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Abstract
We propose a novel algorithm for quantizing con-
tinuous latent representations in trained models.
Our approach applies to deep probabilistic mod-
els, such as variational autoencoders (VAEs), and
enables both data and model compression. Un-
like current end-to-end neural compression meth-
ods that cater the model to a fixed quantization
scheme, our algorithm separates model design
and training from quantization. Consequently,
our algorithm enables “plug-and-play” compres-
sion with variable rate-distortion trade-off, using
a single trained model. Our algorithm can be
seen as a novel extension of arithmetic coding to
the continuous domain, and uses adaptive quan-
tization accuracy based on estimates of posterior
uncertainty. Our experimental results demonstrate
the importance of taking into account posterior
uncertainties, and show that image compression
with the proposed algorithm outperforms JPEG
over a wide range of bit rates using only a single
standard VAE. Further experiments on Bayesian
neural word embeddings demonstrate the versatil-
ity of the proposed method.

1. Introduction
Latent-variable models have become a mainstay of modern
machine learning. Scalable approximate Bayesian infer-
ence methods, in particular Black Box Variational Inference
(Ranganath et al., 2014; Rezende et al., 2014), have spurred
the development of increasingly large and expressive proba-
bilistic models, including deep generative probabilistic mod-
els such as variational autoencoders (Kingma & Welling,
2014b) and Bayesian neural networks (MacKay, 1992; Blun-
dell et al., 2015). One natural application of deep latent
variable modeling is data compression, and recent work has
focused on end-to-end procedures that optimize a model
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for a particular compression objective. Here, we study a
related but different problem: given a trained model, what
is the best way to encode the information contained in its
continuous latent variables?

As we show, our proposed solution provides a new “plug-
and-play” approach to lossy compression of both data in-
stances (represented by local latent variables, e.g., in a VAE)
as well as model parameters (represented by global latent
variables that serve as parameters of a Bayesian statisti-
cal model). Our approach separates the compression task
from model design and training, thus implementing variable-
bitrate compression as an independent post-processing step
in a wide class of existing latent variable models.

At the heart of our proposed method lies a novel quanti-
zation scheme that optimizes a rate-distortion trade-off by
exploiting posterior uncertainty estimates. Quantization is
central to lossy compression, as continuous-valued data like
natural images, videos, and distributed representations ul-
timately need to be discretized to a finite number of bits
for digital storage or transmission. Lossy compression al-
gorithms therefore typically find a discrete approximation
of some semantic representation of the data, which is then
encoded with a lossless compression method.

In classical lossy compression methods such as JPEG or
MP3, the semantic representation is carefully designed to
support compression at variable bitrates. By contrast, state-
of-the-art deep learning based approaches to lossy data com-
pression (Ballé et al., 2017; 2018; Rippel & Bourdev, 2017;
Mentzer et al., 2018; Lombardo et al., 2019) are trained to
minimize a distortion metric at a fixed bitrate. To support
variable-bitrate compression in this approach, one has to
train several models for different bitrates. While training
several models may be viable in many cases, a bigger issue
is the increase in decoder size as the decoder has to store
the parameters of not one but several deep neural networks
for each bitrate setting. In applications like video streaming
under fluctuating connectivity, the decoder further has to
load a new deep learning model into memory every time a
change in bandwidth requires adjusting the bitrate.

By contrast, we propose a a quantization method for latent
variable models that decouples training from compression,
and that enables variable-bitrate compression with a single
model. We generalize a classical entropy coding algorithm,
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Arithmetic Coding (Witten et al., 1987; MacKay, 2003),
from the discrete to continuous domain. Our proposed algo-
rithm, Variational Bayesian Quantization, exploits posterior
uncertainty estimates to automatically reduce the quanti-
zation accuracy of latent variables for which the model is
uncertain anyway. This strategy is analogous to the way hu-
mans communicate quantitative information. For example,
Wikipedia lists the population of Rome in 2017 with the
speci�c number2;879;728. By contrast, its population in
the year500AD is estimated by the round number100;000
because the high uncertainty would make a more precise
number meaningless. Our ablation studies show that this
posterior-informed quantization scheme is crucial to obtain-
ing competitive performance.

