
Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Supplementary Material
A. Algorithms
In this section, we give more details about the algorithms proposed in this work. We first give a detailed version for the
multi-objective policy gradient (Section 3.2), then we describe the nonlinear regression for fitting the parameters of the
hyperbolic prediction model (Section 3.3), finally we analyze the prediction-guided optimization algorithm (Section 3.4)
and show the time complexity of it.

A.1. Multi-Objective Policy Gradient

Given a policy ⇡✓ and a weight vector !(
P

i
!i = 1), our reinforcement learning worker aims to use policy gradient to

optimize for the weighted-sum reward J (✓,!):

J (✓,!) = !>F(⇡) =
mX

i=1

!ifi(⇡) =
mX

i=1

!iJ
⇡

i

The most straight forward way is converting the environment from returning a vector of rewards into a scalar weighted-sum
reward, regarding it as a single-objective control problem, and solving it with any single-objective policy gradient algorithm.
Most policy gradient algorithms simultaneously learn a value function V (s) and a policy network ⇡(a|s). The value function
receives the current state s and estimates the expected return (expected weighted-sum return here) under following the
current policy and is used to lower the training variance.

However, with our evolutionary learning algorithm, a policy will be selected to be optimized with different weights during
the whole learning process. It is inefficient to simply apply the above approach. With this naive approach, the value network
trained with previous weights would be invalid for the new weight and would need to be trained from scratch.

In order to leverage the previous learning information of a policy when running reinforcement learning for it with a new
weight, we improve the single-objective policy gradient algorithm by extending the value function to be vectorized, which
shares a similar strategy as applied in multi-objective Q-learning (Yang et al., 2019).

Specifically, the vectorized value function V ⇡(s) : S ! Rm maps a state s to the vector of expected returns under following
the current policy ⇡. In this way, the value function is still valid when the optimization weight changes and can be directly
used to train the policy for the new weight and quickly adapt its output to the new policy. The value function is updated in
each iteration by the Bellman Equation:

V ⇡(st) = V̂ (st) =
X

u

⇡(u|st)(R(s) + �V ⇡(st+1)),

where V̂ (st) is the target value function, and st+1 is reached from state st by action u.

In the implementation, the value function is updated by a squared-error loss kV ⇡(s)� V̂ (s)k2.

To compute the policy gradient, we start from the policy gradient for each objective (we use the advantage version described
in (Schulman et al., 2015)).

r✓Ji(✓) = E
"

TX

t=0

A
⇡

i
(st, at)r✓ log ⇡✓(at|st)

#

where A
⇡

i
(st, at) is the advantage function for i-th objective.

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Then the policy gradient for J (✓,!) is derived:

r✓J (✓,!) =
mX

i=1

!ir✓Ji(✓)

=
mX

i=1

!iE
"

TX

t=0

A
⇡

i
(st, at)r✓ log ⇡✓(at|st)

#

= E
"

TX

t=0

!TA⇡(st, at)r✓ log ⇡✓(at|st)
#

= E
"

TX

t=0

A
⇡

!(st, at)r✓ log ⇡✓(at|st)
#

where A⇡(st, at) is the vectorized advantage function. In our extension, the new advantage function A
⇡

!(st, at) is simply
represented as a weighted-sum scalarization of the advantage functions for individual objectives.

Such value network and policy gradient extension can be easily applied to most policy gradient methods. In our imple-
mentation, we choose to adapt the Proximal Policy Optimization (PPO) (Schulman et al., 2017) into our multi-objective
weighted-sum version, where the clipped surrogate objective is applied to update the policy parameters, and the Generalized
Advantage Estimation (Schulman et al., 2015) is used to compute the advantage function and target values.

