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Abstract
Generative adversarial networks (GANs) are ef-
fective in generating realistic images but the train-
ing is often unstable. There are existing efforts
that model the training dynamics of GANs in the
parameter space but the analysis cannot directly
motivate practically effective stabilizing methods.
To this end, we present a conceptually novel per-
spective from control theory to directly model
the dynamics of GANs in the function space and
provide simple yet effective methods to stabilize
GANs’ training. We first analyze the training dy-
namic of a prototypical Dirac GAN and adopt
the widely-used closed-loop control (CLC) to im-
prove its stability. We then extend CLC to stabi-
lize the training dynamic of normal GANs, where
CLC is implemented as a squared L2 regularizer
on the output of the discriminator. Empirical re-
sults show that our method can effectively stabi-
lize the training and obtain state-of-the-art perfor-
mance on data generation tasks.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) have shown promise in generating realistic natural
images (Brock et al., 2018) and facilitating unsupervised
and semi-supervised learning (Chen et al., 2016; Li et al.,
2017; Donahue & Simonyan, 2019). In GANs, an implicit
generator G is defined by mapping a noise distribution to
the data space. Since no density function is defined for the
implicit generator, the maximum likelihood estimate is in-
feasible for GANs. Instead, a discriminator D is introduced
to estimate the density ratio between the data distribution
p and the generating distribution pG by telling the real sam-
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ples from fake ones. G aims to recover the data distribution
by maximizing this ratio. This framework is formulated as
a minimax optimization problem, which can be solved by
optimizing G andD alternately. In practice, however, GANs
suffers from the instability of training (Goodfellow, 2016),
where divergency and oscillations are often observed (Liang
et al., 2018; Chavdarova & Fleuret, 2018).

Early methods (Mao et al., 2017; Gulrajani et al., 2017;
Arjovsky et al., 2017; Du et al., 2018) introduce different
types of divergences to improve the training process of
GANs. Their theoretical analyses assume that D achieves
its optimum when training G. However, the practical train-
ing process (e.g., alternative stochastic gradient descent)
often violates the above assumption and therefore is not
guaranteed to converge to the desired equilibrium. Several
empirical regularizations (Miyato et al., 2018; Gulrajani
et al., 2017; Zhang et al., 2019) are used to improve the
training process whereas no stability can be guaranteed.

Recently, Mescheder et al. (2017) and Nagarajan & Kolter
(2017) directly model the training dynamics of GANs, i.e.
how the parameters develop over time. Formally, the dy-
namic is defined as the gradient flow of the parameters. The
stability of the dynamic is fully determined by the eigenval-
ues of the Jacobian matrix of the gradient flow. Indeed, the
stability analysis in a linear prototypical GAN (i.e. Dirac
GAN (Mescheder et al., 2018)) is elegant. However, this
analysis does not directly motivate effective algorithms to
stabilize GANs’ training. To our knowledge, such methods
do not report competitive image generation results to the
state-of-the-art GANs (Miyato et al., 2018).

In this paper, we understand and stabilize GANs’ training
dynamics from the perspective of control theory. Based
on the recipe for control theory, we can not only analyze
the dynamics of Dirac GAN formally, but also develop
practically effective stabilizing methods for nonlinear dy-
namics (Khalil, 2002). Specifically, we start from revisiting
the Dirac GAN example with the WGAN’s objective func-
tion in Sec. 3. By utilizing the Laplace transform (Widder,
2015) (LT), the training dynamics of both D and G can be
modeled in the frequency domain instead of the time domain
in previous methods (Mescheder et al., 2017; 2018). These
types of dynamics are well studied in control theory and
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the stability can be easily inferred. The analysis can be
simply generalized to other objective functions with local
linearization. Given the instability of GANs, the recipe
for control theory provides a set of tools to stabilize their
dynamics. We first adopt the closed-loop control (CLC)
to successfully stabilize the dynamic of Dirac GAN with
theoretical guarantee. Besides, extensive empirical results
in control theory show that the CLC is also helpful in non-
linear settings (Khalil, 2002). It inspires us to extend our
proposal to normal GANs by modeling D and G’s dynam-
ics in the function space where these dynamics and Dirac
GAN’s dynamics share similar forms and characters. The
CLC is implemented as a regularization term to D’s ob-
jective function which penalizes the squared L2 norm of
the output of D as we described in Sec. 4.1. We therefore
refer our method as CLC-GAN. CLC-GAN is verified on an
1-dimension toy example as well as the natural images in-
cluding CIFAR10 (Krizhevsky et al., 2009) and CelebA (Liu
et al., 2015). The results demonstrate that our method can
successfully stabilize the dynamics of GANs and achieve
state-of-the-art performance.

