Variational Bayesian Quantization

Yibo Yang * Robert Bamler * Stephan Mandt

Abstract

We propose a novel algorithm for quantizing continuous latent representations in trained models. Our approach applies to deep probabilistic models, such as variational autoencoders (VAEs), and enables both data and model compression. Unlike current end-to-end neural compression methods that cater the model to a fixed quantization scheme, our algorithm separates model design and training from quantization. Consequently, our algorithm enables “plug-and-play” compression with variable rate-distortion trade-off, using a single trained model. Our algorithm can be seen as a novel extension of arithmetic coding to the continuous domain, and uses adaptive quantization accuracy based on estimates of posterior uncertainty. Our experimental results demonstrate the importance of taking into account posterior uncertainties, and show that image compression with the proposed algorithm outperforms JPEG over a wide range of bit rates using only a single standard VAE. Further experiments on Bayesian neural word embeddings demonstrate the versatility of the proposed method.

1. Introduction

Latent-variable models have become a mainstay of modern machine learning. Scalable approximate Bayesian inference methods, in particular Black Box Variational Inference (Ranganath et al., 2014; Rezende et al., 2014), have spurred the development of increasingly large and expressive probabilistic models, including deep generative probabilistic models such as variational autoencoders (Kingma & Welling, 2014b) and Bayesian neural networks (MacKay, 1992; Blundell et al., 2015). One natural application of deep latent variable modeling is data compression, and recent work has focused on end-to-end procedures that optimize a model for a particular compression objective. Here, we study a related but different problem: given a trained model, what is the best way to encode the information contained in its continuous latent variables?

As we show, our proposed solution provides a new “plug-and-play” approach to lossy compression of both data instances (represented by local latent variables, e.g., in a VAE) as well as model parameters (represented by global latent variables that serve as parameters of a Bayesian statistical model). Our approach separates the compression task from model design and training, thus implementing variable-bitrate compression as an independent post-processing step in a wide class of existing latent variable models.

At the heart of our proposed method lies a novel quantization scheme that optimizes a rate-distortion trade-off by exploiting posterior uncertainty estimates. Quantization is central to lossy compression, as continuous-valued data like natural images, videos, and distributed representations ultimately need to be discretized to a finite number of bits for digital storage or transmission. Lossy compression algorithms therefore typically find a discrete approximation of some semantic representation of the data, which is then encoded with a lossless compression method.

In classical lossy compression methods such as JPEG or MP3, the semantic representation is carefully designed to support compression at variable bitrates. By contrast, state-of-the-art deep learning based approaches to lossy data compression (Ballé et al., 2017; 2018; Rippel & Bourdev, 2017; Mentzer et al., 2018; Lombardo et al., 2019) are trained to minimize a distortion metric at a fixed bitrate. To support variable-bitrate compression in this approach, one has to train several models for different bitrates. While training several models may be viable in many cases, a bigger issue is the increase in decoder size as the decoder has to store the parameters of not one but several deep neural networks for each bitrate setting. In applications like video streaming under fluctuating connectivity, the decoder further has to load a new deep learning model into memory every time a change in bandwidth requires adjusting the bitrate.

By contrast, we propose a quantization method for latent variable models that decouples training from compression, and that enables variable-bitrate compression with a single model. We generalize a classical entropy coding algorithm,
Arithmetic Coding (Witten et al., 1987; MacKay, 2003), from the discrete to continuous domain. Our proposed algorithm, Variational Bayesian Quantization, exploits posterior uncertainty estimates to automatically reduce the quantization accuracy of latent variables for which the model is uncertain anyway. This strategy is analogous to the way humans communicate quantitative information. For example, Wikipedia lists the population of Rome in 2017 with the specific number 2,879,728. By contrast, its population in the year 500 AD is estimated by the round number 100,000 because the high uncertainty would make a more precise number meaningless. Our ablation studies show that this posterior-informed quantization scheme is crucial to obtaining competitive performance.

In detail, our contributions are as follows:

- **A new discretization scheme.** We present a novel approach to discretizing latent variables in a variational inference framework. Our approach generalizes arithmetic coding from discrete to continuous distributions and takes posterior uncertainty into account.

- **Single-model compression at variable bitrates.** The decoupling of modeling and compression allows us to adjust the trade-off between bitrate and distortion in post-processing. This is in contrast to existing approaches to both data and model compression, which often require specially trained models for each bitrate.

- **Automatic self-pruning.** Deep latent variable models often exhibit posterior collapse, i.e., the variational posterior collapses to the model prior. In our approach, latent dimensions with collapsed posteriors require close to zero bits, thus don’t require manual pruning.

- **Competitive experimental performance.** We show that our method outperforms JPEG over a wide range of bitrates using only a single model. We also show that we can successfully compress word embeddings with minimal loss, as evaluated on semantic reasoning task.

The paper is structured as follows: Section 2 reviews related work in neural compression; Section 3 proposes our Variational Bayesian Quantization algorithm. We give empirical results in Section 4, and conclude in Section 5. Section 6 provides additional theoretical insight about our method.