A.2. Nonlinear Regression for Prediction Model

In Section 3.3, we construct the following four-parameter hyperbolic model �i

j
(!j) for each policy ⇡i and each objective

fj :

�i

j
(!j) = A · e

a(!j�b) � 1

ea(!j�b) + 1
+ c. (6)

In each generation, for each policy ⇡i, the data {(!,�F)} = {(!,F(⇡0)� F(⇡))} in the neighborhood of the policy ⇡i

(i.e., kF(⇡) � F(⇡i)k < �kF(⇡i)k) is collected from the RL history record R, and the following nonlinear least-square
regression is applied to fit the parameters of the hyperbolic model:

min
⇠

nX

k=1

⇢((�i

j
(!i

j
; ⇠)��Fi

j
)2),

where ⇠ = {A, a, b, c} are the four parameters that need to be determined for each model, n is the size of the dataset and
⇢(z) = 2(

p
1 + z � 1) is the soft-l1 loss. For the threshold �, we set it as 0.1 in all examples. In the rare cases that there is

not enough data around the policy ⇡i (< 4 data points), we iteratively relax the threshold � until enough data points are
collected.

A.3. Time Complexity Analysis for Prediction-Guided Optimization

In Section 3.4, we present a prediction-guided optimization for task selection. As shown in Algorithm 3, given the current
population P , the prediction models {�i}, and the current Pareto archive EP, we adopt a greedy algorithm to solve a
knapsack problem to select the tasks that can best improve Pareto quality. Our greedy algorithm maintains a virtual policy
set EP0 for the predicted Pareto archive. It then iteratively selects the task that best improves the Pareto metric of EP0 and
then updates EP0 by inserting the predicted offspring policy of the selected task. We analyze the time complexity of this
algorithm below.

Let n be the number of tasks to be selected, m be the number of objectives in the problem, and K be the number of candidate
weights sampled for each policy in the population. The algorithm will run for n iterations, and in each iteration, the predicted
Pareto quality needs to be calculated for each task (policy-weight pair) by virtually inserting the predicted offspring objectives
of the task into the virtual Pareto set EP0. For hypervolume metric, given a Pareto front EP0 of size N , our implementation
computes the hypervolume in O(N) when m = 2 and O(Nm�2 logN) when m > 2 (Guerreiro et al., 2012), and computes
the sparsity in O(mN logN). This computation can be fully parallelized for each task. Virtually updating the N by the new

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

offspring can be done in O(N). Let p be the number of parallel threads, then the time complexity in each iteration to select
the best task is O (K|P|(N +mN logN)/p) when m = 2 and O

�
K|P|(Nm�2 logN +mN logN)/p

�
when m > 2.

Because there are n iterations and usually N � m, so the time complexity of our implementation is O (nK|P|N logN/p)
when m = 2 and O

�
nK|P|Nm�2 logN/p

�
when m > 2. Compared to the time spent in the reinforcement learning, the

time cost in task selection optimization is negligible when the number of objectives m = 2 or m = 3. There also exists
some efficient hypervolume estimation algorithms which can be used to further reduce the time complexity.

B. Performance Buffer Strategy
In this section, we introduce the performance buffer strategy for population update.

In the proposed evolutionary learning algorithm, We apply the performance buffer strategy (Schulz et al., 2018) in each
generation to update the population of the policies. The performance buffer is a data structure to store the population and
aims to maintain the performance and the diversity of the policies in the population. Here we assume all the objectives are
non-negative. As illustrated in Figure 7, the performance buffer strategy evenly discretizes the performance space into Pnum

bins by angles. Then each policy ⇡i is inserted in to the corresponding buffer based on its objective F (⇡i). Finally Psize

policies in each buffer with the largest distance to the origin are selected into the population.

DIscarded solutions

Selected solutions

O

Figure 7. Performance Buffer. In 2-objective case, the performance buffer strategy split the performance space into bins and then the
solutions with top Psize distance to the origin in each bin are selected into population. Psize = 2 in this example.