Our contributions are summarized as:

• We formally analyze the training dynamics of GANs
from a novel perspective of control theory, which is
generally applicable to different objective functions.

• We propose to use the CLC as an effective method to
stabilize the training of GANs, while other advanced
control methods can be explored in future.

• The simulated results on Dirac GAN agree with the
theoretical analysis and CLC-GAN achieves the state-
of-the-art performance on natural image generations.

2. Preliminary
In this section, we present the recipe for control theory,
especially under the Laplace transform, which is powerful
to model dynamic systems and design stabilizing methods.

2.1. Modeling Dynamic Systems

In control theory, a signal is represented as a function over
time t, i.e., in the time domain (Kailath, 1980). A dynamic1

represents how one signal (i.e., output, denoted by y(t))
develops with respect to another signal (i.e., input, denoted
by u(t)) over time. A natural representation of a dynamic
is a differential equation (DE)2:

dy(t)

dt
= f(y(t),u(t)), (1)

together with an initial condition y(0) = y0. Note that
f(·, ·), y(t) and u(t) can be vector valued functions. We

1For simplicity, we use dynamic for dynamic system.
2We consider ordinary differential equations in this paper.

assume y0 = 0 unless specified. A dynamic is linear if
f(·, ·) is a linear function.

Besides the time domain, a signal can also be represented
as a function of frequency s, i.e., in the frequency domain.
A DE of a linear dynamic in the time domain can be con-
verted to a simple algebraic equation in the frequency do-
main, which can largely simplify the solving process and
stability analysis of a dynamic. Laplace transform (Widder,
2015) (LT) is a widely-adopted operator to convert signals
from the time domain to the frequency domain. Formally,
LT is given by:

F(h)(s) =
∫ ∞
0

h(t)e−stdt =H(s), (2)

where h is a signal in the time domain, and s = σ+ωi ∈ C
with real numbers σ and ω. The real and imaginary parts of
H(s) ∈ C denote the gain and phase of the frequency s in
h. In this paper, we use bold lowercase letters (e.g., y,u)
to denote signals in the time domain and bold capital letters
(e.g. Y ,U ) to denote signals in the frequency domain.

Leveraging LT, the derivation over time t can be represented
as multiplying a factor s in the frequency domain:

F(dh(t)
dt

) = sF(h). (3)

Therefore, by applying LT to both sides of a DE in Eqn. (1),
a linear dynamic can be solved by the formal rules of al-
gebra and represented in the form of Y (s) = T (s)U(s),
where T (s) is a simple rational fraction called transfer func-
tion (Kailath, 1980). The transfer function can facilitate the
stability analysis, as detailed in Sec. 2.2.

2.2. Stability Analysis

In general, we require a dynamic to be stable. Although
different definitions exist, we consider the widely adopted
asymptotic stability3 (Kailath, 1980) in this paper.

Definition 1. For a constant input u(t) = uc, a point ye
is called an equilibrium point of a dynamic represented in
Eqn. (1), if f(ye,uc) = 0. A dynamic is called asymptoti-
cally stable if for every ε > 0, there exists σ > 0 such that if
||y(0) − ye|| < σ, then for every t > 0, ||y(t) − ye|| < ε
and limt→∞ ||y(t)−ye|| = 0. Here || · || is a norm defined
in the vector space of y.

In the frequency domain, the stability can be directly in-
ferred from the transfer function. Formally, we define poles
as the roots of the denominator in a transfer function. The
stability of a linear dynamic is fully determined by its poles
as summarized in the following proposition.

3This definition is consistent with existing work in Mescheder
et al. (2017) and Mescheder et al. (2018).
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Proposition 1. (Theorm 2.6-1 in Kailath (1980))

1. A dynamic is asymptotic stable if all poles have nega-
tive real parts.

2. A dynamic is oscillatory (i.e., bounded output but not
stable) if one or more poles are purely imaginary.

3. A dynamic is diverged (unbounded output) if one or
more poles have positive real parts.

2.3. Control Methods

For an unstable dynamic, control theory provides a set of
methods to improve its stability. Among them, the closed-
loop control (Kailath, 1980) (CLC) is one of the most popu-
lar ones and robust to nonlinearity in dynamics practically.