In detail, our contributions are as follows:

� A new discretization scheme.We present a novel ap-
proach to discretizing latent variables in a variational
inference framework. Our approach generalizes arith-
metic coding from discrete to continuous distributions
and takes posterior uncertainty into account.

� Single-model compression at variable bitrates.The
decoupling of modeling and compression allows us
to adjust the trade-off between bitrate and distortion
in post-processing. This is in contrast to existing ap-
proaches to both data and model compression, which
often require specially trained models for each bitrate.

� Automatic self-pruning.Deep latent variable models
often exhibit posterior collapse, i.e., the variational
posterior collapses to the model prior. In our approach,
latent dimensions with collapsed posteriors require
close to zero bits, thus don't require manual pruning.

� Competitive experimental performance.We show that
our method outperforms JPEG over a wide range of
bitrates using only a single model. We also show that
we can successfully compress word embeddings with
minimal loss, as evaluated on semantic reasoning task.

The paper is structured as follows: Section 2 reviews related
work in neural compression; Section 3 proposes our Varia-
tional Bayesian Quantization algorithm. We give empirical
results in Section 4, and conclude in Section 5. Section 6
provides additional theoretical insight about our method.

2. Related Work

Compressing continuous-valued data is a classical problem
in the signal processing community. Typically, a distortion
measure (often the squared error) and a source distribution
are assumed, and the goal is to design a quantizer that opti-
mizes the rate-distortion (R-D) performance (Lloyd, 1982;

Berger, 1972; Chou et al., 1989). Optimal vector quan-
tization, although theoretically well-motivated (Gallager,
1968), is not tractable in high-dimensional spaces (Gersho
& Gray, 2012) and not scalable in practice. Therefore most
classical lossy compression algorithms map data to a suit-
ably designed semantic representation, in such a way that
coordinate-wise scalar quantization can be fruitfully applied.

Recent machine-learning-based data compression methods
learn such hand-designed representation from data, but sim-
ilar to classical methods, most such ML methods directly
take quantization into account in the generative model de-
sign or training. Various approaches have been proposed
to approximate the non-differentiable quantization opera-
tion during training, such as stochastic binarization (Toderici
et al., 2016; 2017), additive uniform noise (Ballé et al., 2017;
2018; Habibian et al., 2019), or other differentiable approxi-
mation (Agustsson et al., 2017; Theis et al., 2017; Mentzer
et al., 2018; Rippel & Bourdev, 2017); many such schemes
result in quantization with a uniformly-spaced grid, with the
exception of (Agustsson et al., 2017), which optimizes for
quantization grid points. Yang et al. (2020) considers opti-
mal quantization at compression time, but assumes a �xed
quantization scheme of (Ballé et al., 2017) during training.

We depart from such approaches by treating quantization
as a post-processing step decoupled from model design and
training. Crucial to our approach is a new quantization
scheme that automatically adapts to different length scales
in the representation space based on posterior uncertainty
estimates. To our best knowledge, the only prior work that
uses posterior uncertainty for compression is in the context
of bits-back coding (Honkela & Valpola, 2004; Townsend
et al., 2019), but these works focus on lossless compression,
with the recent exception of (Yang et al., 2020).

Most existing neural image compression methods require
training a separate machine learning model for each desired
bitrate setting (Balĺe et al., 2017; 2018; Mentzer et al., 2018;
Theis et al., 2017; Lombardo et al., 2019). In fact, Alemi
et al. (2018) showed that any particular �tted VAE model
only targets one speci�c point on the rate-distortion curve.
Our approach has the same bene�t of variable-bitrate single-
model compression as methods based on recurrent VAEs
(Gregor et al., 2016; Toderici et al., 2016; 2017; Johnston
et al., 2018); but unlike these methods, which use dedicated
model architecture for progressive image reconstruction, we
instead focus more broadly on quantizing latent representa-
tions in a given generative model, designed and trained for
speci�c application purposes (possibly other than compres-
sion, e.g., modeling complex scienti�c observations).
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3. Posterior-Informed Variable-Bitrate
Compression

We now propose an algorithm for quantizing latent vari-
ables in trained models. After describing the problem setup
and assumptions (Subsection 3.1), we brie�y review Arith-
metic Coding (Subection 3.2). Subsection 3.3 describes our
proposed lossy compression algorithm, which generalizes
Arithmetic Coding to the continuous domain.