C. Benchmark Problems
In this section, we give more details about the proposed benchmark problems.

We designed six multi-objective control problems with continuous action space based on Mujoco gym environments. We
keep the same state space S and action space A as used in Mujoco for most problems. We make several modifications to the
physical parameters of some robots (e.g. mass, friction, actuator limit) for working better on the multiple objectives, which
can be found in our provided code. The reward functions for each environment are illustrated as follows, where Ri means
the reward for the i-th objective we care, and the reward function are designed so that the values are in similar scale.

C.1. HalfCheetah-v2

Observation and action space dimensionality: S 2 R17
,A 2 R6.

The first objective is forward speed:
R1 = min(vx, 4) + C

The second objective is energy efficiency:

R2 = 4�
X

i

a
2
i
+ C

where C = 1 is the alive bonus, vx is the speed in x direction, ai is the action of each actuator.

C.2. Hopper-v2

Observation and action space dimensionality: S 2 R11
,A 2 R3.

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

The first objective is forward speed:
R1 = 1.5vx + C

The second objective is jumping height:
R2 = 12(h� hinit) + C

where C = 1 � 0.0002
P

i
a
2
i

is composed of alive bonus and energy efficiency, vx is the speed in x direction, h is the
current height, hinit is the initial height, ai is the action of each actuator.

C.3. Swimmer-v2

Observation and action space dimensionality: S 2 R8
,A 2 R2.

The first objective is forward speed:
R1 = vx

The second objective is energy efficiency:
R2 = 0.3� 0.15

X

i

a
2
i

where vx is the speed in x direction, ai is the action of each actuator.

C.4. Ant-v2

Observation and action space dimensionality: S 2 R27
,A 2 R8.

The first objective is x-axis speed:
R1 = vx + C

The second objective is y-axis speed:
R2 = vy + C

where C = 1� 0.5
P

i
a
2
i

is composed of alive bonus and energy efficiency, vx is x-axis speed, vy is y-axis speed, ai is the
action of each actuator.

C.5. Walker2d-v2

Observation and action space dimensionality: S 2 R17
,A 2 R6.

The first objective is forward speed:
R1 = vx + C

The second objective is energy efficiency:
R2 = 4�

X

i

a
2
i
+ C

where C = 1 is the alive bonus, vx is the speed in x direction, ai is the action of each actuator.

C.6. Humanoid-v2

Observation and action space dimensionality: S 2 R376
,A 2 R17.

The first objective is forward speed:
R1 = 1.25vx + C

The second objective is energy efficiency:
R2 = 3� 4

X

i

a
2
i
+ C

where C = 3 is the alive bonus, vx is the speed in x direction, ai is the action of each actuator.

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

C.7. Hopper-v3

Observation and action space dimensionality: S 2 R11
,A 2 R3.

The first objective is forward speed:
R1 = 1.5vx + C

The second objective is jumping height:
R2 = 12(h� hinit) + C

The third objective is energy efficiency:

R3 = 4�
X

i

a
2
i
+ C

where C = 1 is the alive bonus, vx is the speed in x direction, h is the current height, hinit is the initial height, ai is the
action of each actuator.

D. Experiment Setup Details
In this section, we give more details about the experiment setup, including the implementation details for baseline algorithms,
and the parameters and infrastructure used for training.

D.1. Framework for Baselines

Our proposed algorithm computes a dense and high-quality set of Pareto policies in the first step. We implement five baseline
algorithms to compare the quality of the computed Pareto set approximations as described in Section 4.2. To fairly compare
the baseline algorithms to ours, we implemented the RA, PFA, MOEA/D and RANDOM in a common framework as our
proposed algorithm. The framework is illustrated in Algorithm 4. All the baselines and our algorithm starts with a warm-up
stage and enters an evolutionary stage afterwards. We also apply the same population strategy and external Pareto archive to
the baseline algorithms. The only differences among algorithms are the different TaskSelection functions.