2. Related Work

Compressing continuous-valued data is a classical problem in the signal processing community. Typically, a distortion measure (often the squared error) and a source distribution are assumed, and the goal is to design a quantizer that optimizes the rate-distortion (R-D) performance (Lloyd, 1982; Berger, 1972; Chou et al., 1989). Optimal vector quantization, although theoretically well-motivated (Gallager, 1968), is not tractable in high-dimensional spaces (Gersho & Gray, 2012) and not scalable in practice. Therefore most classical lossy compression algorithms map data to a suitably designed semantic representation, in such a way that coordinate-wise scalar quantization can be fruitfully applied.

Recent machine-learning-based data compression methods learn such hand-designed representation from data, but similar to classical methods, most such ML methods directly take quantization into account in the generative model design or training. Various approaches have been proposed to approximate the non-differentiable quantization operation during training, such as stochastic binarization (Toderici et al., 2016; 2017; Johnston et al., 2018), additive uniform noise (Ballé et al., 2017; 2018; Habibian et al., 2019), or other differentiable approximation (Agustsson et al., 2017; Theis et al., 2017; Mentzer et al., 2018; Rippel & Bourdev, 2017); many such schemes result in quantization with a uniformly-spaced grid, with the exception of (Agustsson et al., 2017), which optimizes for quantization grid points. Yang et al. (2020) considers optimal quantization at compression time, but assumes a fixed quantization scheme of (Ballé et al., 2017) during training.

We depart from such approaches by treating quantization as a post-processing step decoupled from model design and training. Crucial to our approach is a new quantization scheme that automatically adapts to different length scales in the representation space based on posterior uncertainty estimates. To our best knowledge, the only prior work that uses posterior uncertainty for compression is in the context of bits-back coding (Honkela & Valpola, 2004; Townsend et al., 2019), but these works focus on lossless compression, with the recent exception of (Yang et al., 2020).

Most existing neural image compression methods require training a separate machine learning model for each desired bitrate setting (Ballé et al., 2017; 2018; Mentzer et al., 2018; Theis et al., 2017; Lombardo et al., 2019). In fact, Alemi et al. (2018) showed that any particular fitted VAE model only targets one specific point on the rate-distortion curve. Our approach has the same benefit of variable-bitrate single-model compression as methods based on recurrent VAEs (Gregor et al., 2016; Toderici et al., 2016; 2017; Johnston et al., 2018); but unlike these methods, which use dedicated model architecture for progressive image reconstruction, we instead focus more broadly on quantizing latent representations in a given generative model, designed and trained for specific application purposes (possibly other than compression, e.g., modeling complex scientific observations).
We now propose an algorithm for quantizing latent variables in trained models. After describing the problem setup and assumptions (Subsection 3.1), we briefly review Arithmetic Coding (Subsection 3.2). Subsection 3.3 describes our proposed lossy compression algorithm, which generalizes Arithmetic Coding to the continuous domain.

3. Problem Setup

Generative Model and Variational Inference. We consider a wide class of generative probabilistic models with data x and unknown (or “latent”) variables $z \in \mathbb{R}^K$ from some continuous latent space with dimension K. The generative model is defined by a joint probability distribution,

$$p(x, z) = p(z) p(x | z) \quad (1)$$

with a prior $p(z)$ and a likelihood $p(x | z)$. Although our presentation focuses on unsupervised representation learning, our framework also captures the supervised setup.

Our proposed compression method uses z as a proxy to describe the data x. This requires “solving” Eq. 1 for z given x, i.e., inferring the posterior $p(z|x) = p(x, z) / \int p(x, z) \, dz$. Since exact Bayesian inference is often intractable, we resort to Variational Inference (VI) (Jordan et al., 1999; Blei et al., 2017; Zhang et al., 2019), which approximates the posterior by a so-called variational distribution $q_\phi(z|x)$ by minimizing the Kullback-Leibler divergence $D_{KL}(q_\phi(z|x) \parallel p(z|x))$ over a set of variational parameters ϕ.

Factorization Assumptions. We assume that both the prior $p(z)$ and the variational distribution $q_\phi(z|x)$ are fully factorized (mean-field assumption). For concreteness, our examples use a Gaussian variational distribution. Thus,

$$p(z) = \prod_{i=1}^K p(z_i); \quad \text{and} \quad (2)$$

$$q_\phi(z|x) = \prod_{i=1}^K \mathcal{N}(z_i; \mu_i(x), \sigma_i^2(x)), \quad (3)$$

where $p(z_i)$ is a prior for the ith component of z, and the means μ_i and standard deviations σ_i together comprise the variational parameters ϕ over which VI optimizes.\(^1\)

Prominently, the model class defined by Eqs. 1-3 includes variational autoencoders (VAEs) (Kingma & Welling, 2014a) for data compression, but we stress that the class is much wider, capturing also Bayesian neural nets (MacKay, 2003), probabilistic word embeddings (Barkan, 2017; Bamler & Mandt, 2017), matrix factorization (Mnih & Salakhutdinov, 2008), and topic models (Blei et al., 2003).

Protocol Overview. We consider two parties in communication, a sender and a receiver. In the case of data compression, both parties have access to the model, but only the sender has access to the data point x, which it uses to fit a variational distribution $q_\phi(z|x)$. It then uses the algorithm proposed below to select a latent variable vector \hat{z} that has high probability under q_ϕ, and that can be encoded into a compressed bitstring, which gets transmitted to the receiver. The receiver losesessly decodes the compressed bitstring back into \hat{z} and uses the likelihood $p(x|\hat{z})$ to generate a reconstructed data point \hat{x}, typically setting $\hat{x} = \arg \max_x p(x|\hat{z})$. In the case of model compression, the sender infers a distribution $q_\phi(z|x)$ over model parameters z given training data x, and uses our algorithm to select a suitable vector \hat{z} of quantized model parameters. The receiver receives \hat{z} and uses it to reconstruct the model.

