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Abstract

We propose a novel algorithm for quantizing con-
tinuous latent representations in trained models.
Our approach applies to deep probabilistic mod-
els, such as variational autoencoders (VAEs), and
enables both data and model compression. Un-
like current end-to-end neural compression meth-
ods that cater the model to a fixed quantization
scheme, our algorithm separates model design
and training from quantization. Consequently,
our algorithm enables “plug-and-play” compres-
sion with variable rate-distortion trade-off, using
a single trained model. Our algorithm can be
seen as a novel extension of arithmetic coding to
the continuous domain, and uses adaptive quan-
tization accuracy based on estimates of posterior
uncertainty. Our experimental results demonstrate
the importance of taking into account posterior
uncertainties, and show that image compression
with the proposed algorithm outperforms JPEG
over a wide range of bit rates using only a single
standard VAE. Further experiments on Bayesian
neural word embeddings demonstrate the versatil-
ity of the proposed method.

1. Introduction

Latent-variable models have become a mainstay of modern
machine learning. Scalable approximate Bayesian infer-
ence methods, in particular Black Box Variational Inference
(Ranganath et al., 2014; Rezende et al., 2014), have spurred
the development of increasingly large and expressive proba-
bilistic models, including deep generative probabilistic mod-
els such as variational autoencoders (Kingma & Welling,
2014b) and Bayesian neural networks (MacKay, 1992; Blun-
dell et al., 2015). One natural application of deep latent
variable modeling is data compression, and recent work has
focused on end-to-end procedures that optimize a model
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for a particular compression objective. Here, we study a
related but different problem: given a trained model, what
is the best way to encode the information contained in its
continuous latent variables?

As we show, our proposed solution provides a new “plug-
and-play” approach to lossy compression of both data in-
stances (represented by local latent variables, e.g., in a VAE)
as well as model parameters (represented by global latent
variables that serve as parameters of a Bayesian statisti-
cal model). Our approach separates the compression task
from model design and training, thus implementing variable-
bitrate compression as an independent post-processing step
in a wide class of existing latent variable models.

At the heart of our proposed method lies a novel quanti-
zation scheme that optimizes a rate-distortion trade-off by
exploiting posterior uncertainty estimates. Quantization is
central to lossy compression, as continuous-valued data like
natural images, videos, and distributed representations ul-
timately need to be discretized to a finite number of bits
for digital storage or transmission. Lossy compression al-
gorithms therefore typically find a discrete approximation
of some semantic representation of the data, which is then
encoded with a lossless compression method.

In classical lossy compression methods such as JPEG or
MP3, the semantic representation is carefully designed to
support compression at variable bitrates. By contrast, state-
of-the-art deep learning based approaches to lossy data com-
pression (Ballé et al., 2017; 2018; Rippel & Bourdev, 2017;
Mentzer et al., 2018; Lombardo et al., 2019) are trained to
minimize a distortion metric at a fixed bitrate. To support
variable-bitrate compression in this approach, one has to
train several models for different bitrates. While training
several models may be viable in many cases, a bigger issue
is the increase in decoder size as the decoder has to store
the parameters of not one but several deep neural networks
for each bitrate setting. In applications like video streaming
under fluctuating connectivity, the decoder further has to
load a new deep learning model into memory every time a
change in bandwidth requires adjusting the bitrate.

By contrast, we propose a a quantization method for latent
variable models that decouples training from compression,
and that enables variable-bitrate compression with a single
model. We generalize a classical entropy coding algorithm,
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Arithmetic Coding (Witten et al., 1987; MacKay, 2003), Berger, 1972; Chou et al., 1989). Optimal vector quan-
from the discrete to continuous domain. Our proposed algdization, although theoretically well-motivated (Gallager,
rithm, Variational Bayesian Quantization, exploits posteriorl968), is not tractable in high-dimensional spaces (Gersho
uncertainty estimates to automatically reduce the quant& Gray, 2012) and not scalable in practice. Therefore most
zation accuracy of latent variables for which the model isclassical lossy compression algorithms map data to a suit-
uncertain anyway. This strategy is analogous to the way hwably designed semantic representation, in such a way that
mans communicate quantitative information. For examplegoordinate-wise scalar quantization can be fruitfully applied.

