓t; st, at)�(st, at, st+1;✓t)�r✓

bf(✓t; st, at)b�(st, at, st+1;✓t)
��
2

��(r✓f(✓t; st, at)�r✓

bf(✓t; st, at))�(st, at, st+1;✓t)
��
2

+
��r✓

bf(✓t; st, at)
�
�(st, at, st+1;✓t)� b�(st, at, st+1;✓t)

���
2
. (A.1)

Since bf(✓) 2 F⇥,m, we have bf(✓) = f(✓0) + hr✓f(✓0),✓� ✓0i and r✓
bf(✓) = r✓f(✓0). Then with probability at least

1� 2L2 exp(�C1m!
2/3

L), we have
��(r✓f(✓t; st, at)�r✓

bf(✓t; st, at))�(st, at, st+1;✓t)
��
2

= |�(st, at, st+1;✓t)| ·
��(r✓f(✓t; st, at)�r✓f(✓0; st, at))

��
2

 C2!
1/3

L
3
p
m logm|�(st, at, st+1;✓t)|,

where the inequality comes from Lemmas A.1 and A.2. By Lemma 6.4, with probability at least 1� �, it holds that

|�(st, at, st+1;✓t)| =
���f(✓t; st, at)� rt � �max

b2A
f(✓t; st+1, b)

��� (2 + �)C3

p
log(T/�),

which further implies that with probability at least 1� � � 2L2 exp(�C1m!
2/3

L), we have
��(r✓f(✓t; st, at)�r✓

bf(✓t; st, at))�(st, at, st+1;✓t)
��
2

 (2 + �)C2C3!
1/3

L
3
p
m logm log(T/�).

For the second term in (A.1), we have
��r✓

bf(✓t; st, at)
�
�(st, at, st+1;✓t)� b�(st, at, st+1;✓t)

���
2

A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation

��r✓

bf(✓t; st, at)
�
f(✓t; st, at)� bf(✓t; st, at)

���
2

+
���r✓

bf(✓t; st, at)
⇣
max
b2A

f(✓t; st+1, b)�max
b2A

bf(✓t; st+1, b)
⌘���

2

��r✓

bf(✓t; st, at)
��
2
·
��f(✓t; st, at)� bf(✓t; st, at)

��

+
��r✓

bf(✓t; st, at)k2 max
b2A

��f(✓t; st+1, b)� bf(✓; st+1, b)
��. (A.2)

By Lemma 6.4, with probability at least 1� � we have

|f(✓t; st, at)� bf(✓t; st, at)| !
4/3

L
11/3

p
m logm+ C4!

2
L
4p

m,

for all (st, at) 2 S ⇥A such that k�(st, at)k2 = 1. Substituting the above result into (A.2) and applying the gradient bound
in Lemma A.1, we obtain with probability at least 1� � � L

2 exp(�C1m!
2/3

L) that
��r✓

bf(✓t; st, at)
�
�(st, at, st+1;✓t)� b�(st, at, st+1;✓t)

���
2

 C5!
4/3

L
11/3

m

p
logm+ C6!

2
L
4
m.

Note that the above results require that the choice of ! should satisfy all the constraints in Lemmas A.1, 6.4 and A.2, of
which the intersection is

C7d
3/2

L
�1

m
�3/4 ! C8L

�6(logm)�3
.

Therefore, the error of the local linearization of gt(✓t) can be upper bounded by

|hgt(✓t)�mt(✓t),✓t � ✓⇤i| (2 + �)C2C3!
1/3

L
3
p
m logm log(T/�)k✓t � ✓⇤k2

+
�
C5!

4/3
L
11/3

m

p
logm+ C6!

2
L
4
m
�
k✓t � ✓⇤k2,

which holds with probability at least 1 � 2� � 3L2 exp(�C1m!
2/3

L) over the randomness of the initial point. For the
upper bound of the norm of gt, by Lemmas 6.4 and A.1, we have

kgt(✓t)k2 =
���r✓f(✓t; st, at)

⇣
f(✓t; st, at)� rt � �max

b2A
f(✓t; st+1, b)

⌘���
2

 (2 + �)C9

p
m log(T/�)

holds with probability at least 1� � � L
2 exp(�C1m!

2/3
L).