The rest of this section describes how the proposed algorithm selects \hat{z} and encodes it into a compressed bitstring.

3.2. Background: Arithmetic Coding

Our quantization algorithm, introduced in Section 3.3 below, is inspired by a lossless compression algorithm, arithmetic coding (AC) (Witten et al., 1987; MacKay, 2003), which we generalize from discrete data to the continuous space of latent variables $z \in \mathbb{R}^K$. To get there, we first review the main idea of AC that our proposed algorithm borrows.

AC is an instance of so-called entropy coding. It uniquely maps messages $m \in \mathcal{M}$ from a discrete set \mathcal{M} to a compressed bitstring of some length R_m (the “bitrate”). Entropy coding exploits prior knowledge of the distribution $p(m)$ of messages to map probable messages to short bitstrings while spending more bits on improbable messages. This way, entropy coding algorithms aim to minimize the expected rate $\mathbb{E}_{p(m)}[R_m]$. For lossless compression, the expected rate has a fundamental lower bound, the entropy $H = \mathbb{E}_{p(m)}[h(m)]$, where $h(m) = -\log_2 p(m)$ is the Shannon information content of m. AC provides near optimal lossless compression as it maps each message $m \in \mathcal{M}$ to a bitstring of length $R_m = \lceil h(m) \rceil$, where $\lceil \cdot \rceil$ denotes the ceiling function.

AC is usually discussed in the context of streaming compression where m is a sequence of symbols from a finite alphabet, as AC improves on this task over the more widely known Huffman coding (Huffman, 1952). In our work, we focus on a different aspect of AC: its use of a cumulative probability distribution function to map a nonuniformly distributed random variable $m \sim p(m)$ to a number ξ that is nearly uniformly distributed over the interval $[0, 1)$.
Figure 1. Comparison of Arithmetic Coding (AC, left) and VBQ (right, proposed). Both methods use a prior CDF (orange) to map nonuniformly distributed data to a number \(\xi \sim U(0, 1) \), and both require an uncertainty region for truncation.

Figure 1 (left) illustrates AC for a binomial-distributed message \(m \in \{0, \ldots, 10\} \) (the number of ‘heads’ in a sequence of ten coin flips). The solid and dashed orange lines show the left and right sided cumulative distribution function, \(F_c(m) := \sum_{m' \leq m} p(m') \) and \(F_C(m) := \sum_{m' < m} p(m') \), respectively. They define a partitioning of the interval \([0, 1]\) into pairwise disjoint subintervals \(\mathcal{I}_m := [F_c(m), F_C(m)] \) (orange squares). Since the intervals \(\mathcal{I}_m \) are disjoint for all \(m \in \mathcal{M} \), any number \(\xi \in \mathcal{I}_m \) uniquely identifies a given message \(m \). AC picks such a number \(\hat{\xi} \in \mathcal{I}_m \) and encodes it into a string of bits \(b_x \). VQ finds a quantile \(\hat{\xi} \in \mathcal{I}_m \) at a single point (see Eq. 7 below).

\[\hat{\xi} = (0.b_1b_2\ldots b_{R_m})_{2} \quad \text{with bits} \quad b_{R_m} \in \{0, 1\} \quad \forall k. \quad (4) \]

Since any \(\xi \in \mathcal{I}_m \) may be used to identify the message \(m \), we can interpret the interval \(\mathcal{I}_m \) as an uncertainty region in \(\xi \)-space. AC picks the number \(\hat{\xi} \in \mathcal{I}_m \) with the shortest binary representation. This requires at most \(h(m) \) bits because the numbers \(\xi \) that can be represented by Eq. 4 with \(R_m = [h(m)] \) form a uniform grid with spacing \(2^{-R_m} = 2^{-(h(m))} \), which is at most as wide as the size of the interval, \(|\mathcal{I}_m| = p(m) = 2^{-h(m)} \). The red arrows in Figure 1 (left) illustrate how AC would encode the message \(m = 7 \) in the toy example into the bitstring “111”. Decoding works in the opposite direction and maps \(\hat{\xi} \) back to \(m \).

In the next section, we generalize AC to the continuous domain. As we will show, the concept of an “uncertainty region” in \(\xi \)-space becomes again crucial.

3.3. Variational Bayesian Quantization

We now present our proposed algorithm, Variational Bayesian Quantization (VBQ), a novel quantization method for lossy compression that is inspired by AC but that operates on continuous latent variables \(z \in \mathbb{R}^K \). Similar to AC, VBQ exploits knowledge of a prior probability distribution \(p(z) \) in combination with a (soft) uncertainty region to encode probable values of \(z \) into short bitstrings.

From Intervals to Distributions. The main ideas that VBQ borrows from AC are as follows: (1) the use of a cumulative distribution function to map a non-uniformly distributed random variable to a uniformly distributed random variable \(\xi \) over the interval \((0, 1)\), and (2) the use of an “uncertainty region” to select a number from this interval to encode the message with as few bits as possible. While AC uses an interval \(\mathcal{I}_m \) with hard boundaries, VBQ softens this uncertainty region by considering posterior uncertainty.