Wikipedia lists the population of Rome in 2017 with the Recent machine-learning-based data compression methods

speci c number2;879728 By contrast, its population in | hh . ion f :
the yea500AD is estimated by the round numb&80,000 learn suc .and—deS|gned representation from data, put sim-
ilar to classical methods, most such ML methods directly

because the high uncertainty would make a more precisg T . .
) . ) fake quantization into account in the generative model de-
number meaningless. Our ablation studies show that this.

posterior-informed quantization scheme is crucial to obtainfc"gn or tre_unlng. Various e_lpproaqhes have peen proposed

ing competitive performance. t_o apprpxma_tg the non-dﬁferenuaple gua.nt|z.at|on opera-
tion during training, such as stochastic binarization (Toderici

In detail, our contributions are as follows: etal., 2016; 2017), additive uniform noise (Badit al., 2017;
2018; Habibian et al., 2019), or other differentiable approxi-

A new discretization schem@/e present a novel ap- mation (Agustsson et al., 2017; Theis et al., 2017; Mentzer
proach to discretizing latent variables in a variational€t @l., 2018; Rippel & Bourdev, 2017); many such schemes
inference framework. Our approach generalizes aritht€Sult in quantization with a uniformly-spaced grid, with the

metic coding from discrete to continuous distributions €xception of (Agustsson et al., 2017), which optimizes for

and takes posterior uncertainty into account. quantization grid points. Yang et al. (2020) considers opti-
mal quantization at compression time, but assumes a xed

Single-model compression at variable bitratdhe  quantization scheme of (Bélet al., 2017) during training.

decoupling of modeling and compression allows YSve depart from such approaches by treating quantization

to adjust the trade-off between bitrate and distortion . .
. . S - as a post-processing step decoupled from model design and
in post-processing. This is in contrast to existing ap-

roaches to both data and model comoression Whicﬁraining. Crucial to our approach is a new quantization
gften require specially trained models f%r each l;)itrateSCheme that automatically adapts to different length scales
q P y in the representation space based on posterior uncertainty
Automatic self-pruningDeep latent variable models estimates. To our best knowledge, the only prior work that
often exhibit posterior collapse, i.e., the variational US€S posterior uncertainty for compression is in the context
posterior collapses to the model prior. In our approach©f Pits-back coding (Honkela & Valpola, 2004; Townsend
latent dimensions with collapsed posteriors requireet al., 2019), but these works focus on lossless compression,

close to zero bits, thus don't require manual pruning. With the recent exception of (Yang et al., 2020).

. . Most existing neural image compression methods require
Competitive experimental performanétie S,hOW that raining a separate machine learning model for each desired
our metho?‘ outperforms JPEG over a wide range 0é)itrate setting (Ba# et al., 2017; 2018; Mentzer et al., 2018;
bitrates using only a single model. We also ShOW th_at'l'heis et al., 2017; Lombardo et al., 2019). In fact, Alemi
we can successfully compress word embeddings withy 5 *2018) showed that any particular tted VAE model
minimal loss, as evaluated on semantic reasoning tasy,y targets one speci ¢ point on the rate-distortion curve.
Our approach has the same bene t of variable-bitrate single-
The paper is structured as follows: Section 2 reviews relateghodel compression as methods based on recurrent VAES
work in neural compression; Section 3 proposes our VarigGregor et al., 2016; Toderici et al., 2016; 2017; Johnston
tional Bayesian Quantization algorithm. We give empiricalet al., 2018); but unlike these methods, which use dedicated
results in Section 4, and conclude in Section 5. Section @nodel architecture for progressive image reconstruction, we
provides additional theoretical insight about our method. instead focus more broadly on quantizing latent representa-
tions in a given generative model, designed and trained for
2. Related Work speci ¢ application purposes (possibly other than compres-

sion, e.g., modeling complex scienti ¢ observations).
Compressing continuous-valued data is a classical problem

in the signal processing community. Typically, a distortion
measure (often the squared error) and a source distribution
are assumed, and the goal is to design a quantizer that opti-
mizes the rate-distortion (R-D) performance (Lloyd, 1982;
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3. Posterior-Informed Variable-Bitrate much wider, capturing also Bayesian neural nets (MacKay,
Compression 2003), probabilistic word embeddings (Barkan, 2017; Bam-

_ . _ler & Mandt, 2017), matrix factorization (Mnih & Salakhut-

We now propose an algorithm for quantizing latent vari-ginoy, 2008), and topic models (Blei et al., 2003).

ables in trained models. After describing the problem setup

and assumptions (Subsection 3.1), we brie y review Arith'Protocol Overview. We consider two parties in commu-

metic Coding (Subection 3.2). Subsection 3.3 describes OYlication. a sender and a receiver. In the casgatdcom-

proposed lossy compression algorithm, which generalizeBressioﬁ’ both parties have access to the model, but only