3.1. Problem Setup

Generative Model and Variational Inference. We con-
sider a wide class of generative probabilistic models with
datax and unknown (or “latent”) variablesz 2 RK from
some continuous latent space with dimensionK . The gen-
erative model is de�ned by a joint probability distribution,

p(x; z) = p(z) p(x jz) (1)

with a priorp(z) and a likelihoodp(x jz). Although our pre-
sentation focuses on unsupervised representation learning,
our framework also captures the supervised setup.1

Our proposed compression method usesz as a proxy to de-
scribe the datax. This requires “solving” Eq. 1 forz givenx,
i.e., inferring the posteriorp(zjx) = p(x; z)=

R
p(x; z) dz.

Since exact Bayesian inference is often intractable, we resort
to Variational Inference (VI) (Jordan et al., 1999; Blei et al.,
2017; Zhang et al., 2019), which approximates the posterior
by a so-called variational distributionq� (zjx) by minimiz-
ing the Kullback-Leibler divergenceDKL (q� (zjx) jj p(zjx))
over a set of variational parameters� .

Factorization Assumptions. We assume that both the
prior p(z) and the variational distributionq� (zjx) are fully
factorized (mean-�eld assumption). For concreteness, our
examples use a Gaussian variational distribution. Thus,

p(z) =
Q K

i =1 p(zi ); and (2)

q� (zjx) =
Q K

i =1 N (zi ; � i (x); � 2
i (x)) ; (3)

wherep(zi ) is a prior for thei th component ofz, and the
means� i and standard deviations� i together comprise the
variational parameters� over which VI optimizes.2

Prominently, the model class de�ned by Eqs. 1-3 in-
cludes variational autoencoders (VAEs) (Kingma & Welling,
2014a) for data compression, but we stress that the class is

1For supervised learning with labelsy, we would consider
a conditional generative modelp(y; zjx ) = p(yjz; x ) p(z) with
conditional likelihoodp(yjz; x ), wherez are the model parameters,
treated as a Bayesian latent variable with associated priorp(z).

2These parameters are often amortized by a neural network (in
which case� i and� i depend onx), but don't have to (in which
case� i and� i do not depend onx and are directly optimized).

much wider, capturing also Bayesian neural nets (MacKay,
2003), probabilistic word embeddings (Barkan, 2017; Bam-
ler & Mandt, 2017), matrix factorization (Mnih & Salakhut-
dinov, 2008), and topic models (Blei et al., 2003).

Protocol Overview. We consider two parties in commu-
nication, a sender and a receiver. In the case ofdatacom-
pression, both parties have access to the model, but only
the sender has access to the data pointx, which it uses
to �t a variational distributionq� (zjx). It then uses the
algorithm proposed below to select a latent variable vec-
tor ẑ that has high probability underq� , and that can be
encoded into a compressed bitstring, which gets transmitted
to the receiver. The receiver losslessly decodes the com-
pressed bitstring back intôz and uses the likelihoodp(x jẑ )
to generate a reconstructed data pointx̂ , typically setting
x̂ = arg max x p(x jẑ ). In the case ofmodelcompression,
the sender infers a distributionq� (zjx) over model parame-
tersz given training datax, and uses our algorithm to select
a suitable vector̂z of quantized model parameters. The
receiver receiveŝz and uses it to reconstruct the model.

The rest of this section describes how the proposed algo-
rithm selectŝz and encodes it into a compressed bitstring.

3.2. Background: Arithmetic Coding

Our quantization algorithm, introduced in Section 3.3 below,
is inspired by a lossless compression algorithm,arithmetic
coding(AC) (Witten et al., 1987; MacKay, 2003), which
we generalize from discrete data to the continuous space of
latent variablesz 2 RK . To get there, we �rst review the
main idea of AC that our proposed algorithm borrows.

