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This document provides details of the proposed compression
method (Section S1), model and experiment details (Sec-
tion S2), and additional examples of compressed images
(Section S3).

S1. Delimitation Overhead

We elaborate on the “encoding” paragraph of Section 3.3
of the main paper. After finding a quantized code point éz
for each dimension ¢ € {1,..., K} of the latent space,
these code points have to be losslessly encoded into a sin-
gle bitstring for transmission or storage. We experimented
with two encoding schemes, described in Subsections S1.1
and S1.2 below. Subsection S1.3 provides further analysis.

S1.1. Encoding via Concatenation

We first describe an encoding scheme that we did not end
up using, but that makes it easier to understand the objective
function of VBQ (Eq. 8 of the main text). This encoding
scheme concatenates the binary representations of fz (Eq. 4
of the main text) for all ¢ € {1,..., K} in to a single bit-
string. As each dimension i contributes R(£;) bits to the
concatenated bitstring, this encoding scheme justifies the
rate penalty term “AR/(£;)” in Eq. 4 of the main text.

One also has to transmit the rates R(él) (in compressed
form using traditional entropy coding) so that the decoder
can split the concatenated bitstring at the correct positions.
While this incurs some overhead, the variable-bitlength rep-
resentation of éz also saves one bit per dimension 7 because
the last bit in the binary representation of each él does not
need to be transmitted as it is always equal to one (other-
wise, the optimization algorithm in VBQ would favor an
equivalent shorter binary representation of éi).
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S1.2. Encoding via Standard Entropy Coding

The actual encoding scheme we ended up using does not
deal with the binary representation of each éz explicitly.
Instead, we treat each él as a discrete symbol and directly
encode the sequence (fl)lel of symbols via entropy coding
(e.g., standard arithmetic coding). The entropy coder needs
a model of the probability p(&;) of each symbol. For model
compression, we use the empirical frequencies, which we
transmit as extra header information that counts towards
the total bitrate. For data compression, we estimate the
frequencies on training data and include them in the decoder.

Transmitting the empirical frequencies lead to a negligible
overhead in the word embeddings experiment. Only a few
hundred code points (depending on A) had nonzero frequen-
cies, so that the compressed file size was dominated by the
encoding of K = Vd = 107 quantized latent variables.

S$1.3. Justification of the Rate Penalty Term AR (£;)

All experimental results are reported with the encoding
scheme of Section S1.2 as it lead to slightly lower bitrates
in practice. A peculiarity of this encoding scheme is that
it ignores the length R(él) of the binary representation of
each éi For a sequence of symbols £ = (fl)lel with an
i.i.d. entropy model p(fi), an optimal entropy coder (such as

arithmetic coding) achieves the total bitrate R(€) = [h(£)]
with the information content

-~ K ~ K ~
h(€) = h(&) == log, p(&)- (S1)
i=1 i=1

In particular, Eq. S1 does not depend on R(&;). This poses
the question whether the rate penalty term “AR.(&;)” in the
VBQ objective (Eq. 8 of the main text) is justified. Ide-
ally, the algorithm would minimize Ak (£;) = —Xlog, p(&;)
instead, but this quantity is unknown until the quantiza-
tions (£;)X | and therefore the empirical frequencies p(&;)
are obtained. Our experiments suggest that R (£;) is a useful
proxy for the eventual value of h(&;).

Figure S1 plots the rate estimate R(f}), i.e., the integer num-
ber of bits in the binary representation of &; (z-axis) against
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Figure S1. Relation between rate estimate R(¢;) and the actual
contribution h(£;) of code point &; to the total bitrate under en-
tropy coding. The approximate affine linear relationship justifies
minimizing R(£;) as a proxy for h(&;) in VBQ.

the actual contribution h(¢;) = —log, p(&;) to the total
bitrate according to Eq. S1 (y-axis). The figure shows exper-
imental data for compressed word embeddings at 1.32 bits
per latent dimension. We make the following observations:

e For most code points &;, the dependency between h(&;)
and R(&;) can be approximated by an affine linear
function, thus justifying the use of R(£;) in the opti-
mization of Bayesian AC.

e The slope of the approximate linear dependency is
larger than one. This may be understood by the penalty
term AR(&;) in the objective function (Eq. 8 of the
main text), which causes the method to avoid code
points &; with large rate estimates R(&;), thus reduc-
ing their empirical frequencies p(éz) and increasing
their information content h(¢;) = — log, p(&;). This
observation does not invalidate the use of R(&;) as
an estimate for h(¢;) since the different slope can be
absorbed in a rescaling of the parameter A

e For rates R(fl) > 4, there are two code points for
each rate with considerably lower information content.
These code points correspond to the two extremes for
each rate, i.e., f} closest to zero or one, respectively.
The observation that the two extremes have lower in-
formation content (i.e., higher empirical frequencies)
can be explained by the fact that the empirical prior dis-
tribution whose CDF we use to map latent variables z;
to quantiles &; does not fully capture the true distribu-
tion of variational means. Indeed, experiments with
a more long tailed empirical prior distribution lead to
marginally better performance, but the simplicity of a
Gaussian empirical prior seemed more valuable to us.