We consider a single continuous latent variable \(z_i \in \mathbb{R} \) with arbitrary prior \(p(z_i) \). The cumulative (CDF) of the prior, \(F(z_i) := \int_{-\infty}^{z_i} p(z_i') \, dz_i' \), is shown in orange in Figure 1 (right). It maps \(z_i \sim p(z_i) \) to \(\xi_i \sim U(0, 1) \). In contrast to the discrete case discussed in Section 3.2, where the prior CDF maps each message \(m \) to an entire interval \(\mathcal{I}_m \), note that the CDF of a continuous random variable maps real numbers to real numbers.

Since \(\xi_i \sim U(0, 1) \) is almost surely an irrational number, its binary representation is infinitely long, and thus has to be truncated. We find an optimal truncation by generalizing the idea of the uncertainty region \(\mathcal{I}_m \) to the continuous space: we consider the posterior uncertainty in \(z_i \)-space and map it to \(\xi_i \)-space. Approximating the posterior \(p(z_i|x) \) by the variational distribution \(q(z_i|x) := \mathcal{N}(z_i; \mu_i(x), \sigma_i^2(x)) \), see Eq. 3, we thus consider the function

\[g(\hat{\xi}_i) := q(F^{-1}(\hat{\xi}_i) | x). \quad (6) \]

Here, \(F^{-1} \) is the inverse CDF of the quantile function, which maps \(\hat{\xi}_i \) back to \(z_i \). Note that \(g \) is not a normalized probability distribution, as Eq. 6 deliberately does not include the Jacobian \(\nabla_{\hat{\xi}_i} F^{-1}(\hat{\xi}_i) \) because the final objective will be to maximize \(q_0(z|x) \) at a single point (see Eq. 7 below).

Intuition. The solid and dashed purple curves in figure Figure 1 (right) plot \(q(z_i|x) \) and \(q(\hat{\xi}_i) \) on the horizontal and vertical axis, respectively. The red arrows illustrate how a finite uncertainty region \(\mu_i(x) \pm \sigma_i(x) \) in \(z_i \)-space is mapped to a finite width of \(g \) in \(\xi_i \)-space. VBQ finds a quantile \(\hat{\xi}_i \) that has high value under \(g \) while at the same time having a short binary representation. The two purple arrowheads on the vertical axis point to two viable candidates, \(\hat{\xi}_i = \frac{7}{8} \) and \(\hat{\xi}_i = \frac{3}{8} \), that both lie within the uncertainty region. The choice between these two points poses a rate-distortion trade-off: while \(\frac{7}{8} \equiv (0.111)_2 \) has higher value under \(g \) (i.e., it identifies a point \(\hat{z}_i = F^{-1}(\frac{7}{8}) \) with higher approximate posterior probability \(q(\hat{z}_i|x) \)), the alternative \(\hat{\xi}_i = \frac{3}{8} \equiv (0.11)_2 \) can be encoded in fewer bits.
We thus express \(\log \mathbb{E} \). The optimization thus decouples across all latent dimensions via Eq. 4 with a finite but arbitrary bitlength. For each dimension \(i \), the number of binary digits, see Eq. 4), \(\hat{\xi}_i^* \) the algorithm only needs to consider the two code points \(\hat{\xi}_i^* \) with rate at most \(r \) that enclose the optimum \(\xi^*_i := F(\mu_i(x)) \) and are closest to it; these two code points can be easily computed in constant time. The iteration terminates as soon as the maximally possible remaining increase in \(\log q(z_i|x) = \log g(\xi^*_i) \) is smaller than the minimum penalty for an increasing bitlength (in practice, the iteration rarely exceeds \(r \approx 8 \)).

For each dimension \(i \), we restrict the quantile \(\xi_i \in (0,1) \) to the set of code points \(\xi_i \) that can be represented in binary via Eq. 4 with a finite but arbitrary bitlength \(R(\xi_i) \). We define the total bitlength \(R(\xi) := \sum_{i=1}^K R(\xi_i) \), i.e., the length of the concatenation of all codes \(\xi_i, i \in \{1, \ldots, K\} \), neglecting, for now, an overhead for delimiters (see below). Using a rate penalty parameter \(\lambda > 0 \) that is shared across all dimensions \(i \), we minimize the rate-distortion objective

\[
L_\lambda(\xi|x) = -\log q_\lambda(\hat{x}|x) + \lambda R(\xi) \tag{8}
\]

The optimization thus decouples across all latent dimensions \(i \), and can be solved efficiently and in parallel by minimizing the \(K \) independent objective functions

\[
\ell_\lambda(\hat{\xi}_i|\xi) = (F^{-1}(\hat{\xi}_i) - \mu_i(x))^2 + 2\lambda \sigma_i^2(x) R(\hat{\xi}_i). \tag{9}
\]

Although the bitlength \(R(\xi_i) \) is discontinuous (it counts the number of binary digits, see Eq. 4), \(\ell_\lambda(\hat{\xi}_i|\xi) \) can be efficiently minimized over \(\xi_i \) using Algorithm 1. The algorithm iterates over all rates \(r \in \{1, 2, \ldots\} \) and searches for the code point \(\hat{\xi}_i^* \) that minimizes \(\ell(\hat{\xi}_i|\xi) \). For each \(r \), the algorithm only needs to consider the two code points \(\hat{\xi}_i^* \) with rate at most \(r \) that enclose the optimum \(\xi^*_i := F(\mu_i(x)) \) and are closest to it; these two code points can be easily computed in constant time. The iteration terminates as soon as the maximally possible remaining increase in \(\log q(z_i|x) = \log g(\xi^*_i) \) is smaller than the minimum penalty for an increasing bitlength (in practice, the iteration rarely exceeds \(r \approx 8 \)).