AC is an instance of so-called entropy coding. It uniquely
maps messagesm 2 M from a discrete setM to a com-
pressed bitstring of some lengthR m (the “bitrate”). Entropy
coding exploits prior knowledge of the distributionp(m) of
messages to map probable messages to short bitstrings while
spending more bits on improbable messages. This way, en-
tropy coding algorithms aim to minimize the expected rate
Ep(m ) [R m ]. For lossless compression, the expected rate has
a fundamental lower bound, the entroyH = Ep(m ) [h(m)],
whereh(m) = � log2 p(m) is the Shannon information
content ofm. AC provides near optimal lossless compres-
sion as it maps each messagem 2 M to a bitstring of length
R m = dh(m)e, whered�edenotes the ceiling function.

AC is usually discussed in the context of streaming com-
pression wherem is a sequence of symbols from a �nite
alphabet, as AC improves on this task over the more widely
known Huffman coding (Huffman, 1952). In our work, we
focus on a different aspect of AC: its use of a cumulative
probability distribution function to map a nonuniformly dis-
tributed random variablem � p(m) to a number� that is
nearly uniformly distributed over the interval[0; 1).
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Figure 1.Comparison of Arithmetic Coding (AC, left) and VBQ
(right, proposed). Both methods use a prior CDF (orange) to map
nonuniformly distributed data to a number� � U (0; 1), and both
require an uncertainty region for truncation.

Figure 1 (left) illustrates AC for a binomial-distributed mes-
sagem 2 f 0; : : : ; 10g (the number of `heads' in a sequence
of ten coin �ips). The solid and dashed orange lines show
the left and right sided cumulative distribution function,3

F< (m) :=
P

m 0<m p(m0) andF� (m) :=
P

m 0� m p(m0),
respectively. They de�ne a partitioning of the interval[0; 1)
(vertical axis in Figure 1 (left)) into pairwise disjoint subin-
tervalsI m :=

�
F< (m); F� (m)

�
(orange squares). Since

the intervalsI m are disjoint for allm 2 M , any number
� 2 I m uniquely identi�es a given messagem. AC picks
such a number̂� 2 I m and encodes it into a string of bitsb� ,
� 2 f 0; : : : ; R m g by writing it in binary representation,

�̂ = (0 :b1b2 : : : bR m )2 with bitsb� 2 f 0; 1g 8� . (4)

Since any� 2 I m may be used to identify the messagem,
we can interpret the intervalI m as anuncertainty region
in � -space. AC picks the number�̂ 2 I m with the shortest
binary representation. This requires at mostdh(m)e bits
because the numbers� that can be represented by Eq. 4
with R m = dh(m)e form a uniform grid with spacing
2�R m = 2 �d h(m )e, which is at most as wide as the size of
the interval,jI m j = p(m) = 2 � h (m ) . The red arrows in
Figure 1 (left) illustrate how AC would encode the message
m = 7 in the toy example into the bitstring “111”. Decoding
works in the opposite direction and maps�̂ back tom.

In the next section, we generalize AC to the continuous
domain. As we will show, the concept of an “uncertainty
region” in � -space becomes again crucial.

3.3. Variational Bayesian Quantization

We now present our proposed algorithm, Variational
Bayesian Quantization (VBQ), a novel quantization method
for lossy compression that is inspired by AC but that op-
erates oncontinuouslatent variablesz 2 RK . Similar to

3If m is a sequence of symbols,F< andF� are de�ned by lex-
icographical order and can be constructed in a streaming manner.

AC, VBQ exploits knowledge of a prior probability distribu-
tion p(z) in combination with a (soft) uncertainty region to
encode probable values ofz into short bitstrings.

From Intervals to Distributions. The main ideas that
VBQ borrows from AC are as follows: (1) the use of a
cumulative distribution function to map a non-uniformly
distributed random variable to a uniformly distributed ran-
dom variable� over the interval(0; 1), and (2) the use of an
“uncertainty region” to select a number from this interval to
encode the message with as few bits as possible. While AC
uses an intervalI m with hard boundaries, VBQ softens this
uncertainty region by considering posterior uncertainty.