A.2. Proof of Lemma 6.2

Let us define ⇣t(✓) = hmt(✓)�m(✓),✓� ✓⇤i, which characterizes the bias of the data. Different from the similar quantity
⇣t in Bhandari et al. (2018), our definition is based on the local linearization of f , which is essential to the analysis in
our proof. It is easy to verify that E[mt(✓)] = m(✓) for any fixed and deterministic ✓. However, it should be noted
that E[mt(✓t)|✓t = ✓] 6= m(✓) because ✓t depends on all historical states and actions {st, at, st�1, at�1, . . .} and mt(·)
depends on the current observation {st, at, st+1} and thus also depends on {st�1, at�1, st�2, at�2, . . .}. Therefore, we
need a careful analysis of Markov chains to decouple the dependency between ✓t and mt(·).

The following lemma uses data processing inequality to provide an information theoretic control of coupling.
Lemma A.3 (Control of coupling (Bhandari et al., 2018)). Consider two random variables X and Y that form the following
Markov chain:

X ! st ! st+⌧ ! Y,

where t 2 {0, 1, 2, . . .} and ⌧ > 0. Suppose Assumption 5.2 holds. Let X 0 and Y
0 be independent copies drawn from the

marginal distributions of X and Y respectively, i.e., P(X 0 = ·, Y 0 = ·) = P(X = ·)⌦ P(Y = ·). Then for any bounded
function h : S ⇥ S ! R, it holds that

|E[h(X,Y)]� E[h(X 0
, Y

0)]| 2 sup
s,s0

|h(s, s0)|�⇢⌧ .

A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation

Proof of Lemma 6.2. The proof of this lemma is adapted from (Bhandari et al., 2018), where the result was originally
proved for linear function approximation of temporal difference learning. We first show that ⇣t(✓) is Lipschitz. For any
✓,✓0 2 B(✓0,!), we have

⇣t(✓)� ⇣t(✓
0) = hmt(✓)�m(✓),✓ � ✓⇤i � hmt(✓

0)�m(✓0),✓0 � ✓⇤i
= hmt(✓)�m(✓)� (mt(✓

0)�m(✓0)),✓ � ✓⇤i
+ hmt(✓

0)�m(✓0),✓ � ✓0i,

which directly implies

|⇣t(✓)� ⇣t(✓
0)| kmt(✓)�mt(✓

0)k2 · k✓ � ✓⇤k2 + km(✓)�m(✓0)k2 · k✓ � ✓⇤k2
+ kmt(✓

0)�m(✓0)k2 · k✓ � ✓0k2.

By the definition of mt, we have

kmt(✓)�mt(✓
0)k2

=
���r✓f(✓0)

⇣�
f(✓; s, a)� f(✓0; s, a)

�
� �

⇣
max
b2A

f(✓; s0, b)�max
b2A

f(✓0; s0, b)
⌘⌘���

2

 (1 + �)C2
3mk✓ � ✓0k2,

which holds with probability at least 1� L
2 exp(�C4m!

2/3
L), where we used the fact that the neural network function is

Lipschitz with parameter C3
p
m by Lemma A.1. Similar bound can also be established for kmt(✓)�mt(✓0)k in the same

way. Note that for ✓ 2 B(✓0,!) with ! and m satisfying the conditions in Lemma 6.1, we have by the definition in (6.2)
that

kmt(✓)k2
⇣
| bf(✓; s, a)|+ r(s, a) + �

��max
b

bf(✓; s0, b)
��
⌘
kr✓

bf(✓)k2

 (2 + �)(|f(✓0)|+ kr✓f(✓0)k2 · k✓ � ✓0k2)kr✓f(✓0)k2
 (2 + �)C3(C8

p
m

p
log(T/�) + C3m!). (A.3)

The same bound can be established for km̄tk in a similar way. Therefore, we have |⇣t(✓)� ⇣t(✓0)| `m,Lk✓�✓0k2, where
`m,L is defined as

`m,L = 2(1 + �)C2
3m! + (2 + �)C3(C8

p
m

p
log(T/�) + C3m!).