Algorithm 1 Rate-Distortion Optimization for Dimension \(i \)

Input: Prior CDF \(F(z_i) \), rate penalty \(\lambda > 0 \), variational mode \(\mu_i(x) \) and variance \(\sigma_i^2(x) \).

Output: Optimal code point \(\hat{\xi}_i^* \equiv (0, b_1 b_2 \ldots b_K \hat{\xi}_i^*) \).

Evaluate \(\hat{\xi}_i^* \leftarrow F(\mu_i(x)) \).

Initialize \(r \leftarrow 0, \xi_i^* \leftarrow \text{null}, \ell^* \leftarrow \infty \).

repeat

Update \(r \leftarrow r + 1 \)

Set \(\xi_i^* \leftarrow 2^{-r} \lfloor 2^r \hat{\xi}_i^* \rfloor \).

if \(\hat{\xi}_i^* \neq 0 \) and \(\ell(\xi_i^* | x) < \ell^* \) then

Update \(\xi_i^* \leftarrow \hat{\xi}_i^*, \ell^* \leftarrow \ell(\xi_i^* | x) \).

end if

if \(\hat{\xi}_i^* - \hat{\xi}_i^* \neq 1 \) and \(\ell(\xi_i^* | x) < \ell^* \) then

Update \(\xi_i^* \leftarrow \hat{\xi}_i^*, \ell^* \leftarrow \ell(\xi_i^* | x) \).

end if

until \(\log g(\xi_i^*) - \log g(\xi_i^*) < \lambda(r - 1) \tag{9} \)

Optimizing the Rate-Distortion Trade-Off. Rather than considering a hard uncertainty region, VBQ simply tries to find a point \(\xi \in (z_i)_{i=1}^K \) that identifies latent variables \(z \in (z_i)_{i=1}^K \) with high probability under the variational distribution \(q_\lambda(z|x) \) while being expressible in few bits. We thus express \(\log q_\lambda(z|x) \) in terms of the coordinates \(\xi_i = F(z_i) \) using Eq. 3,

\[
\log q_\lambda(z|x) = -\sum_{i=1}^K \left(\frac{(F^{-1}(\hat{\xi}_i) - \mu_i(x))^2}{2 \sigma_i^2(x)} + \text{const.} \right. \tag{7}
\]

Encoding. After finding the optimal code points \((\hat{\xi}_i^*)_{i=1}^K \), they have to be encoded into a single bitstring. Simply concatenating the binary representations (Eq. 4) of all \(\hat{\xi}_i^* \) would be ambiguous due to their variable lengths \(R(\hat{\xi}_i^*) \) (see detailed discussion in the Supplementary Material). Instead, we treat the code points as symbols from a discrete vocabulary and encode them via lossless entropy coding, e.g., Arithmetic Coding. The entropy coder requires a probabilistic model over all code points; here we simply use their empirical distribution. When using our method for model compression, this empirical distribution has to be transmitted to the receiver as additional header information that counts towards the total bitrate. For data compression, by contrast, we obtain the empirical distribution of code points on training data and include it in the decoder.

Discussion. The proposed algorithm adjusts the accuracy for each latent variable \(z_i \) based on two factors: (i) a global rate setting \(\lambda \) that is shared across all dimensions \(i \); and (ii) a per-dimension posterior uncertainty estimate \(\sigma_i(x) \). Point (i) allows tuning the rate-distortion trade-off whereas (ii) takes the anisotropy of the latent space into account.

Figure 2 illustrates the effect of anisotropic quantization. Left: linear regression model with optimal fit (green) and fits of models with quantized parameters (orange, purple). Right: posterior distribution and quantized model parameters following two different quantization schemes. Although both quantized models are equally far away from the optimal solution (green dot), VBQ (orange) fits the data better because it takes the anisotropy of the posterior into account.
regression model \(y = ax + b \) (see left panel) with only two latent variables \(z = (a, b) \). Due to the elongated shape of the posterior, VBQ uses a higher accuracy for \(a \) than for \(b \). As a result, the algorithm finds a quantization \(\tilde{z} \) (orange dot in right panel) that is closer to the optimal (MAP) solution (green dot) along the \(a \)-axis than along the \(b \)-axis.

The purple dot in Figure 2 (right) compares to a more common quantization method, which simply rounds the MAP solution to the nearest point (which is then entropy coded) from a fixed grid with spacing \(\delta > 0 \). We tuned \(\delta \) so that the resulting quantized model parameters (purple dot) have the same distance to the optimum as our proposed solution (orange dot). Despite the equal distance to the optimum, VBQ finds model parameters with higher posterior probability. The resulting model fits the data better (left panel).

This concludes the description of the proposed Variational Bayesian Quantization algorithm. In the next section, we analyze the algorithm’s behaviour experimentally and demonstrate its performance for variable-bitrate compression on both word embeddings and images.