We consider a single continuous latent variablezi 2 R with
arbitrary priorp(zi ). The cumulative (CDF) of the prior,

F (zi ) :=
Z zi

�1
p(z0

i ) dz0
i ; (5)

is shown in orange in Figure 1 (right). It mapszi � p(zi )
to � i � U (0; 1). In contrast to the discrete case discussed
in Section 3.2, where the prior CDF maps each messagem
to an entire intervalI m , note that the CDF of a continuous
random variable maps real numbers to real numbers.

Since� i � U (0; 1) is almost surely an irrational number, its
binary representation is in�nitely long, and thus has to be
truncated. We �nd an optimal truncation by generalizing the
idea of the uncertainty regionI m to the continuous space:
we consider the posterior uncertainty inzi -space and map
it to � i -space. Approximating the posteriorp(zi jx ) by the
variational distributionq(zi jx ) := N (zi ; � i (x); � 2

i (x)) , see
Eq. 3, we thus consider the function

g(� i ) := q(F � 1(� i ) j x): (6)

Here,F � 1 is the inverse CDF (the quantile function), which
maps� i back tozi . Note thatg is not a normalized proba-
bility distribution, as Eq. 6 deliberately does not include the
Jacobianr � i F

� 1(� i ) because the �nal objective will be to
maximizeq� (zjx) at a single point (see Eq. 7 below).

Intuition. The solid and dashed purple curves in �gure
Figure1 (right) plotq(zi jx ) andg(� i ) on the horizontal and
vertical axis, respectively. The red arrows illustrate how a
�nite uncertainty region� i (x)� � i (x) in zi -space is mapped
to a �nite width of g in � i -space. VBQ �nds a quantilê� i

that has high value underg while at the same time having
a short binary representation. The two purple arrowheads
on the vertical axis point to two viable candidates,�̂ i = 7

8

and �̂ i = 3
4 , that both lie within the uncertainty region.

The choice between these two points poses a rate-distortion
trade-off: while7

8 � (0:111)2 has higher value underg (i.e.,
it identi�es a pointẑi = F � 1( 7

8 ) with higher approximate
posterior probabilityq(ẑi jx )), the alternativê� i = 3

4 �
(0:11)2 can be encoded in fewer bits.
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Algorithm 1 Rate-Distortion Optimization for Dimensioni

Input: Prior CDFF (zi ), rate penalty� > 0,
variational mode� i (x) and variance� 2

i (x).
Output: Optimal code point̂� �

i � (0:b1b2 : : : bR ( �̂ �
i ) )2.

Evaluate� y
i  F (� i (x)) .

Initialize r  0; �̂ �
i  null; ` �  1 .

repeat
Updater  r + 1
Set�̂ r; left

i  2� r b2r � y
i c; �̂ r; right

i  2� r d2r � y
i e.

if �̂ r; left
i 6= 0 and ` � (�̂ r; left

i j x ) < ` � then
Update�̂ �

i  �̂ r; left
i ; ` �  ` � (�̂ r; left

i j x ).
end if
if �̂ r; right

i 6= 1 and ` � (�̂ r; right
i j x ) < ` � then

Update�̂ �
i  �̂ r; right

i ; ` �  ` � (�̂ r; right
i j x ).

end if
until logg(� y

i ) � logg(�̂ �
i ) < � (r + 1 � R (�̂ �

i )) .

Optimizing the Rate-Distortion Trade-Off. Rather than
considering a hard uncertainty region, VBQ simply tries
to �nd a point � � (� i )K

i =1 that identi�es latent variables
z � (zi )K

i =1 with high probability under the variational
distribution q� (zjx) while being expressible in few bits.
We thus expresslogq� (zjx) in terms of the coordinates
� i = F (zi ) using Eq. 3,

logq� (zjx) = �
KX

i =1

�
F � 1(� i ) � � i (x)

� 2

2� 2
i (x)

+ cnst. (7)

For each dimensioni , we restrict the quantile� i 2 (0; 1) to
the set of code pointŝ� i that can be represented in binary
via Eq. 4 with a �nite but arbitrary bitlengthR(�̂ i ). We
de�ne the total bitlengthR(�̂ ) :=