The central idea is to modify the transfer function by feed-
ing the output back to the input such that all poles have
negative real parts. Specifically, we introduce an addi-
tional dynamics called controllers with transfer functions
Tb(s) to adjust the output signal and input signal respec-
tively. The controller takes Y (s) as input and output the
feedback signal Yb = Tb(s)Y (s). We then substitute the
difference between U and Yb (i.e., M = U − Yb) for in-
put in the original dynamics, resulting the output signal as
Y (s) = T (s)M(s). The relationship between the input
U(s) and the output Y (s) is:

Y (s) = T (s)(U(s)− Tb(s)Y (s)). (4)

Further, the whole controlled dynamic is given as:

Y (s) =
T (s)

1 + Tb(s)T (s)
U(s). (5)

With a properly designed Tb, the poles of the dynamic in
Eqn. (5) can have negative real parts and the dynamic is
stabilized. In the following, we first model and stabilize
the training dynamic of Dirac GAN: a simplified GAN with
linear dynamics in Sec. 3 and then we generalize it to the
realistic setting in Sec. 4.

3. Analyzing Dirac GAN by Control Theory
In this section, we focus on the Dirac GAN (Mescheder
et al., 2018), which is a widely adopted example to analyze
the stability of GANs. Previous work (Mescheder et al.,
2017; Gidel et al., 2018) uses the Jacobian matrix to analyze
the stability of dynamics whereas does not directly provide
an approach to stabilize it. Instead, we revisit this example
from the perspective of control theory and develop a prin-
cipled method that not only analyzes but also improves the
stability of various GANs.

3.1. Modeling Dynamics

We first model the dynamics of the Dirac GANs in the
language of control theory, which can facilitate the stability

analysis and improvement in Sec. 3.2. In Dirac GAN, G is
defined as pG(x) = δ(x− θ) where δ(·) is the Dirac delta
function, and D is defined as D(x) = φx. θ and φ are the
parameters of G and D respectively. The data distribution is
p(x) = δ(x− c) with a constant c. Generally, the objective
functions of D and G can be written as:

max
φ
V1(φ; θ) = h1(D(c)) + h2(D(θ)),

max
θ
V2(θ;φ) = h3(D(θ)). (6)

Here hi(·) : R → R is a scalar function for i ∈ {1, 2, 3}.
Assuming that the equilibrium point of D is a zero function
as in most GANs (Goodfellow et al., 2014; Arjovsky et al.,
2017), it is required that h1(·) and h3(·) are increasing
functions and h2(·) is a decreasing function around zero. For
instance, when h1(x) = h3(x) = log(σ(x)) and h2(x) =
log(1− σ(x)) with σ(·) denoting the sigmoid function, we
obtain the vanilla GAN (Goodfellow et al., 2014).

Since θ and φ are updated using gradient descent, we can
denote the training trajectories as signals θ and φ. The
dynamics are defined by the following gradient flow:

dφ(t)

dt
=
∂V1(φ; θ)

∂φ
|φ=φ(t),θ=θ(t),

dθ(t)

dt
=
∂V2(θ;φ)

∂θ
|φ=φ(t),θ=θ(t). (7)

Specifically, for the dynamics of D, we have:

∂V1(φ; θ)
∂φ

=
dh1(D(c))

dφ
+
dh2(D(θ))

dφ
. (8)

Similarly, for the dynamics of G, we have:

∂V2(θ;φ)
∂θ

=
dh3(D(θ))
dD(θ)

∂D(θ)
∂θ

. (9)

Substituting D(x) = φx to Eqn. (8) and Eqn. (9), the dy-
namics of Dirac GAN can be summarized as:

dφ(t)

dt
= h′1(φ(t)c)c+ h′2(φ(t)θ(t))θ(t),

dθ(t)

dt
= h′3(φ(t)θ(t))φ(t), (10)

where h′i(·) denotes the derivative of hi(·) for i ∈ {1, 2, 3}.
From the perspective of control theory (see details in
Sec. 2.1), Eqn. (10) represents a dynamic in the time do-
main, which is natural to understand but difficult to analyze.
Converting it to the frequency domain by the Laplace trans-
form (LT) can simplify the analysis. It requires a case by
case derivation for different GANs due to the specific forms
of the objective functions (i.e., different choices of hi(·)).
We will first use WGAN as an example to present the ana-
lyzing process and then generalize it to other objectives via
the local linearization technique in Sec. 3.3.
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Figure 1: The simulated dynamic of Dirac GAN for θ (left)
and φ (right) with c = 1. The curve of WGAN shows the
oscillation while Other curves of CLC-GAN show that the
closed loop control helps convergence.

In WGAN4, we have h1(x) = h3(x) = x and h2(x) = −x.
Let the output y(t) = (θ(t),φ(t)) and the input u(t) =
c, ∀t > 0. Then, the dynamic in Eqn. (8) and Eqn. (9) is
instantiated as:

dy(t)

dt
=

[
0 1
−1 0

] [
θ(t)
φ(t)

]
+

[
0
u(t)

]
= f(y(t),u(t)).