4. Experiments

We tested our approach on two very different domains: word embeddings and images. For word embeddings, we measured the performance drop on a semantic reasoning task due to lossy compression. Our proposed VBQ method significantly improves model performance over uniform discretization and compression with either Arithmetic Coding (AC), gzip, bzip2, or lzma at equal bitrate. For image compression, we show that a single standard VAE, compressed with VBQ, outperforms JPEG and other baselines at a wide range of bitrates, both quantitatively and visually.

4.1. Compressing Word Embeddings

We consider the Bayesian Skip-gram model for neural word embeddings (Barkan, 2017), a probabilistic generative formulation of word2vec (Mikolov et al., 2013b) which interprets word and context embedding vectors as latent variables and associates them with Gaussian approximate posterior distributions. Point estimating the latent variables would result in classical word2vec. Even though the model was not specifically designed or trained with model compression taken into consideration, the proposed algorithm can successfully compress it in post-processing.

Experiment Setup. We implemented the Black Box VI version of the Bayesian Skip-gram model proposed in (Bamber & Mandt, 2017), and trained the model on books published between 1980 and 2008 from the Google Books corpus (Michel et al., 2011), following the preprocessing described in (Bamber & Mandt, 2017) with a vocabulary of \(V = 100,000 \) words and embedding dimension \(d = 100 \).

In the trained model, we observed that the distribution of posterior modes \(\mu_{w,j} \) across all words \(w \) and all dimensions \(j \) of the embedding space was quite different from the prior. To improve the bitrate of our method, we used an “empirical prior” for encoding that is shared across all \(w \) and \(j \); we chose a Gaussian \(\mathcal{N}(0, \sigma^2_j) \) where \(\sigma^2_j \) is the empirical variance of all variational means \(\{\mu_{w,j}\}_{w=1,\ldots,V}^{j=1,\ldots,d} \).

We compare our method’s performance to a baseline that quantizes to a uniform grid and then uses the empirical distribution of quantized coordinates for lossless entropy coding. We also compare to uniform quantization baselines that replace the entropy coding step with the standard compression libraries gzip, bzip2, and lzma. These methods are not restricted by a factorized distribution of code points and could therefore detect and exploit correlations between quantized code points across words or dimensions.

We evaluate performance on the semantic and syntactic reasoning task proposed in (Mikolov et al., 2013a), a popular dataset of semantic relations like “Japan : yen = Russia : ruble” and syntactic relations like “amazing : amazingly = lucky : luckily”, where the goal is to predict the last word given the first three words. We report Hits@10, i.e., the fraction of challenges for which the compressed model ranks the correct prediction among the top ten.

Results. Figure 3 shows the model performance on the semantic and syntactic reasoning tasks as a function of compression rate. Our proposed VBQ significantly outperforms all baselines and reaches the same Hits@10 at less than half the bitrate over a wide range.\(^5\)

\(^5\)See Supplementary Material for hyperparameters. Our code is available at https://github.com/mandt-lab/vbq.

\(^6\)The uncompressed model performance (dotted gray line in Figure 3) is not state of the art. This is not a shortcoming of the compression method but merely of the model, and can be attributed to the smaller vocabulary and training set used compared to (Mikolov et al., 2013b) due to hardware constraints.
Figure 4. Qualitative behavior of our proposed VBQ algorithm on two data sets of small-scale images (MNIST and Frey Faces). With decreasing bitrate, the method starts to confuse the encoded object with a generic one (encoded by the median of the prior \(p(z) \)).

4.2. Image Compression

While Section 4.1 demonstrated the proposed VBQ method for model compression, we now apply the same method to data compression using a variational autoencoder (VAE). We first provide qualitative insight on small-scale images, and then quantitative results on full resolution color images.

Model. For simplicity, we consider regular VAEs with a standard normal prior and Gaussian variational posterior. The generative network parameterizes a factorized categorical or Gaussian likelihood model in experiments in Sec. 4.2.1 or 4.2.2, respectively. Network architectures are described below and in more detail in Supplementary Material.

Baselines. We consider the following baselines:

- **Uniform quantization:** for a given image \(x \), we quantize each dimension of the posterior mean vector \(\mu(x) \) to a uniform grid. We report the bitrate for encoding the resulting quantized latent representation via standard entropy coding (e.g., arithmetic coding). Entropy coding requires prior knowledge of the probabilities of each grid point. Here, we use the empirical frequencies of grid points over a subset of the training set;

- **K-means quantization:** similar to “uniform quantization”, but with the placement of grid points optimized via \(k \)-means clustering on a subset of the training data;

- **Quantization with generalized Lloyd algorithm:** similar to above, but the grid points are optimized using generalized Lloyd algorithm (Chou et al., 1989), a widely-used state-of-the-art classical quantization method;

- **JPEG:** we used the libjpeg implementation packaged with the Python Pillow library, using default configurations (e.g., 4:2:0 subsampling), and we adjust the quality parameter to vary the rate-distortion trade-off;

- **Deep learning baseline:** we compare to Ballé et al. (2017), who directly optimized for the rate and distortion, training a separate model for each point on the R-D curve. In our large-scale experiment, we adopt their model architecture, so their performance essentially represents the end-to-end optimized performance upper bound for our method (which uses a single model).