P K
i =1 R(�̂ i ), i.e., the

length of the concatenation of all codes�̂ i , i 2 f 1; : : : ; K g
neglecting, for now, an overhead for delimiters (see below).
Using a rate penalty parameter� > 0 that is shared across
all dimensionsi , we minimize the rate-distortion objective

L � (�̂ jx ) = � logq� (ẑ jx ) + � R(�̂ ) (8)

=
KX

i =1

" �
F � 1(�̂ i ) � � i (x)

� 2

2� 2
i (x)

+ � R(�̂ i )

#

+ cnst:

The optimization thus decouples across all latent dimen-
sionsi , and can be solved ef�ciently and in parallel by
minimizing theK independent objective functions

` � (�̂ i jx ) =
�
F � 1(�̂ i ) � � i (x)

� 2
+ 2 � � 2

i (x) R(�̂ i ): (9)

Although the bitlengthR(�̂ i ) is discontinuous (it counts
the number of binary digits, see Eq. 4),` � (�̂ i jx ) can be
ef�ciently minimized over�̂ i using Algorithm 1. The al-
gorithm iterates over all ratesr 2 f 1; 2; : : :g and searches

Figure 2.Effect of an anisotropic posterior distribution on quanti-
zation. Left: linear regression model with optimal �t (green) and
�ts of models with quantized parameters (orange, purple). Right:
posterior distribution and quantized model parameters following
two different quantization schemes. Although both quantized mod-
els are equally far away from the optimal solution (green dot),
VBQ (orange) �ts the data better because it takes the anisotropy of
the posterior into account.

for the code point̂� �
i that minimizes̀ (�̂ i jx ). For eachr ,

the algorithm only needs to consider the two code points
�̂ r; left

i � � y
i and�̂ r; right

i � � y
i with rate at mostr that enclose

the optimum� y
i := F (� i (x)) and are closest to it; these two

code points can be easily computed in constant time. The
iteration terminates as soon as the maximally possible re-
maining increase inlogq(zi jx ) = log g(� i ) is smaller than
the minimum penalty for an increasing bitlength (in practice,
the iteration rarely exceedsr � 8).

Encoding. After �nding the optimal code points(�̂ �
i )K

i =1 ,
they have to be encoded into a single bitstring. Simply
concatenating the binary representations (Eq. 4) of all�̂ �

i

would be ambiguous due to their variable lengthsR(�̂ �
i )

(see detailed discussion in the Supplementary Material). In-
stead, we treat the code points as symbols from a discrete
vocabulary and encode them via lossless entropy coding,
e.g., Arithmetic Coding. The entropy coder requires a prob-
abilistic model over all code points; here we simply use
their empirical distribution. When using our method for
model compression, this empirical distribution has to be
transmitted to the receiver as additional header information
that counts towards the total bitrate. For data compression,
by contrast, we obtain the empirical distribution of code
points on training data and include it in the decoder.

Discussion. The proposed algorithm adjusts the accuracy
for each latent variablezi based on two factors: (i) aglobal
rate setting� that is shared across all dimensionsi ; and
(ii) a per-dimension posterior uncertainty estimate� i (x).
Point (i) allows tuning the rate-distortion trade-off whereas
(ii) takes the anisotropy of the latent space into account.

Figure 2 illustrates the effect of anisotropy in latent space.
The right panel plots the posterior of a toy Bayesian linear
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Figure 3.Performance of compressed word embeddings on a stan-
dard semantic and syntactic reasoning task (Mikolov et al., 2013a).
VBQ (orange, proposed) leads to much smaller �le sizes at equal
model performance over a wide range of performances.

regression modely = ax + b(see left panel) with only two
latent variablesz � (a; b). Due to the elongated shape of
the posterior, VBQ uses a higher accuracy fora than forb.
As a result, the algorithm �nds a quantizationẑ (orange dot
in right panel) that is closer to the optimal (MAP) solution
(green dot) along thea-axis than along theb-axis.