(11)

Applying LT F(·) in Eqn. (2) to both sides of Eqn. (11), the
dynamic can be represented in the frequency domain as:{

sΦ(s) = U(s)−Θ(s),

sΘ(s) = Φ(s).
(12)

where Θ,Φ,U represent θ,φ,u in the frequency domain,
e.g., U(s) = F(u)(s). Then we can solve the dynamics of
Φ and Θ according to the formal rules of algebra as:{

Φ(s) = s
s2+1U(s),

Θ(s) = 1
sΦ(s) = 1

s2+1U(s).
(13)

In the frequency domain, the output signal can be repre-
sented as a multiplication between the transfer function (see
Sec. 2.1) and the input signal. Specifically, in Eqn. (13),
the transfer function of φ is TD(s) = s

s2+1 and the transfer
function of θ is TG(s) = 1

s2+1 . According to Proposi-
tion 1, the stability of a dynamic is fully characterized by
the poles of the transfer function (i.e., the roots of the de-
nominator). The poles of both θ and φ are ±i according to
Eqn. (13). Therefore, both θ and φ are oscillatory instead of
converging to the equilibrium point (θe,φe) = (c, 0). The
simulated dynamic of Dirac GAN is illustrated in Fig. 1.

3.2. Analyzing and Improving Stability

Control theory provides extensive methods (Khalil, 2002)
to improve the stability of dynamics without changing the

4We ignore the Lipschitz continuity of D for simplicity but the
equilibrium point and its local convergence do not change. See
theoretical analysis and empirical evidence in Appendix B.

desired equilibrium. In this paper, the widely used closed-
loop control (CLC) is introduced in Sec. 2.3 for its simplicity.
We emphasize that advanced control methods can potentially
result in more stable GANs and we leave it as future work.

Before applying the CLC, we emphasize that there are two
requirements to be satisfied simultaneously: 1) applying
the CLC needs to stabilize the dynamics of D and G; 2) it
should not change the equilibrium point of G, i.e., pG = p.

For the first requirement, the dynamic of θ in Dirac GAN is
dθ(t)
dt = h′3(φ(t)θ(t))φ(t), which indicates that stabilizing
φ to zero can also stabilize the dynamic of θ. Therefore,
we only need to introduce the CLC to D. The central idea
of the CLC is to adjust the transfer function by introducing
an auxiliary controller. Here we adopt a simple and widely
used controller Tb(s) = λ. Intuitively, it is an amplifier
with negative feedback from output to input according to
Eqn. (4) and λ5 is the coefficient for the amplitude of the
feedback. Substituting Tb with λ in Eqn. (5), the transfer
function TcD of the controlled φ is given by:

TcD(s) =
s

s2+1

1 + λs
s2+1

=
s

s2 + λs+ 1
. (14)

With a positive λ, all of poles in the controlled dynamic
have negative real parts, and hence it is a stable dynamic.
We also demonstrate the simulated results of the controlled
dynamic with different values of λ in Fig. 1.

For the second requirement, the CLC will not change the
equilibrium point of Dirac GAN. In the time domain, the
CLC is equivalent to adjust the dynamics of φ as:

dφ

dt
= c− θ(t)− λφ(t). (15)

Since the equilibrium point of D is a zero function, i.e.,
φe = 0, then we still have dy(t)

dt = 0 at y = (θe,φe).

3.3. Extending to Other Objectives

The proposed method is not limited to WGAN but can be
generalized to other GANs (Goodfellow et al., 2014; Mao
et al., 2017), which may have nonlinear objective functions.

We leverage a standard technique called local lineariza-
tion (Khalil, 2002) to approximate the original dynamics as
a linear one around the equilibrium point. For example, the
objective function of D in the vanilla GAN is:

max
φ
Vs(φ, θ) = log(σ(φc)) + log(1− σ(φθ)). (16)

The dynamic of φ is nonlinear because of the sigmoid func-

5λ is a hyperparameter and we analyze its sensitivity in Sec. 6.
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Table 1: The stability characters for the widely-used GANs. Please refer to Appendix A for detailed derivation, which
adopts the local linearization technique introduced in Sec. 3.3. With CLC, the training dynamics of Dirac GANs are stable
theoretically (see Fig. 1 and Appendix A), and those of normal GANs are stable empirically (see Fig. 2).