4.2.1. Qualitative Analysis on Toy Datasets

We trained a VAE on the MNIST dataset and the Frey Faces dataset, using 5 and 4-dimensional latent spaces, respectively. See Supplemental Material for experimental details.

Figure 4 shows example image reconstructions from our VBQ algorithm with increasing \(\lambda \), and thus decreasing bitrate. The right-most column is the extreme case \(\lambda \to \infty \), resulting in the shortest possible bistring encoding \(\hat{\xi}_i = (0.1)_2 = 1/2 \) (i.e., \(\hat{z}_i \) being the median of the prior \(p(z_i) \)) for every dimension \(i \). As the bitrate decreases (as \(R(\hat{\xi}) \to 0 \)), our method gradually “confuses” the original image with a generic image (roughly in the center of the embedding space), while preserving approximately the same level of sharpness. This is in contrast to JPEG which typically introduces blocky and/or pixel-level artifacts at lower bitrates.

4.2.2. Full-Resolution Color Images

We apply our VBQ method to a VAE trained on color images, and obtain practical image compression performance rivaling JPEG, while outperforming baselines that ignore posterior uncertainty and directly quantize latent variables.

Model and Dataset. The inference and generative networks of our VAE are identical to the analysis and synthesis networks of Ballé et al. (2017), using 3 layers of 256 filters each in a convolutional architecture. We used a diagonal Gaussian likelihood model, whose mean is computed by the generative net and the variance \(\sigma^2 \) is fixed as a hyper-parameter, similar to a \(\beta \)-VAE (Higgins et al., 2017) approach \((\sigma^2 \text{ was tuned to } 0.001 \text{ to ensure the VAE achieved overall good R-D trade-off}; \text{ see } (Alemi et al., 2018)). \) We trained the model on the same subset of the ImageNet dataset as used in (Ballé et al., 2017). We evaluated performance on the standard Kodak (Kodak) dataset, a separate set of 24 uncompressed color images. As in the word embedding experiment, we also observed that using an empirical prior for our method improved the bitrate; for this, we used the flexible density model of Ballé et al. (2018), fitting a different distribution per latent channel, on samples of posterior means \(\mu \) (treating spatial dimensions as i.i.d.).
Variational Bayesian Quantization

Figure 5. Image reconstructions at matching bitrate (0.24 bits per pixel). VBQ (c) proposed outperforms AC with uniform quantization (d) and JPEG (b) and is comparable to the approach by (Ballé et al., 2017) (e) despite using a model that is not optimized for this specific bitrate. Uniform quantization here used a modified version of the VAE in Figure 6, using an additional conv layer with smaller dimensions to reduce the bitrate down to 0.24 (this was not possible in the original model even with the largest possible grid spacing).

Figure 6. Aggregate rate-distortion performance on the Kodak dataset (higher is better). VBQ (blue, proposed) outperforms JPEG for all tested bitrates with a single model. By contrast, (Ballé et al., 2017) (black squares) relies on individually optimized models for each bitrate that all have to be included in the decoder.

Results.

As common in image compression work, we measure distortion between original and compressed images under two quality metrics (the higher the better): Peak Signal-to-Noise ratio (PSNR) and MS-SSIM (Wang et al., 2003), over all RGB channels. Figure 6 shows rate-distortion performance. We averaged both the bits per pixel (BPP) and quality measure over all images in the Kodak dataset for each λ (we got similar results by averaging only over the quality metrics for fixed bitrates via interpolation).

We found that our method generally produced images with higher quality, both in terms of PSNR and perceptual quality, compared to JPEG and uniform quantization. Similar to (Ballé et al., 2017), our method avoids unpleasant artifacts, and introduces blurriness at low bitrate. See Figure 5 for example image reconstructions. For more examples and R-D curves on individual images, see Supplementary Material.

Although our results fall short of the end-to-end optimized rate-distortion performance of Ballé et al. (2017), it is worth emphasizing that our method operates anywhere on the R-D curve with a single trained VAE model, unlike Ballé et al. (2017), which requires costly optimization and storage of individual models for each point on the R-D curve. On the other hand, as with any quantization method, the reconstruction quality of VBQ is upper-bounded by that of the full-precision latents; e.g., evaluating on uncompressed latents gives a PSNR upper-bound of about 38.9 in Figure 6.

Indifference to Posterior Collapse.

A known issue in deep generative models such as VAEs is posterior collapse, where the model ignores some subset of latent variables, whose variational posterior distributions collapse to closely match the prior. Such collapsed dimensions constitute an overhead in conventional neural compression approaches, which is often dealt with by a pruning step. One curious consequence of our approach is that it automatically spends close to zero bits encoding the collapsed latent dimensions.

As an illustration, we trained a VAE as used in the color image compression experiment with a high β setting. “Baseline” refers to uniform quantization. The proposed VBQ method wastes fewer bits on channels that exhibit posterior collapse (channels 2, 3, and 5) than the baseline method. It instead spends more bits on channels without posterior collapse.
tightly cluster at zero; this is also reflected by low average KL-divergence between the variational posterior $q(z_i \mid x)$ and prior $p(z_i)$, see text inside each panel. We observe that, for these collapsed channels, our method spends fewer bits on average than uniform quantization (baseline) at the same total bitrate, and more bits instead on channels 1, 4, and 6, which do not exhibit posterior collapse. The explanation is that a collapsed posterior has unusually high variance $\sigma_\sharp^2(x)$, causing our model to refrain from long code words due to the high penalty $\propto \sigma_\sharp^2(x)$ per bitrate $R(\xi_i)$ in Eq. 9.