Arithmetic Coding to the continuous domain. the sender has access to the data pojnivhich it uses
to t a variational distributionq (zjx). It then uses the
3.1. Problem Setup algorithm proposed below to select a latent variable vec-

Generative Model and Variational Inference. We con-  torZ that has high probability undey , and that can be
sider a wide class of generative probabilistic models withencoded into a compressed bitstring, which gets transmitted
datax and unknown (or “latent”) variables2 RK from 0 the receiver. The receiver losslessly decodes the com-
some continuous latent space with dimengfonThe gen- pressed bitstring back infoand uses the likelihoog(xj2)

erative model is de ned by a joint probability distribution, 0 generate a reconstructed data printypically setting
R = arg maxy p(xj2). In the case ofmodelcompression,

p(x;z) = p(z) p(xjz) (1)  the sender infers a distributian (zjx) over model parame-
tersz given training datx, and uses our algorithm to select
with a priorp(z) and a likelihoodo(xjz). Although our pre- a suitable vecto? of quantized model parameters. The
sentation focuses on unsupervised representation learnirtgceiver receive and uses it to reconstruct the model.

our framework also captures the supervised sétup. The rest of this section describes how the proposed algo-

Our proposed compression method us@s a proxy to de- rithm select® and encodes it into a compressed bitstring.
scribe the data. This requires “solving” Eq. 1faz givenx,

i.e., inferring the posteriop(zjx) = p(x;z)= p(x;z)dz. 3.2. Background: Arithmetic Coding

Since exact Bayesian inference is often intractable, we resort L ) , ) ,

to Variational Inference (VI) (Jordan et al., 1999; Blei et al.,,OL_Jr qu.antlzatlon algorithm, 'erdu?Ed in Se.ctlo.n 3.3 t?e'OW'
2017; Zhang et al., 2019), which approximates the posteriol® |n'sp|red by a_lossless compression algorlthmhmetlg

by a so-called variational distributiap (zjx) by minimiz-  ¢CdiNg(AC) (Witten et al., 1987; MacKay, 2003), which

ing the Kullback-Leibler divergend® . (q (zjx) jj p(zix)) we gener:_:llize from d|i<screte data to the continuoqs space of
over a set of variational parameters latent variablez 2 R" . To get there, we rst review the

main idea of AC that our proposed algorithm borrows.

Factorization Assumptions. We assume that both the AC is an instance of so-called entropy coding. It uniquely
prior p(z) and the variational distributiog (zjx) are fully = maps messages 2 M from a discrete sé¥l to a com-
factorized (mean- eld assumption). For concreteness, oupressed bitstring of some lend&h, (the “bitrate”). Entropy
examples use a Gaussian variational distribution. Thus, coding exploits prior knowledge of the distributipfim) of

Qq messages to map probable messages to short bitstrings while
p(z) = iy P(Zi); and (2)  spending more bits on improbable messages. This way, en-
q (zjx) = iK:1 N(z: i(x); 2(x); ?) tropy coding algorithms aim to minimize the expected rate

Epm)[Rm]. For lossless compression, the expected rate has

wherep(z) is a prior for theih component of, and the & fundamental lower bound, the entidy= Ey(m)[h(m)],

means ; and standard deviations together comprise the Whereh(m) = log, p(m) is the Shannon information
variational parameters over which VI optimize€. content ofm. AC provides near optimal lossless compres-

sion as it maps each message M to a bitstring of length

Prominently, the model class de ned by Egs. 1-3 in-R, = dh(m)e, whered edenotes the ceiling function.
cludes variational autoencoders (VAES) (Kingma & Welling,

2014a) for data compression, but we stress that the class /& IS usually discussed in the context of streaming com-
pression wheren is a sequence of symbols from a nite

1For supervised learning with labejs we would consider  alphabet, as AC improves on this task over the more widely
a conditional generative modply; zjx) = p(yjz;x) p(z) with  known Huffman coding (Huffman, 1952). In our work, we
conditional likelihoodo(yjz; x), wherez are the model parameters, focus on a different aspect of AC: its use of a cumulative

treated as a Bayesian latent variable with associated pzr bability distribution f . if v di
2These parameters are often amortized by a neural network (iff0Papllity distribution function to map a nonunformly dis-

which case ; and ; depend orx), but don't have to (in which ~ tributed random variablen ~ p(m) to a number that is
case ; and ; do not depend or and are directly optimized). nearly uniformly distributed over the intervi; 1).
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Figure 1.Comparison of Arithmetic Coding (AC, left) and VBQ

AC, VBQ exploits knowledge of a prior probability distribu-
tion p(z) in combination with a (soft) uncertainty region to
encode probable values pinto short bitstrings.