TD(s)
Stability

Dirac GAN/normal GAN TcD(s)
Stability with CLC

Dirac GAN/normal GAN

WGAN s/(s2 + 1) 7/7 1/(s2 + λs+ 1) X/X
Hinge-GAN s/(s2 + 1) 7/7 1/(s2 + λs+ 1) X/X

SGAN 2s/(4s2 + 2s+ 1) X/7 1/(4s2 + (2λ+ 2)s+ 1) X/X
LSGAN s/(s2 + 4s+ 1) X/7 1/(s2 + (λ+ 4)s+ 1) X/X

tion, which is given by:

dφ(t)

dt
=
∂Vs(φ, θ)

∂φ
|φ=φ(t),θ=θ(t)

=
σ′(φ(t)c)

σ(φ(t)c)
c− σ′(φ(t)θ(t))

1− σ(φ(t)θ(t))θ(t), (17)

where σ′(·) is the derivative of σ(·). Local linearization
approximates the original dynamic by the first order Taylor
expansion at the equilibrium point (c, 0):

∂Vs(φ, θ)
∂φ

≈ ∂Vs(φ, θ)
∂φ

|φ=0,θ=c +
∂2Vs(φ, θ)

∂φ2
|φ=0,θ=cφ

+
∂2Vs(φ, θ)
∂θ∂φ

|φ=0,θ=c(θ − c) = −
1

2
φ− 1

2
(θ − c).

(18)

Note that the stability is determined by the local character of
the equilibrium point, around which the residual in Eqn. (18)
is negligible. Therefore, we have a linear approximation
and the the analysis in Sec. 3.2 applies. We summarize the
stability characters for all GANs in Table 1.

4. Extensions to Normal GANs
In Sec. 3, we show that the dynamic of Dirac GAN can be
formally analyzed and stabilized based on the recipe for
control theory. Besides, the CLC can successfully stabilize
nonlinear dynamics in control theory (Khalil, 2002). This
two facts inspire us to stabilize the training dynamic of a
normal GAN (i.e., parameterized by neural networks) by in-
corporating the CLC. Unlike previous methods (Mescheder
et al., 2018) which mainly focus on the dynamics of parame-
ters of D and G, we instead model the dynamics of G and D
in the function space, i.e., D = D(x, t) and G = G(z, t). It
can simplify the analysis and build the connections between
the Dirac GAN and the normal GANs.

Following the notation in Sec. 3, the objective function of a

Algorithm 1 Cloosed-loop Control GAN

1: Input: Buffer size Nb, feedback coefficient λ, batch
size N , initialized G and D, learning rate η.

2: Initialize Br and Bf for real samples and fake samples
respectively.

3: repeat
4: Sample a batch of {xr} ∼ p, {xf} ∼ pG of N

samples.
5: Update Br with {xr}. Update Bf with {xf}.
6: Sample a batch of x′r ∼ Br, x′f ∼ Bf of N samples

respectively.
7: Estimate the objective of D:

U(D) = 1
N [
∑
x∈{xr}D(x) −

∑
x∈{xf}D(x)] −

λ
N [
∑
x∈{x′

r}
D2(x) +

∑
x∈{x′

f}
D2(x)].

8: Update D to maximize U(D) with learning rate η.
9: Estimate the objective of G: U(G) =

1
N

∑
x∈{xf}D(x).

10: Update G to maximize U(G) with learning rate η.
11: until Convergence

general GAN is:

max
D
V1(D;G) = Ep(x)[h1(D(x))] + EpG(x)[h2(D(x))],

max
G
V2(G;D) = Epz(z)[h3(D(G(z)))]. (19)

According to the calculus of variations (Gelfand et al., 2000),
the gradient of V1(D) with respect to the function D is:

∂V1(D;G)
∂D = p

dh1(D)
dD + pG

dh2(D)
dD , (20)

where dhi(D)
dD (x) = dhi(u)

du |u=D(x) = dhi(D(x))
dD(x) for i ∈

{1, 2}. The gradient of V2(G) with respect to G is:

∂V2(G)
∂G = pz

dh3(D(G))
dG , (21)

where dh3(D(G))
dG (z) = dh3(D(G(z)))

dD(G(z))
∂D(G(z))
∂G(z) .

Therefore, the dynamics of D and G in normal GANs can
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be denoted generally as:

dD(x, t)
dt

= p(x)
dh1(D(x))
dD(x, t) + pG(x)

dh2(D(x))
dD(x) ,∀x,

dG(z, t)
dt

= pz(z)
dh3(D(G(z)))
dD(G(z))

∂D(G(z))
∂G(z) ,∀z. (22)

Note that the above dynamics is quiet similar to the dy-
namic of Dirac GAN by substituting G and D for θ and φ
in Eqn. (8) and Eqn. (9) respectively. Specifically, in both
dynamics, the discriminators take the weighted summation
of p and pG . For the generator, both of them depend on
the ∂D(G(z))

∂G(z) . The above similarity between Dirac GANs
and normal GANs inspires us to directly apply the CLC in
nonlinear settings. Our empirical results in various settings
(see Sec. 6) demonstrate the effectiveness of the proposed
method, which agrees with the above analysis and Table 1.