5. Conclusions

We proposed a novel algorithm for discretizing latent representations in trained latent variables, with applications to both data and model compression. Our proposed “Variational Bayesian Quantization” (VBQ) algorithm automatically adapts encoding accuracy to posterior uncertainty estimates, and is applicable to arbitrary probabilistic generative models with factorized prior and mean-field variational posterior distributions. As our approach separates quantization from model design and training, it enables “plug-&-play” compression at variable bitrate with pretrained models.

We showed the empirical effectiveness of our proposed VBQ method for both model and data compression. For model compression, VBQ retained significantly higher task performance of a trained word embedding model than other methods that compress in post-processing. For data compression, we showed that VBQ can outperform JPEG over a wide range of bitrates with a single trained standard VAE. Given its versatility, we believe that VBQ holds promise for compressing Bayesian neural networks, especially in applications that demand rate-distortion trade-offs. Lastly, as VBQ relies on accurate posterior approximation, its rate-distortion performance provides a new metric for quantitative evaluation of approximate Bayesian inference methods.

6. Theoretical Considerations

Here, we provide additional theoretical insights into the proposed VBQ method based on reviewer feedback.

Dense Quantization Grid. Section 3.3 describes the proposed VBQ algorithm in terms of quantiles ξ_i. While quantiles simplify the discussion, it is also instructive to consider what effectively happens directly in representation space.

In the space of representations z, VBQ optimizes over a dense quantization grid, shown in Figure 8 (left) for a single dimension z_i. Each code point $\hat{z}_i \in (0, 1)$, i.e., each quantile with a finite-length binary representation, defines a grid point $\hat{z}_i = F^{-1}(\xi_i)$. The height of each orange bar in the figure shows the bitlength $R(\hat{z}_i)$. Interestingly, the grid places many points with small $R(\hat{z}_i)$ in regions of high prior probability density (purple curve), while regions of low prior probability contain only grid points with large $R(\hat{z}_i)$. This observation can be formalized as follows.

Theorem 1. For a latent dimension z_i with prior $p(z_i)$ and for any interval $I \subset \mathbb{R}$, there exists a grid point $\hat{z}_i \in I$ whose bitlength is bounded by the information content of I, i.e., $R(\hat{z}_i) \leq -\log_2 P(\hat{z}_i)$ with $P(\hat{z}_i) = \int_I p(z_i) dz_i$.

Proof. $R(\hat{z}_i)$ is the number of nontrivial bits in the quantile $\xi_i := F(\hat{z}_i)$. For example, the quantiles $\xi_4 = (0.01)_2, \frac{1}{4} = (0.1)_2$, and $\frac{3}{4} = (0.11)_2$ each have at most one nontrivial bit (since the initial “0” and terminal “1” are considered trivial), and they are equally spaced with spacing $\frac{1}{4} = 2^{-2}$. Incrementing the number of bits by one divides the spacing in half. Thus, for any $r \in \mathbb{N}$, the quantiles with at most r nontrivial bits are equally spaced with spacing 2^{-r-1}. The prior CDF F maps any interval $I \subset \mathbb{R}$ to an interval $F(I) \subset (0, 1)$ of size $|F(I)| = P(I)$. Since $P(I) > 2^{-r-1}$ for $r = \lceil -\log_2 P(I) \rceil$, the interval I contains at least one grid point \hat{z}_i with $R(\hat{z}_i) \leq r$.

Elimination Overhead. The above theorem provides an upper bound on the bitrate for a single coordinate z_i. Encoding a high dimensional latent representation z requires some overhead for delimiting the individual coordinates.

We provide a theoretical upper bound on this overhead for a severely restricted variant of VBQ that does not have access to posterior uncertainty estimates and that operates only on a subset of the proposed grid. Specifically, we pick only one grid point for each interval $I_n = [n - \frac{1}{2}, n + \frac{1}{2}]$ with $n \in \mathbb{Z}$. According to Theorem 1, there always exists a grid point $\hat{z}_i \in I_n$ with $R(\hat{z}_i) \leq -\log_2 P(\hat{z}_i)$. Thus, the resulting subset of the grid (Figure 8, center) resembles the more commonly used uniform grid (Figure 8 right), whose bitrate under standard entropy coding is the information content.

If we restrict VBQ to this sparse subset of the dense grid, then the algorithm collapses to a method known as Shannon-Fano-Elias coding (Cover & Thomas, 2012), whose overhead over the information theoretically minimal bitrate is known to be at most one bit per dimension. The full VBQ algorithm has more freedom: it exploits posterior uncertainty estimates to reduce accuracy where it is not needed, thus saving bits and improving compression performance.
Acknowledgements

We thank Johannes Ballé for helping us reproduce the results in prior work (Ballé et al., 2017). Yibo Yang acknowledges funding from the Hasso Plattner Foundation. This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0021. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA). Furthermore, this work was supported by the National Science Foundation under Grants NSF-1928718, NSF-2003237, and by Qualcomm.

References

Barkan, O. Bayesian neural word embedding. In Association for the Advancement of Artificial Intelligence, pp. 3135–3143, 2017.

Variational Bayesian Quantization