Applying the above inequality recursively, for all ⌧ = 0, . . . , t, we have

⇣t(✓t) ⇣t(✓t�⌧) + `m,L

t�1X

i=t�⌧

k✓i+1 � ✓ik2

 ⇣t(✓t�⌧) + (2 + �)C3(C8
p
m

p
log(T/�) + C3m!)`m,L

t�1X

i=t�⌧

⌘i. (A.4)

Next, we need to bound ⇣t(✓t�⌧). Define the observed tuple Ot = (st, at, st+1) as the collection of the current state and
action and the next state. Note that ✓t�⌧ ! st�⌧ ! st ! Ot forms a Markov chain induced by the target policy ⇡. Recall
that mt(·) depends on the observation Ot. Let’s rewrite m(✓, Ot) = mt(✓). Similarly, we can rewrite ⇣t(✓) as ⇣(✓, Ot).
Let ✓0

t�⌧
and O

0
t

be independently drawn from the marginal distributions of ✓t�⌧ and Ot respectively. Applying Lemma
A.3 yields

E[⇣(✓t�⌧ , Ot)]� E[⇣(✓0
t�⌧

, O
0
t
)] 2 sup

✓,O
|⇣(✓, O)|�⇢⌧ ,

where we used the uniform mixing result in Assumption 5.2. By definition ✓0
t�⌧

and O
0
t

are independent, which implies
E[m(✓0

t�⌧
, O

0
t
)|✓0

t�⌧
] = m(✓0

t�⌧
) and

E[⇣(✓0
t�⌧

, O
0
t
)] = E[E[hm(✓0

t�⌧
, O

0
t
)�m(✓0

t�⌧
),✓0

t�⌧
� ✓⇤i]|✓0

t�⌧
] = 0.

A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation

Moreover, by the definition of ⇣(·, ·), we have

|⇣(✓, O) kmt(✓)�m(✓)k2 · k✓ � ✓⇤k2 2(2 + �)C3(C8
p
m

p
log(T/�) + C3m!)!,

where the second inequality is due to (A.3) and that k✓ � ✓⇤k2 !. Therefore, for any ⌧ = 0, . . . , t, we have

E[⇣t(✓t)] E⇣t(✓t�⌧) + (2 + �)C3(C8
p
m

p
log(T/�) + C3m!)`m,L

t�1X

i=t�⌧

⌘i

 (2 + �)C3(C8
p
m

p
log(T/�) + C3m!)(!�⇢⌧ + `m,L⌧⌘t�⌧). (A.5)

Define ⌧
⇤ as the mixing time of the Markov chain that satisfies

⌧
⇤ = min{t = 0, 1, 2, . . . |�⇢t ⌘T }.

When t ⌧
⇤, we choose ⌧ = t in (A.5). Note that ⌘t is nondecreasing. We obtain

E[⇣t(✓t)] E[⇣t(✓0)] + 2(2 + �)C3(C8
p
m

p
log(T/�) + C3m!)`m,L⌧

⇤
⌘0

= 2(2 + �)C3(C8
p
m

p
log(T/�) + C3m!)`m,L⌧

⇤
⌘0,

where we used the fact that the initial point ✓0 is independent of {st, at, st�1, at�1, . . . , s0, a0} and thus independent of
⇣t(·). When t > ⌧

⇤, we can choose ⌧ = ⌧
⇤ in (A.5) and obtain

E[⇣t(✓t)] (2 + �)C3(C8
p
m

p
log(T/�) + C3m!)(!⌘T + `m,L⌧

⇤
⌘t�⌧⇤)

 eC(m log(T/�) +m
2
!
2)⌧⇤⌘t�⌧⇤ ,

where eC > 0 is a universal constant, which completes the proof.

A.3. Proof of Lemma 6.3

Proof of Lemma 6.3. To simplify the notation, we use E⇡ to denote Eµ,⇡,P , namely, the expectation over s 2 µ, a ⇠ ⇡(·|s)
and s

0 ⇠ P(·|s, a), in the rest of the proof. By the definition of m in (6.2), we have

hm(✓)�m(✓⇤),✓ � ✓⇤i

= Eµ,⇡,P
⇥�b�(s, a, s0;✓)� b�(s, a, s0;✓⇤)

�
hr✓f(✓0; s, a),✓ � ✓⇤i

⇤

= Eµ,⇡,P
⇥� bf(✓; s, a)� bf(✓⇤; s, a)