From Intervals to Distributions. The main ideas that
VBQ borrows from AC are as follows: (1) the use of a
cumulative distribution function to map a non-uniformly
distributed random variable to a uniformly distributed ran-
dom variable over the interva(0; 1), and (2) the use of an
“uncertainty region” to select a number from this interval to
encode the message with as few bits as possible. While AC

(right, proposed). Both methods use a prior CDF (orange) to mapises an intervdl,, with hard boundaries, VBQ softens this

nonuniformly distributed data to a number U (0; 1), and both
require an uncertainty region for truncation.

Figure 1 (left) illustrates AC for a binomial-distributed mes-

uncertainty region by considering posterior uncertainty.

We consider a single continuous latent variahl® R with

arbitrary priorp(z;). The cumulative (CDF) of the prior,
zZ,

p(z]) dz7;

F(z):= (6)

of ten coin ips). The solid and dashed orange lines show

the left ang_,right sided cumulative distrl'tbution function,
F< (m) = mOo<m p(mo) andF (m) = mo% m p(m(bv
respectively. They de ne a partitioning of the intery@j 1)
(vertical axis in Figure 1 (left)) into pairwise disjoint subin-
tervalsl , ;== F<(m);F (m) (orange squares). Since
the intervald , are disjoint for allm 2 M , any number
2 | n uniquely identi es a given message. AC picks
such a numbef 2 | ,, and encodesiitinto a string of bits,

M= O:byby::ibr, ), withbitsb 2f0;,1g8 . (4)
Since any 2| ,, may be used to identify the message
we can interpret the interval, as anuncertainty region
in -space. AC picks the numbér | ., with the shortest
binary representation. This requires at mdstm)e bits

is shown in orange in Figure 1 (right). It maps p(z)

to ; U (0;1). In contrast to the discrete case discussed
in Section 3.2, where the prior CDF maps each message
to an entire interval , , note that the CDF of a continuous
random variable maps real numbers to real numbers.

Since ; U (0;1) is almost surely an irrational number, its
binary representation is in nitely long, and thus has to be
truncated. We nd an optimal truncation by generalizing the
idea of the uncertainty regidn, to the continuous space:
we consider the posterior uncertaintyzinspace and map
itto j-space. Approximating the posteriaz; jx) by the
variational distributiorg(z;jx) := N (z;; i(x); ?(x)),see
Eq. 3, we thus consider the function

9( )= a(F *(§)ix): (6)
Here,F !isthe inverse CDF (the quantile function), which

because the numbersthat can be represented by Eq. 4 maps ; back toz;. Note thatg is not a normalized proba-

with R, = dh(m)e form a uniform grid with spacing

bility distribution, as Eq. 6 deliberately does not include the

2R m =2 dh(me which is at most as wide as the size of Jacobiarr ,F *( ;) because the nal objective will be to

the intervaljl nj = p(m) =2 "™ The red arrows in

maximizeq (zjx) at a single point (see Eq. 7 below).

Figure 1 (left) illustrate how AC would encode the message

m = 7 in the toy example into the bitstrind11". Decoding
works in the opposite direction and ma’bback tom.

In the next section, we generalize AC to the continuou
domain. As we will show, the concept of an “uncertainty

region” in -space becomes again crucial.

3.3. Variational Bayesian Quantization

We now present our proposed algorithm, Variationaland ’}

S

Intuition.  The solid and dashed purple curves in gure
Figurel (right) plotg(z jx) andg( i) on the horizontal and
vertical axis, respectively. The red arrows illustrate how a
nite uncertainty region ;(x) j(x) in z;-space is mapped

to a nite width of gin ;-space. VBQ nds a quantil&

that has high value undgrwhile at the same time having

a short binary representation. The two purple arrowheads
on the vertical axis point to two viable candidatés,: %
%, that both lie within the uncertainty region.