4.1. Implementing CLC in GANs

According to Sec. 3.2, we apply the CLC with a controller
Tb(s) = λ to normal GANs. The resulting dynamic of D is

dD(x, t)
dt

=
∂V1(D;G)

∂D − λD(x),∀x. (23)

Note that D will be optimized by gradient descent in the
implementation and we need to design a proper objective
function whose gradient flow is equivalent to Eqn. (23).
Therefore, we introduce an auxiliary regularization term to
the original GANs and get:

V ′1(D;G) = V1(D;G)−
λ

2

∫
x∈X
D2(x)dx, (24)

where X denotes the space of x, e.g., X = [−1, 1]c×w×h
for image generation of size w × h× c. Below, we denote
R(D) =

∫
x∈X D2(x)dx, which is the squared 2-norm of

the function D over the space of x. Intuitively, minimizing
R(D) encourages D to converge to a zero function.

The regularization termR(D) is proportional to the expec-
tation of D2 with respect to a uniform distribution pu(x)
defined on X , i.e., R(D) ∝ Epu(x)[D2(x)]. However, di-
rectly estimatingR(D) is not sample efficient since most of
samples in X is meaningless and do not provide useful train-
ing signals to stabilize D. Instead, we maintain two buffers
Br and Bf of fix size Nb to store the old real samples and
fake samples, respectively. We define a uniform distribution
ptu(x) on Bt = Btr ∪Btf to approximateR(D) as:

Rt(D) =
∫
x∈X

ptu(x)D2(x)dx. (25)

where Rt(D) denotes the regularization term at time t.
Rt(D) is estimated using Monte Carlo and these buffers are
updated with replacement. As analyzed below, usingRt(D)
to approximateR(D) will not change the equilibrium and
stability. The training procedure is presented in Alg. 1.
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Figure 2: The learning curve of the baselines and our pro-
posed method. Top: The Inception Score of CIFAR10.
Bottom: The FID score of CelebA. We plot the curves with
respect to the time for better representation of the computa-
tional cost.

4.2. Theoretical Analysis

Below, we first prove that the regularization term in
Eqn. (25) will not change the desirable equilibrium point of
GANs, i.e., pG = p, as summarized in Lemma 1.

Lemma 1. Under the non-parametric setting, CLC-GAN
has the same equilibrium as the original GAN, i.e, pG = p
and D(x) = 0 for all x.

Here we follow the identical assumption as in Goodfel-
low et al. (2014). Further, under mild assumptions as
in Mescheder et al. (2018), CLC-GAN locally converges to
the equilibrium, as summarized in Theorem 1.

Theorem 1. (Proof in Appendix C) Under the Assumptions
1, 2 and 3 in Appendix C with sufficient small learning rate
and large λ, the parameters of CLC-GAN locally converge
to the equilibrium with alternative gradient descent.

We provide the experimental results in Sec. 6 to empirical
validate our method.
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5. Related Work
Some recent work directly models the training process of
GANs. Mescheder et al. (2017) and Nagarajan & Kolter
(2017) model the dynamics of GANs in the parameter space
and stabilize the training dynamics using gradient-based reg-
ularization. However, the above methods do not model the
whole training dynamics explicitly and cannot generalize
to natural images. Then Mescheder et al. (2018) propose
a prototypical example Dirac GAN to understand GANs’
training dynamics and stabilize GANs using simplified gra-
dient penalties. Gidel et al. (2018) analyze the effect of mo-
mentum based on the Dirac GAN and propose the negative
momentum. Though the above methods provide an elegant
understanding of the training dynamics, this understanding
does not provide a practically effective algorithm to stabilize
nonlinear GANs’ training and they fail to report competi-
tive results to the state-of-the-art (SOTA) methods (Miyato
et al., 2018). Instead, we revisits the Dirac GAN from the
perspective of control theory, which provides a set of tools
and extensive experience to stabilize it. Based on the recipe,
we advance the previous SOTA results on image generation.

Feizi et al. (2017) is another related work that analyzes the
stability of GANs using the Lyapunov function, which is a
general approach in control theory. However, it only focuses
on the stability analysis whereas cannot provide stabilizing
methods. In our paper, we are interested in building SOTA
GANs in practise and therefore we leverage the classical
control theory.