Algorithm 4 Experiment Framework
Input: #parallel tasks n, #warm-up iterations mw, #task iterations mt, #generations M .
Initialize population P , external pareto archive EP, and RL history record R.
B Warm-up Stage
Generate task set T = {(⇡i,!i)}ni=1 by random initial policies and evenly distributed weight vectors.
P 0 MOPG(T ,mw,R)
Update P and EP with P 0.
B Evolutionary Stage
for generation 1, 2, ...,M do
T TaskSelection(n, T ,P 0

,P)
P 0 MOPG(T ,mt,R)
Update P and EP with P 0.

end for
Output: Approximated pareto set EP.

Prediction-Guided MORL The TaskSelection function of our method composes a prediction function fitting algorithm
and a prediction-guided task selection algorithm as described in Algorithm 1 and Section 3.

RA For Radial Algorithm, its TaskSelection function is simply replacing the policies in previous tasks by the new offspring
policies. Its pseudo code is in Algorithm 5.

PFA In TaskSelection, PFA still uses new offspring policies as RA but slightly changes the optimization weights with a
fixed step length to try to cover all weights. (Algorithm 6)

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Algorithm 5 RA Task Selection
Input: #tasks n, last task set T0, latest offspring population P 0, population P .
Initialize task set T .
for each task (⇡i,!i) 2 T0 do
Ti (P 0(i),!i)
Append task Ti into T .

end for
Output: Selected task set T .

Algorithm 6 PFA Task Selection
Input: #tasks n, last task set T0, latest offspring population P 0, population P .
Initialize task set T .
Compute weight change �! in each generation.
for each task (⇡i,!i) 2 T0 do
Ti (P 0(i),!i +�!)
Append task Ti into T .

end for
Output: Selected task set T .

MOEA/D MOEA/D decomposes the multi-objective problem into subproblems by a set of uniformly distributed weights
and solves all of those subproblems in a collaborative way. In each generation, MOEA/D selects the best policy for each
subproblem. Specifically, for a subproblem associated with weight vector !, MOEA/D selects the policy ⇡ from the current
population which maximize the weighted-sum scalarization function ! · F(⇡). (Algorithm 7)

Algorithm 7 MOEA/D Task Selection
Input: #tasks n, last task set T0, population P .
Initialize task set T .
for each task (⇡i,!i) 2 T0 do

Initialize selected policy ⇡
⇤ None.

for each policy ⇡j 2 P do
if !i · F(⇡j) > !i · F(⇡⇤) then
⇡
⇤ ⇡j

end if
end for
Ti (⇡⇤

,!i)
Append task Ti into T .

end for
Output: Selected task set T .

RANDOM RANDOM baseline randomly assigns n tasks to be optimized in next generation. (Algorithm 8)

Algorithm 8 RANDOM Task Selection
Input: #tasks n, population P .
Initialize task set T .
for i 1, 2, ..., n do

Initialize task Ti None
Randomly select policy ⇡ 2 P and weight !.
Ti (⇡,!)
Append task Ti into T .

end for
Output: Selected task set T .

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

D.2. Training Details

We run all our experiments on VM instances with 96 Intel Skylake vCPUs and 86.4G memory on Google Cloud Platform,
and no GPU is required. For all baselines, we use a standard two-layer neural network policy. The input layer receives the
state vector of the robot, and the dimension of the network output is as twice as the size of the action space which consists
both the mean and the standard deviation of the action. Each hidden layer has 64 units and activated by tanh function. For
META, we train it with same amount of total environment steps as our algorithm.

We use the same shared hyper parameters for all the baselines (except META). The shared parameters include:

• n: the number of reinforcement learning tasks in each generation.

• env steps: the number of environment steps in each reinforcement learning thread (i.e. the total number of environment
steps equals n⇥ env steps).

• mw: the number of reinforcement learning iterations in the warm-up stage.

• mt: the number of reinforcement learning iterations in each generation in the evolutionary stage.

• Pnum: the number of performance buffers.