S2. More Experimental Details
S2.1. Word Embeddings

The word embeddings experiment involved only minimal
hyperparameter tuning, and we only optimized for perfor-
mance of the uncompressed model since the goal of the
experiment was to test the proposed compression method
on a model that was not tuned for compression. We trained
for 10 iterations with minibatches of 10* randomly drawn
words and contexts due to hardware constraints. We tried
learning rates 0.1 and 1 and chose 0.1.

S2.2. Experiments on Images

As mentioned in the main text, we used regular VAEs in the
image experiments with standard normal prior p(z) and fac-
torized normal posterior ¢(z|x) with diagonal covariance.

S2.3. MNIST

The VAE’s inference network has two convolutional layers
followed by a fully connected layer. The two conv layers
use 32 and 64 filters respectively, with kernel size 3, stride
size 2, and ReLU activation. The fully connected layer has
output dimension 10 so that g and o? of ¢(z|x) each has
dimension 5.

The generative network architecture mirrors the inference
network but in reverse, starting with a dense layer mapping
5 dimensional latent variables to 1568 dimensional, treated
as 32-channel 7x7 activations, and followed by two decon-
volutional layers of 64 and 32 filters (with identical padding
and stride as the convolutional layers). The output is de-
convolved with a single 3x3 filter with sigmoid activation
function. For each pixel, the (scalar) output of the last layer
parameterizes the likelihood of the pixel being white.

We trained the network on binarized MNIST images for 100
epochs, using the Adam optimizer with learning rate 10 4.

S2.4. Frey Faces

On the Frey Faces dataset, we observe poor reconstruction
quality by training on binarized images with a factorized
Bernoulli likelihood model; instead, we treat each pixel
as an observation from a factorized categorical likelihood
model with 256 possible outcomes.

The VAE’s inference network has two layers. The first
layer flattens the input image, converts each pixel value in
{0,1,...,255} into a one-hot vector € R?6, and uses it to
index a 128-dimensional dense vector. The second layer
flattens the result of the first layer as its input (which has
dimensionality equal to 128 x number of pixels), and fully
connects its input to 8 hidden units. The final output is split
to obtain 4-dimensional p and log o2 of q(z|x).
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The generative network has two fully connected layers. The
first layer uses 4 hidden units and ReLU activation; the sec-
ond layer uses 256 x number of pixels hidden units, and
takes a 256-way softmax to compute the categorical proba-
bility of of each pixel value taking value in {0, 1, ..., 255}.

We obtained the Frey Faces images from https://cs.
nyu.edu/-roweis/data.html. We trained on a ran-
dom subset of 1800 images for 800 epochs, using the Adam
optimizer with learning rate 10 *.

On both MNIST and Frey Faces, we vary the rate-distortion
trade-off parameter \ of Variational Bayesian Quantization
between 10 5 and 10%.

S2.5. Color Image Compression

As mentioned in the main text, the VAE here uses a fully
convolutional architecture with 3 layers of 256 filters each,
the same as in (Balle et al., 2017); see the latter for detailed
descriptions. We tuned the variance o2 of the likelihood
model on a logarithmic grid from 10 * to 0.1 and set it to
0.001. The VAE was trained on the same dataset as in (Balle
et al., 2017) for 2 million steps, using Adam with learning
rate 10 4.

In the image compression R-D curves, A ranges from 2 6
to 216, In Figure 5 of the main text, A\ was set to 17.5
for VBQ to match the bitrate of the other methods. The
uniform quantization result was obtained with 4 quantization
levels, on a separately tuned model that had an additional
convolutional layer of 64 channels. The additional conv
layer was to reduce the latent dimensionality, as uniform
quantization could not achieve bitrates lower than 0.5 even
with only 2 grid points in the original 3-layer model.

S3. Additional Image Compression Examples

Starting on the next page, we provide detailed compression
results for individual images from the Kodak dataset. For
each image, we show the rate-distortion performance by
various methods, followed by reconstructions using our
proposed method and JPEG at equal bitrate.
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