�
hr✓f(✓0; s, a),✓ � ✓⇤i

⇤

� �Eµ,⇡,P

h⇣
max
b2A

bf(✓; s0, b)�max
b2A

bf(✓⇤; s0, b)
⌘
hr✓f(✓0; s, a),✓ � ✓⇤i

i
,

where in the first equation we used the fact that r✓
bf(✓) = r✓f(✓0) for all ✓ 2 ⇥ and bf 2 F⇥,m. Further by the property

of the local linearization of f at ✓0, we have

bf(✓; s, a)� bf(✓⇤; s, a) = hr✓f(✓0; s, a),✓ � ✓⇤i, (A.6)

which further implies

Eµ,⇡,P
⇥� bf(✓; s, a)� bf(✓⇤; s, a)

�
hr✓f(✓0; s, a),✓ � ✓⇤i|✓0

⇤

= (✓ � ✓⇤)>E
⇥
r✓f(✓0; s, a)r✓f(✓0; s, a)

>|✓0
⇤
(✓ � ✓⇤)

= mk✓ � ✓⇤k2⌃⇡
.

where ⌃⇡ is defined in Assumption 5.3. For the other term, we define b
✓
max = argmaxb2A

bf(✓; s0, b) and b
✓⇤

max =

argmaxb2A
bf(✓⇤; s0, b). Then we have

Eµ,⇡,P

h⇣
max
b2A

bf(✓; s0, b)�max
b2A

bf(✓⇤; s0, b)
⌘
hr✓f(✓0; s, a),✓ � ✓⇤i

i

A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation

= Eµ,⇡,P
⇥� bf(✓; s0, b✓max)� bf(✓⇤; s0, b✓

⇤

max)
�
hr✓f(✓0; s, a),✓ � ✓⇤i

⇤
. (A.7)

Applying Cauchy-Schwarz inequality, we have

Eµ,⇡,P
⇥� bf(✓; s0, b✓max)� bf(✓⇤; s0, b✓

⇤

max)
�
hr✓f(✓0; s, a),✓ � ✓⇤i

⇤

r
Eµ,⇡,P

⇥�
max

b

|(✓ � ✓⇤)>r✓f(✓0; s0, b)|
�2⇤

q
Eµ,⇡,P

⇥�
r✓f(✓0; s, a)>(✓ � ✓⇤)

�2⇤

= mk✓ � ✓⇤k⌃⇤
⇡(✓�✓⇤)k✓ � ✓⇤k⌃⇡ ,

where we used the fact that ⌃⇤
⇡
(✓ � ✓⇤) = 1/mEµ,⇡,P [r✓f(✓0; s,ebmax)r✓f(✓0; s,ebmax)>] and ebmax =

argmaxb2A |hr✓f(✓0; s, b),✓ � ✓⇤i| according to (5.6). Substituting the above results into (A.7), we obtain

Eµ,⇡,P
⇥�

max
b2A

bf(✓; s0, b)�max
b2A

bf(✓⇤; s0, b)
�
hr✓f(✓0; s, a),✓ � ✓⇤i

⇤

 mk✓ � ✓⇤k⌃⇤
⇡(✓�✓⇤)k✓ � ✓⇤k⌃⇡ ,

which immediately implies

hm(✓)�m(✓⇤),✓ � ✓⇤i � mk✓ � ✓⇤k⌃⇡ ·
⇣
k✓ � ✓⇤k⌃⇡ � �k✓ � ✓⇤k⌃⇤

⇡(✓�✓⇤)

⌘

= mk✓ � ✓⇤k⌃⇡ ·
k✓ � ✓⇤k2⌃⇡

� �
2k✓ � ✓⇤k2⌃⇤

⇡(✓�✓⇤)

k✓ � ✓⇤k⌃⇡ + �k✓ � ✓⇤k⌃⇤
⇡(✓�✓⇤)

� m(1� ↵
�1/2)k✓ � ✓⇤k2⌃⇡

= (1� ↵
�1/2)Eµ,⇡,P

⇥� bf(✓)� bf(✓⇤)
�2|✓0

⇤
,

where the second inequality is due to Assumption 5.3 and the last equation is due to (A.6) and the definition of ⌃⇡ in
(5.5).