• Psize: the size of each performance buffer.

• PPO parameters: all other hyper parameters in the PPO are same across all baselines and all problems.

Our algorithm only contains two unique hyper parameters K and ↵, where K is the number of sampled weights for
each policy to discretize the mixed-integer programming problem, and ↵ is the weight of sparsity metric in the mixture
metric (Section 3.4). All the hyper parameters used in our experiments are reported in the Table 2. Our PPO algorithm is
implemented based on the codebase (Kostrikov, 2018), and the PPO parameters are reported in the Table 3.

Table 2. Hyper Parameters

Example n env steps mw mt Pnum Psize K ↵

HalfCheetah-v2 6 5⇥ 106 80 20 100 2 7 �1
Hopper-v2 6 8⇥ 106 200 40 100 2 7 �1
Swimmer-v2 6 2⇥ 106 40 10 100 2 7 �1
Ant-v2 6 8⇥ 106 200 40 100 2 7 �1
Walker2d-v2 6 5⇥ 106 80 20 100 2 7 �1
Humanoid-v2 6 2⇥ 107 200 40 100 2 7 �1
Hopper-v3 15 8⇥ 106 200 40 210 2 7 �106

Table 3. PPO Parameters

parameter name value

timesteps per actorbatch 2048
num processes 4
lr 3⇥ 10�4

gamma 0.995
gae lambda 0.95
num mini batch 32
ppo epoch 10
entropy coef 0
value loss coef 0.5

E. Additional Results
In this section, we give the full results for the experiments on all benchmark problems, including the training curves, Pareto
set approximation results, and Pareto analysis results.

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

E.1. Pareto Quality Comparison

We first demonstrate the full plot of the learning curves of the hypervolume metric and the sparsity metric on all benchmark
problems in Figure 8. Then we plot the Pareto fronts discovered by each algorithm on each benchmark problem in Figure 9
and Figure 10. The results show that our prediction-guided algorithm finds Pareto solution sets with higher hypervolume
than the baseline algorithms on most problems. Most importantly, our algorithm is able to discover a significantly denser
Pareto front than any exsiting algorithms.

Figure 8. The learning curves of hypervolume and sparsity metrics of different algorithms on benchmark problems. The x-axis is
the generation, the y-axis is the metric and the shadow area is the standard deviation. We do not plot the learning curve of META because
it can be measured only during the final adaptation stage. For Hopper-v3, we do not run PFA as the sequence of the weights in three
dimensional space is undefined.

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

500 1000 1500 2000 2500
+ 5.80H+6, 6 3.72H+2

500

1000

1500

2000

2500

2
ur
s

+DOfChHHWDh-v2

2500 3000 3500 4000
+ 2.09H+7, 6 2.41H+3

2000

3000

4000

5000

+RSSHr-v2

0 100 200
+ 3.26H+4, 6 1.08H+1

20

40

60

80

100

120

140

6wiPPHr-v2

1000 2000 3000
+ 6.38H+6, 6 2.47H+3

0

500

1000

1500

2000

2500

AnW-v2

500 1000 1500 2000
+ 4.44H+6, 6 1.13H+2

750

1000

1250

1500

1750

2000

2250

2500

WDONHr2d-v2

4000 6000 8000 10000
+ 5.03H+7, 6 2.92H+3

2500

3000

3500

4000

4500

5000

5500

6000
+uPDnRid-v2

500 1000 1500 2000 2500
+ 5.66H+6, 6 1.69H+4

500

1000

1500

2000

2500

5A

2500 3000 3500 4000
+ 2.03H+7, 6 2.24H+4

2000

3000

4000

5000

0 100 200
+ 2.82H+4, 6 5.57H+1

20

40

60

80

100

120

140

1000 2000 3000
+ 5.59H+6, 6 4.51H+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
+ 3.65H+6, 6 1.48H+4