6. Experiments
We now empirically verify our method on the widely-
adopted CIFAR10 (Krizhevsky et al., 2009) and
CelebA (Liu et al., 2015) datasets. CIFAR10 con-
sists of 50,000 natural images of size 32× 32 and CelebA
consists of 202,599 face images of size 64 × 64. The
quantitative results are from the corresponding papers
or reproduced on the official code for fair comparison.
Specifically, we use the exactly same architectures for
both D and G with our baseline methods, where the
ResNet (He et al., 2016) with the ReLU activation (Glorot
et al., 2011) is adopted6. The batch size is 64, and the
buffer size Nb is set to be 100 times of the batch size for
all settings. We manually select the coefficient λ among
{1, 2, 5, 10, 15, 20} in Reg-GAN’s setting and among
{0.05, 0.1, 0.2, 0.5} in SN-GAN’s setting. We use the
Inception Score (IS) (Salimans et al., 2016) to evaluate the
image quality on CIFAR10 and FID score (Gulrajani et al.,
2017) on both CIFAR10 and CelebA. More details about
the experimental setting and further results on a synthetic
dataset can be found in Appendix E.

6Our code is provided HERE.

Table 2: The FID Score on CIFAR10. The results reported
here are the best results over the training process and are
averaged over 3 runs.

Method WGAN SGAN

No Regularization 105.21 28.51
Reg-GAN 30.43 28.39

Gradient Penalty 28.20 −
CLC-GAN(2) 23.53± 1.22 21.63± 0.47
CLC-GAN(5) 21.46± 1.57 21.52± 0.96

CLC-GAN(10) 21.14± 1.84 22.20± 2.07

Table 3: The Inception score on CIFAR10. † (Yang et al.,
2017), ‡ (Miyato et al., 2018), § (Zhang et al., 2019). Results
of CLC-GAN are averages over 3 runs.

Method WGAN SGAN Hinge

LR-GAN† - 7.17 -
SN-GAN‡ - - 8.22
CR-GAN§ - 8.40 -

Gradient Penalty 7.82 - -
Reg-GAN 7.34 7.37 7.37

CLC-GAN(2) 8.42± .06 8.28± .05 8.49± .08
CLC-GAN(5) 8.49± .07 8.44± .08 8.54± .03
CLC-GAN(10) 8.38± .10 8.47± .09 8.46± .00

SN-GAN 3.29 8.17 8.28
CLC-SN-
GAN(0.1) 8.14± .02 8.30± .09 8.54± .03

We compare with two typical families of GANs. The
first one is referred as unregularized GANs, including
WGAN (Arjovsky et al., 2017), SGAN (Goodfellow et al.,
2014), LSGAN (Mao et al., 2017) and Hinge-GAN (Miy-
ato et al., 2018).The second one is referred as reguarlized
GANs, including Reg-GAN (Mescheder et al., 2018) and
SN-GAN (Miyato et al., 2018). We emphasize that the reg-
ularzied GANs are the previous SOTA methods and our
implementations are based on the officially released code.
For clarity, we refer to our method as CLC-GAN(·) with
the hyperparameter λ denoted in the parentheses.

In the following, we will demonstrate that (1) the CLC can
stabilize GANs using less computational cost than compet-
itive regularizations and is applicable to various objective
functions ; (2) CLC-GAN provides a consistent improve-
ment on the quantitative results in different settings com-
pared to related work (Mescheder et al., 2018) and surpasses
previous state-of-the-art (SOTA) GANs (Miyato et al., 2018;
Zhang et al., 2019).

https://github.com/taufikxu/GAN_PID
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Figure 3: The generated results of CIFAR10 dataset. From
top left to bottom right: WGAN-GP, Reg-WGAN, CLC-
WGAN(5), CLC-SGAN(5).

6.1. CLC-GAN is stable

In the linear case, the simulated results in Fig. 1 demonstrate
that CLC-GAN can stabilize the Dirac GAN, which agrees
with our theoretical analysis in Sec. 3.2.

In normal GANs, we compare CLC-GAN with a wide range
of GANs (Arjovsky et al., 2017; Goodfellow et al., 2014;
Mao et al., 2017; Miyato et al., 2018) and their regularized
version in (Mescheder et al., 2018) in terms of training
stability qualitatively. The learning curves are shown in
Fig. 2. The top panel shows the IS on CIFAR10 and the
bottom one shows FID on CelebA.

