
A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation

A. Proof of Supporting Lemmas
In this section, we present the omitted proof of the technical lemmas used in out main theorems.

A.1. Proof of Lemma 6.1

Before we prove the error bound for the local linearization, we first present some useful lemmas from recent studies of
overparameterized deep neural networks. Note that in the following lemmas, {Ci}i=1,... are universal constants that are
independent of problem parameters such as d,✓,m, L and their values can be different in different contexts. The first lemma
states the uniform upper bound for the gradient of the deep neural network. Note that by definition, our parameter ✓ is a long
vector containing the concatenation of the vectorization of all the weight matrices. Correspondingly, the gradient r✓f(✓;x)
is also a long vector.
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The second lemma provides the perturbation bound for the gradient of the neural network function. Note that the original
theorem holds for any fixed d dimensional unit vector x. However, due to the choice of ! and its dependency on m and d, it
is easy to modify the results to hold for all x 2 S

d�1.
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Now we are ready to bound the linearization error.

Proof of Lemma 6.1. Recall the definition of gt(✓t) and mt(✓t) in (4.5) and (6.2) respectively. We have
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Since bf(✓) 2 F⇥,m, we have bf(✓) = f(✓0) + hr✓f(✓0),✓� ✓0i and r✓
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where the inequality comes from Lemmas A.1 and A.2. By Lemma 6.4, with probability at least 1� �, it holds that
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For the second term in (A.1), we have
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By Lemma 6.4, with probability at least 1� � we have
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for all (st, at) 2 S ⇥A such that k�(st, at)k2 = 1. Substituting the above result into (A.2) and applying the gradient bound
in Lemma A.1, we obtain with probability at least 1� � � L

2 exp(�C1m!
2/3

L) that
��r✓

bf(✓t; st, at)
�
�(st, at, st+1;✓t)� b�(st, at, st+1;✓t)

���
2

 C5!
4/3

L
11/3

m

p
logm+ C6!

2
L
4
m.

Note that the above results require that the choice of ! should satisfy all the constraints in Lemmas A.1, 6.4 and A.2, of
which the intersection is
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Therefore, the error of the local linearization of gt(✓t) can be upper bounded by
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which holds with probability at least 1 � 2� � 3L2 exp(�C1m!
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upper bound of the norm of gt, by Lemmas 6.4 and A.1, we have
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A.2. Proof of Lemma 6.2

Let us define ⇣t(✓) = hmt(✓)�m(✓),✓� ✓⇤i, which characterizes the bias of the data. Different from the similar quantity
⇣t in Bhandari et al. (2018), our definition is based on the local linearization of f , which is essential to the analysis in
our proof. It is easy to verify that E[mt(✓)] = m(✓) for any fixed and deterministic ✓. However, it should be noted
that E[mt(✓t)|✓t = ✓] 6= m(✓) because ✓t depends on all historical states and actions {st, at, st�1, at�1, . . .} and mt(·)
depends on the current observation {st, at, st+1} and thus also depends on {st�1, at�1, st�2, at�2, . . .}. Therefore, we
need a careful analysis of Markov chains to decouple the dependency between ✓t and mt(·).

The following lemma uses data processing inequality to provide an information theoretic control of coupling.
Lemma A.3 (Control of coupling (Bhandari et al., 2018)). Consider two random variables X and Y that form the following
Markov chain:

X ! st ! st+⌧ ! Y,

where t 2 {0, 1, 2, . . .} and ⌧ > 0. Suppose Assumption 5.2 holds. Let X 0 and Y
0 be independent copies drawn from the

marginal distributions of X and Y respectively, i.e., P(X 0 = ·, Y 0 = ·) = P(X = ·)⌦ P(Y = ·). Then for any bounded
function h : S ⇥ S ! R, it holds that

|E[h(X,Y )]� E[h(X 0
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Proof of Lemma 6.2. The proof of this lemma is adapted from (Bhandari et al., 2018), where the result was originally
proved for linear function approximation of temporal difference learning. We first show that ⇣t(✓) is Lipschitz. For any
✓,✓0 2 B(✓0,!), we have
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The same bound can be established for km̄tk in a similar way. Therefore, we have |⇣t(✓)� ⇣t(✓0)|  `m,Lk✓�✓0k2, where
`m,L is defined as

`m,L = 2(1 + �)C2
3m! + (2 + �)C3(C8

p
m

p
log(T/�) + C3m!).

Applying the above inequality recursively, for all ⌧ = 0, . . . , t, we have
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Next, we need to bound ⇣t(✓t�⌧ ). Define the observed tuple Ot = (st, at, st+1) as the collection of the current state and
action and the next state. Note that ✓t�⌧ ! st�⌧ ! st ! Ot forms a Markov chain induced by the target policy ⇡. Recall
that mt(·) depends on the observation Ot. Let’s rewrite m(✓, Ot) = mt(✓). Similarly, we can rewrite ⇣t(✓) as ⇣(✓, Ot).
Let ✓0
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Moreover, by the definition of ⇣(·, ·), we have
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where the second inequality is due to (A.3) and that k✓ � ✓⇤k2  !. Therefore, for any ⌧ = 0, . . . , t, we have
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where we used the fact that the initial point ✓0 is independent of {st, at, st�1, at�1, . . . , s0, a0} and thus independent of
⇣t(·). When t > ⌧
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where eC > 0 is a universal constant, which completes the proof.

A.3. Proof of Lemma 6.3

Proof of Lemma 6.3. To simplify the notation, we use E⇡ to denote Eµ,⇡,P , namely, the expectation over s 2 µ, a ⇠ ⇡(·|s)
and s
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where in the first equation we used the fact that r✓
bf(✓) = r✓f(✓0) for all ✓ 2 ⇥ and bf 2 F⇥,m. Further by the property

of the local linearization of f at ✓0, we have
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Applying Cauchy-Schwarz inequality, we have
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where the second inequality is due to Assumption 5.3 and the last equation is due to (A.6) and the definition of ⌃⇡ in
(5.5).