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000
+ 3.90H+7, 6 6.92H+4

2500

3000

3500

4000

4500

5000

5500

6000

500 1000 1500 2000 2500
+ 5.80H+6, 6 1.03H+3

500

1000

1500

2000

2500

3F
A

2500 3000 3500 4000
+ 1.99H+7, 6 6.91H+4

2000

3000

4000

5000

0 100 200
+ 2.84H+4, 6 5.27H+1

20

40

60

80

100

120

140

1000 2000 3000
+ 5.73H+6, 6 1.42H+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
+ 3.60H+6, 6 7.53H+3

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000
+ 3.29H+7, 6 3.38H+3

2500

3000

3500

4000

4500

5000

5500

6000

500 1000 1500 2000 2500
+ 5.63H+6, 6 1.23H+4

500

1000

1500

2000

2500

0
2
EA
/D

2500 3000 3500 4000
+ 2.10H+7, 6 2.70H+4

2000

3000

4000

5000

0 100 200
+ 2.67H+4, 6 1.13H+2

20

40

60

80

100

120

140

1000 2000 3000
+ 6.26H+6, 6 3.37H+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
+ 4.09H+6, 6 2.10H+4

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000
+ 4.88H+7, 6 1.31H+5

2500

3000

3500

4000

4500

5000

5500

6000

500 1000 1500 2000 2500
+ 5.70H+6, 6 7.86H+2

500

1000

1500

2000

2500

5A
1
D
2
0

2500 3000 3500 4000
+ 1.95H+7, 6 7.35H+3

2000

3000

4000

5000

0 100 200
+ 3.12H+4, 6 2.21H+1

20

40

60

80

100

120

140

1000 2000 3000
+ 5.19H+6, 6 1.57H+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
+ 3.70H+6, 6 7.84H+2

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000
+ 3.35H+7, 6 5.71H+3

2500

3000

3500

4000

4500

5000

5500

6000

500 1000 1500 2000 2500
+ 5.29H+6, 6 1.09H+3

500

1000

1500

2000

2500

0
E7
A

2500 3000 3500 4000
+ 7.70H+6, 6 2.49H+4

2000

3000

4000

5000

0 100 200
+ 8.29H+3, 6 1.06H+0

20

40

60

80

100

120

140

1000 2000 3000
+ 2.97H+6, 6 3.16H+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
+ 3.03H+6, 6 5.78H+3

750

1000

1250

1500

1750

2000

2250

2500

500 1000 1500 2000 2500

500

1000

1500

2000

2500

AO
O

2500 3000 3500 4000

2000

3000

4000

5000

0 100 200

20

40

60

80

100

120

140

1000 2000 3000

0

500

1000

1500

2000

2500

500 1000 1500 2000

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000

2500

3000

3500

4000

4500

5000

5500

6000

Figure 9. The Pareto front approximation comparison for all 2-objective benchmark problems. For each problem, we show the best
seed for each algorithm. The Pareto of META on Humanoid-v2 problem is not plotted, since in our experiments, META is not able to
generate a Pareto front in the first quadrant.

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Figure 10. The Pareto front approximation comparison for Hopper-v3.

E.2. Pareto Analysis Results

We conduct Pareto analysis on the computed Pareto approximation to find the different policy families for all benchmark
problems and construct continuous Pareto representation for each family. The full Pareto analysis results are shown in
Figure 12. For two-objective problems, we construct the continuous Pareto front by linearly interpolating the consecutive
policies from a same family. For three-objective problem, we represent the continuous Pareto front for each family by a
triangle surface mesh. The results demonstrate that the Pareto solutions discovered by our evolutionary learning algorithm
can be effectively represented by several different policy families, each occupying a continuous manifold in the parameter
space and being responsible for a segment/patch on the Pareto front in the performance space.

Figure 11. Pareto analysis results for 2-objective benchmark problems. The first row is the family identification in the parameter
space by t-SNE and k-means. The second row is the corresponding objectives of those families in the performance space. The third row is
the constructed continuous Pareto front approximation.