The purple dot in Figure 2 (right) compares to a more com-
mon quantization method, which simply rounds the MAP
solution to the nearest point (which is then entropy coded)
from a �xed grid with spacing� > 0. We tuned� so that the
resulting quantized model parameters (purple dot) have the
same distance to the optimum as our proposed solution (or-
ange dot). Despite the equal distance to the optimum, VBQ
�nds model parameters with higher posterior probability.
The resulting model �ts the data better (left panel).

This concludes the description of the proposed Variational
Bayesian Quantization algorithm. In the next section, we an-
alyze the algorithm's behaviour experimentally and demon-
strate its performance for variable-bitrate compression on
both word embeddings and images.

4. Experiments

We tested our approach on two very different domains: word
embeddings and images. For word embeddings, we mea-
sured the performance drop on a semantic reasoning task
due to lossy compression. Our proposed VBQ method sig-
ni�cantly improves model performance over uniform dis-
cretization and compression with either Arithmetic Coding
(AC), gzip, bzip2, or lzma at equal bitrate. For image com-
pression, we show that a single standard VAE, compressed
with VBQ, outperforms JPEG and other baselines at a wide
range of bitrates, both quantitatively and visually.

4.1. Compressing Word Embeddings

We consider the Bayesian Skip-gram model for neural word
embeddings (Barkan, 2017), a probabilistic generative for-
mulation of word2vec (Mikolov et al., 2013b) which inter-

prets word and context embedding vectors as latent variables
and associates them with Gaussian approximate posterior
distributions. Point estimating the latent variables would
result in classical word2vec. Even though the model was
not speci�cally designed or trained with model compres-
sion taken into consideration, the proposed algorithm can
successfully compress it in post-processing.

Experiment Setup. We implemented the Black Box VI
version of the Bayesian Skip-gram model proposed in (Bam-
ler & Mandt, 2017),4 and trained the model on books pub-
lished between1980and2008from the Google Books cor-
pus (Michel et al., 2011), following the preprocessing de-
scribed in (Bamler & Mandt, 2017) with a vocabulary of
V = 100;000words and embedding dimensiond = 100.

In the trained model, we observed that the distribution of
posterior modes� w;j across all wordsw and all dimen-
sionsj of the embedding space was quite different from the
prior. To improve the bitrate of our method, we used an “em-
pirical prior” for encoding that is shared across allw andj ;
we chose a GaussianN (0; � 2

0) where� 2
0 is the empirical

variance of all variational means(� w;j )w=1 ;:::;V ; j =1 ;:::;d .

We compare our method's performance to a baseline that
quantizes to a uniform grid and then uses the empirical
distribution of quantized coordinates for lossless entropy
coding. We also compare to uniform quantization baselines
that replace the entropy coding step with the standard com-
pression libraries gzip, bzip2, and lzma. These methods
are not restricted by a factorized distribution of code points
and could therefore detect and exploit correlations between
quantized code points across words or dimensions.

We evaluate performance on the semantic and syntactic rea-
soning task proposed in (Mikolov et al., 2013a), a popular
dataset of semantic relations like “Japan : yen = Russia : ru-
ble” and syntactic relations like “amazing : amazingly =
lucky : luckily”, where the goal is to predict the last word
given the �rst three words. We report Hits@10, i.e., the frac-
tion of challenges for which the compressed model ranks
the correct prediction among the top ten.

Results. Figure 3 shows the model performance on the
semantic and syntactic reasoning tasks as a function of com-
pression rate. Our proposed VBQ signi�cantly outperforms
all baselines and reaches the same Hits@10 at less than half
the bitrate over a wide range.5

4See Supplementary Material for hyperparameters. Our code
is available athttps://github.com/mandt-lab/vbq .

5The uncompressed model performance (dotted gray line in
Figure 3) is not state of the art. This is not a shortcoming of
the compression method but merely of the model, and can be
attributed to the smaller vocabulary and training set used compared
to (Mikolov et al., 2013b) due to hardware constraints.
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Figure 4.Qualitative behavior of our proposed VBQ algorithm on
two data sets of small-scale images (MNIST and Frey Faces). With
decreasing bitrate, the method starts to confuse the encoded object
with a generic one (encoded by the median of the priorp(z)).