In both panels, the training dynamics of unregularized
GANs are not stable. On CIFAR10, the unregularized GANs
all diverge from the data distribution and on CelebA they
even diverge at the very beginning. Indeed, their FID results
on CelebA are over 300 which is too large to be shown
in the figure. Among unregularized GANs, LSGAN and
SGAN are more stable than WGAN on CIFAR10 which
is consistent to our analysis in Table 1. However, none of
them provide converged results, nor can they generalize to
larger images in CelebA. We hypothesize that the nonlinear-
ity in neural networks is the main reason for the divergence
behaviour. Instead, CLC-GAN can succetssfully avoid the
oscillatory behaviour and regularize GANs towards the data
distribution. The robustness of CLC-GAN in the nonlinear
dynamics agrees with the theoretical analysis in Table 1 and
the experience in control theory, which are the main motiva-
tions of our paper. In conclusion, the comparison between
the unregularized GANs and their controlled versions show
the effectiveness of the proposed method.

Figure 4: The generated results of CelebA dataset. From
top left to bottom right: WGAN-GP, Reg-WGAN, CLC-
WGAN(15), CLC-SGAN(15).

Indeed, Reg-GAN can also stabilize the training dynamics.
In comparison, the CLC-GANs are computationally efficient
and achieve better results after convergence. First, unlike
the gradient penalty which implies a non-trivial running
time (Kurach et al., 2018), CLC-GANs directly regularize
the activation of D and require less computational cost. For
instance, our method can conduct approximate 8 iterations
per second of training on CelebA whereas Reg-GAN can
only conduct 4 iterations per second on Geforce 1080Ti.
Second, CLC-GANs provide higher IS on CIFAR10 and
lower FID on CelebA as qualitatively shown in the learn-
ing curves. The quantitative results are summarized in the
following subsection.

Fig. 3 & Fig. 4 show the generated samples. Those from
CLC-GAN are semantically meaningful in all setting and are
at least competitive to the ones from very strong baselines.

6.2. Quantitative Results

We now present the quantitative results on CIFAR10 in the
settings that include different objective functions, neural net-
work architectures and the values of λ. The IS and FID are
shown in Table 3 and Table 2 respectively. The comparisons
among different settings are given within the tables.

First, our method provides a consistent improvements on
both IS and FID on CIFAR10. For FID, CLC-GANs de-
crease it from 28 to 23 compared to Reg-GAN. For IS, CLC-
GANs surpass previous SOTA GANs. Specifically, CLC-
GANs achieve IS over 8.45 with various objectives without
using spectral normalization, which is a significant improve-
ment compare to related works, including SN-GAN (Miyato
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et al., 2018) and CR-GAN (Zhang et al., 2019).

Second, CLC-GAN is also applicable to SN-GAN’s archi-
tecture and improve its performance, whereas most gradient-
based regularizations fail to introduce significant improve-
ment (Kurach et al., 2018). Unlike SN-GAN whose perfor-
mance largely depends on the objective functions, CLC-SN-
GAN provides stable training dynamics consistently.

Finally, CLC-GAN is not very sensitive to the hyperpa-
rameter λ given the normalization used in D. When batch
normalization is adopted, CLC-GANs with λ = 2, 5, 10 all
achieve SOTA IS and a large improvement on FID. When
spectral normalization (Miyato et al., 2018) is used, a rela-
tively smaller λ is required. Besides the reported results with
λ = 0.1, CLC-SN-GANs with λ ∈ {0.05, 0.2} achieves
IS over 8.4 consistently using Hinge loss. The underlying
mechanism of the difference between the two types of nor-
malizations is unclear. We hypothesize that it is because D
is a Lipschitz-1 function with spectral normalization.

7. Conclusions and Discussions
In this paper, we propose a novel perspective to understand
the dynamics of GANs and a stabilizing method called CLC-
GAN. We model the dynamics of the Dirac GAN with linear
objectives theoretically in the frequency domain and extend
the analysis to nonlinear objectives using local linearization.
By leveraging the recipe for control theory, we propose a
stabilizing method called CLC to improve Dirac GAN’s
stability and generalize CLC to normal GANs. The simu-
lated results on Dirac GAN and empirical results on normal
GANs demonstrate that our method can stabilize a wide
range of GANs and provide better convergence results.

Although CLC-GAN provides promising results, further
analyses can be done to achieve better results. On one hand,
our analysis mainly focuses on the continuous cases, where
the practical implementation optimizes both G and D in
discrete time steps. In this case, the Z-transform is a better
tool than LT used in this paper. On the other hand, we
approximate the dynamics in the function space using the
update in the parameter space, which can be improved by
recent analyses of GANs in the function space (Johnson
& Zhang, 2018). Finally, modern control theory and non-
linear control methods (Khalil, 2002) can potentially help
GANs to achieve better performance. These are promising
directions for the future work.
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