To validate the accuracy of the constructed continuous Pareto representation, we sample points on the continuous Pareto
front for each family, and evaluate the relative error between the desired objectives and the objectives of the interpolated
policy. For three-objective problem (Hopper-v3), we build a triangle mesh from the Pareto policies and then sample the
testing points on the surfaces. The errors are reported in the first row of Table 4. The results show that the objectives of the
interpolated policy is close enough to the desired objectives on the constructed Pareto front, which means by intra-family
interpolation we can potentially get infinite number of policies on the Pareto front. We further test the necessity of the
multi-family representation for the Pareto front. We sample points on the boundary of different families in performance
space, and interpolate the policies from the different families and evaluate the relative error between the desired objectives
and the objectives of the interpolated policy. The errors are reported in the second row of Table 4. The results show that it is
impossible to get a policy with the desired objectives by interpolating the policies from different families, which further

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Jumping Height Running Speed

En
er

gy
 E
ffi

ci
en

cy

Energy Efficiency

Ju
m

pi
ng

 H
eig

ht Running Speed

Figure 12. Pareto analysis results for Hopper-v3. (left) The family identification in the parameter space by t-SNE and k-means.
(middle) The constructed continuous Pareto front approximation in the performance space. (right) Embedding the continuous Pareto front
approximation in barycentric coordinates for better visualization.

validate that the different families are disjoint in the parameter space. The illustration of the tests is shown in Figure 13.

Policy in family 1
Policy in family 2
Continuous Pareto front for family 1
Continuous Pareto front for family 2
Testing objectives for intra-family interpolation
Testing objectives for inter-family interpolation

Figure 13. Illustration for continuous Pareto front accuracy evaluation. We sample testing objectives on the continuous Pareto front
to test intra-family interpolation and on the boundary between families to test inter-family interpolation.

Table 4. Intra-family and Inter-family interpolation errors. We evaluate the relative error for intra-family and inter-family interpolation
respectively. For two objective cases, we sample 1000 testing objectives for intra-family interpolation and 100 testing objectives for
inter-family interpolation. For the three objective case the number of samples are 20000 and 5000 for intra-family and inter-family
respectively. The average errors are reported below.

EXAMPLE HALFCHEETAH-V2 HOPPER-V2 SWIMMER-V2 ANT-V2 WALKER2D-V2 HOPPER-V3

INTRA-FAMILY 0.39% 0.85% 0.47% 3.94% 0.52% 0.87%

INTER-FAMILY 6.71% 88.62% 2.81% 67.84% 7.95% 17.34%

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

E.3. Increase Number of Tasks

We further test the effectiveness of our proposed algorithm for larger number of tasks n. We increase the number of tasks so
that the interval between evenly distributed weights decreases from 0.2 to 0.1 for two-objective examples and from 0.25 to
0.2 for Hopper-v3. In other words, for all two-objective examples, we change n from 6 to 11, and for Hopper-v3, we change
n from 15 to 21. We run each algorithm on each problem for six times and report the average hypervolume and sparsity
metrics in Table 5. The results show that the quality of the computed Pareto set approximation improves when the number
of parallel tasks increases for all algorithms, and our algorithm consistently outperforms baselines in both cases.

Table 5. Evaluation of our algorithm and baseline algorithms on the proposed benchmark problems for more parallel tasks.
n = 11 for all two-objective problems and n = 21 for Hopper-v3. We run all algorithms on each problem for 6 runs and report the
average Hypervolume (Hv) and Sparsity (Sp) metrics. Bold number is the best in each row.