4.2. Image Compression

While Section 4.1 demonstrated the proposed VBQ method
for model compression, we now apply the same method to
data compression using a variational autoencoder (VAE).
We �rst provide qualitative insight on small-scale images,
and then quantitative results on full resolution color images.

Model. For simplicity, we consider regular VAEs with a
standard normal prior and Gaussian variational posterior.
The generative network parameterizes a factorized categor-
ical or Gaussian likelihood model in experiments in Sec.
4.2.1 or 4.2.2, respectively. Network architectures are de-
scribed below and in more detail in Supplementary Material.

Baselines. We consider the following baselines:

� Uniform quantization:for a given imagex, we quan-
tize each dimension of the posterior mean vector� (x)
to a uniform grid. We report the bitrate for encoding
the resulting quantized latent representation via stan-
dard entropy coding (e.g., arithmetic coding). Entropy
coding requires prior knowledge of the probabilities of
each grid point. Here, we use the empirical frequencies
of grid points over a subset of the training set;

� k-means quantization: similar to “uniform quantiza-
tion”, but with the placement of grid points optimized
via k-means clustering on a subset of the training data;

� Quantization withgeneralized Lloyd algorithm: similar
to above, but the grid points are optimized using gener-
alized Lloyd algorithm (Chou et al., 1989), a widely-
used state-of-the-art classical quantization method;

� JPEG:we used the libjpeg implementation packaged
with the Python Pillow library, using default con�g-
urations (e.g., 4:2:0 subsampling), and we adjust the
quality parameter to vary the rate-distortion trade-off;

� Deep learning baseline:we compare to Ballé et al.
(2017), who directly optimized for the rate and distor-
tion, training a separate model for each point on the R-
D curve. In our large-scale experiment, we adopte their
model architecture, so their performance essentially
represents the end-to-end optimized performance up-
per bound for our method (which uses a single model).

4.2.1. QUALITATIVE ANALYSIS ON TOY DATASETS

We trained a VAE on the MNIST dataset and the Frey Faces
dataset, using 5 and 4-dimensional latent spaces, respec-
tively. See Supplemental Material for experimental details.

Figure 4 shows example image reconstructions from our
VBQ algorithm with increasing� , and thus decreasing bi-
trate. The right-most column is the extreme case� ! 1 ,
resulting in the shortest possible bistring encoding�̂ i =
(0:1)2 = 1

2 (i.e., ẑi being the median of the priorp(zi )) for
every dimensioni . As the bitrate decreases (asR(�̂ ) ! 0),
our method gradually “confuses” the original image with
a generic image (roughly in the center of the embedding
space), while preserving approximately the same level of
sharpness. This is in contrast to JPEG which typically intro-
duces blocky and/or pixel-level artifacts at lower bitrates.

4.2.2. FULL -RESOLUTION COLOR IMAGES

We apply our VBQ method to a VAE trained on color im-
ages, and obtain practical image compression performance
rivaling JPEG, while outperforming baselines that ignore
posterior uncertainty and directly quantize latent variables.

Model and Dataset. The inference and generative net-
works of our VAE are identical to the analysis and syn-
thesis networks of Ballé et al. (2017), using 3 layers of
256 �lters each in a convolutional architecture. We used a
diagonal Gaussian likelihood model, whose mean is com-
puted by the generative net and the variance� 2 is �xed
as a hyper-parameter, similar to a� -VAE (Higgins et al.,
2017) approach (� 2 was tuned to 0.001 to ensure the VAE
achieved overall good R-D trade-off; see (Alemi et al.,
2018)). We trained the model on the same subset of the
ImageNet dataset as used in (Ballé et al., 2017). We evalu-
ated performance on the standard Kodak (Kodak) dataset,
a separate set of 24 uncompressed color images. As in the
word embedding experiment, we also observed that using an
empirical prior for our method improved the bitrate; for this,
we used the �exible density model of Ballé et al. (2018),
�tting a different distribution per latent channel, on samples
of posterior means� (treating spatial dimensions as i.i.d.).