EXAMPLE METRIC OURS RA PFA MOEA/D RANDOM META

HALFCHEETAH-V2 HV (⇥106) 5.81 5.76 5.77 5.74 5.77 5.27

SP (⇥103) 0.29 8.63 2.97 7.74 0.92 1.22

HOPPER-V2 HV (⇥107) 2.09 2.00 2.00 2.08 1.95 1.23

SP (⇥104) 1.58 4.61 6.75 4.30 1.13 1.73

SWIMMER-V2 HV (⇥104) 3.03 2.65 2.65 2.82 2.87 1.58

SP (⇥101) 1.42 3.92 3.06 2.31 2.99 5.58

ANT-V2 HV (⇥106) 6.54 6.44 6.44 6.42 5.68 4.17

SP (⇥104) 0.43 2.78 2.33 1.33 0.81 1.58

WALKER2D-V2 HV (⇥106) 4.95 4.38 4.40 4.76 4.30 2.08

SP (⇥104) 0.02 0.35 0.21 0.29 0.02 0.72

HOPPER-V3 HV (⇥1010) 3.83 3.63 - 3.60 3.39 2.39

SP (⇥103) 0.02 0.25 - 0.18 0.09 3.44

E.4. Parameter Study for t-SNE

Dimensionality reduction methods usually contain some hyperparameters that affect the embedding outcomes. However, in
our experiments, the Pareto analysis results (i.e., the family clustering results) are not influenced by different parameters of
the t-SNE in most cases. In this section, we take the Walker2d-v2 problem as an example, and conduct a parameter study to
show how the Pareto analysis results are affected by the t-SNE parameters. Our default t-SNE parameters are reported in
Table 6. We change each parameter within a reasonable range as shown in the last column of Table 6, and apply the Pareto
analysis to identify the families as described in Section 3.5. The results are demonstrated in Figures 14, 15, and 16. The
results show that although the visualization changes dramatically when we change the parameters, the family clustering
results remain consistent.

Table 6. t-SNE Parameters

parameter name default value range

perplexity 50 [40, 80]
learning rate 50 [10, 200]
n iter 2000 [500, 5000]

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Figure 14. t-SNE parameter study for perplexity. We change the perplexity parameter from 40 to 80 and conduct the Pareto analysis to
identify families for Walker2d-v2 problem. The first row is the clustered families in the embedding space, and the second row is in the
performance space.

Figure 15. t-SNE parameter study for learning rate. We change the learning rate from 10 to 200 and conduct the Pareto analysis to
identify families for Walker2d-v2 problem. The first row is the clustered families in the embedding space, and the second row is in the
performance space.

Figure 16. t-SNE parameter study for n iter. We change the n iter parameter from 500 to 5000 and conduct the Pareto analysis to
identify families for Walker2d-v2 problem. The first row is the clustered families in the embedding space, and the second row is in the
performance space.

Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

E.5. Dimensionality Methods Comparison

For the purpose of dimensionality reduction, there are also other available methods (e.g., LLE, PCA, Isomap). We choose
t-SNE due to its much clearer distinguishing effect. In this section, we conduct a comparison among these different
dimensionality reduction methods. For each dimensionality method, we embed the policy parameters into a two dimensional
space and use the same k value to cluster the families by k-means. Figure 17 shows the comparison on the Walker2d-v2
problem, and Figure 18 shows the comparison on the Ant-v2 problem. As we can see, even though t-SNE, Isomap, and LLE
give identical family clustering results, t-SNE produces the visualization that most clearly demonstrates that the policies
from the same family are clustered together and are far from the policies from other families.

Figure 17. Comparison of dimensionality reduction methods on Walker2d-v2 problem. We use t-SNE, Isomap, LLE and PCA to
embed the same computed Pareto set and conduct k-means to cluster the families. The first row is the clustered families in the embedding
space, and the second row is in the performance space.

Figure 18. Comparison of dimensionality reduction methods on Ant-v2 problem. We use t-SNE, Isomap, LLE and PCA to embed
the same computed Pareto set and conduct k-means to cluster the families. The first row is the clustered families in the embedding space,
and the second row is in the performance space.