Bayesian Quantization (VBQ), a novel quantization methodThe choice between these two points poses a rate-distortion

for lossy compression that is inspired by AC but that op+trade-off: while%

erates orcontinuoudatent variablez 2 RX . Similar to

3If m is a sequence of symboB, andF are de ned by lex-

(0:111), has higher value unde(i.e.,
it identi es a point? = F 1(%) with higher approximate
posterior probabilityg(2;jx)), the alternative’;

3
4

icographical order and can be constructed in a streaming manndf:11), can be encoded in fewer bits.
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Algorithm 1 Rate-Distortion Optimization for Dimensian

Input:  Prior CDFF(z), rate penalty > 0,
variational mode ; (x) and variance 2(x).
Output: Optimal code poinf; (Otbiby g v )2
Evaluate ! F( i(x)).
Initializer  0; ]
repeat
Updater r+1

Set™'et rppr Vg MO o rgpr Ve

i null; -~ 1

if ""g0and” (T"jx) <" then Figure 2.Effect of an anisotropic posterior distribution on quanti-
Update/\i /\I' Ieft; . . /‘Ir Ieftj x). zation. Left: Iint_aar regre_ssion model with optimal t (green) a}nd
end if ts of models with quantized parameters (orange, purple). Right:
if gt g 4 ang (/\_r; rightj x)<' then posterior distribution and quantized model parameters following
: A A right. A right ; two different quantization schemes. Although both quantized mod-
UPdate i i i X)) els are equally far away from the optimal solution (green dot),
e_nd if A A VBQ (orange) ts the data better because it takes the anisotropy of
until logg( /) logg(i)< (r+1 R (7). the posterior into account.

Optimizing the Rate-Distortion Trade-Off. Ratherthan for the code poinf} that minimizes ("ijx). For eactr,
considering a hard uncertainty region, VBQ simply triesthe algorithm only needs to consider the two code points
to ndapoint ()X, thatidenti es latent variables 7" Yand"T"" Y with rate at most that enclose

z  (z)&, with high probability under the variational the optimum ” := F( ;(x)) and are closest to it; these two
distribution q (zjx) while being expressible in few bits. code points can be easily computed in constant time. The

We thus expres®ogq (zjx) in terms of the coordinates iteration terminates as soon as the maximally possible re-
i = F(z) using Eq. 3, maining increase itogq(zjx) = log g( ;) is smaller than

2 the minimum penalty for an increasing bitlength (in practice,

XOF () i) +cnst. (7) the iteration rarely exceeds 8).

2 2(x) '

logq (zjx) =
i=1
Encoding. After nding the optimal code points’\i K.,
For each dimension we restrict the quantilg 2 (0;1)to  they have to be encoded into a single bitstring. Simply
the set of code point§ that can be represented in binary concatenating the binary representations (Eq. 4) of all
via Eq. 4 with a nite but arbitra%bitlengtm(“i). We  would be ambiguous due to their variable lengih’ )
de ne the total bitlengttR (") := iK:l R(7), i.e., the (see detailed discussion in the Supplementary Material). In-
length of the concatenation of all codasi 2f1:::::K stead, we treat the code points as symbols from a discrete

neglecting, for now, an overhead for delimiters (see below)Yo¢@bPulary and encode them via lossless entropy coding,
Using a rate penalty parameter 0 that is shared across €9+ Arithmetic Coding. The entropy coder requires a prob-

all dimensions, we minimize the rate-distortion objective 2Pilistic model over all code points; here we simply use
their empirical distribution. When using our method for

L (ij) = quq 2jx)+ R(’\) (8) model compression, this empirical distribution has to be
% Y i(x) 2 # transmitted to the receiver as additional header information
= LA + R(}) +cnst thatcounts towards the total bitrate. For data compression,

i=1 2 {£(x) by contrast, we obtain the empirical distribution of code

The optimization thus decouples across all latent dimer{20IntS on training data and include itin the decoder.
sionsi, and can be solved ef ciently and in parallel by

) for each latent variablg based on two factors: (i) global
)= F YD) i) “+2 0 2)R(B): (9)  rate setting that is shared across all dimensidnsand

(ii) a per-dimension posterior uncertainty estimatéx).

Although the bitlengttR(%}) is discontinuous (it counts Point (i) allows tuning the rate-distortion trade-off whereas
the number of binary digits, see Eq. 4),("}jx) can be (ii) takes the anisotropy of the latent space into account.
1 . |

ef ciently minimized over”} using Algorithm 1. The al- Figure 2 illustrates the effect of anisotropy in latent space.
gorithm iterates over all rates2 f 1; 2;:::g and searches The right panel plots the posterior of a toy Bayesian linear
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prets word and context embedding vectors as latent variables
and associates them with Gaussian approximate posterior
distributions. Point estimating the latent variables would
result in classical word2vec. Even though the model was
not speci cally designed or trained with model compres-
sion taken into consideration, the proposed algorithm can
successfully compress it in post-processing.

Figure 3.Performance of compressed word embeddings on a staf=XPeriment Setup. We implemented the Black Box VI
dard semantic and syntactic reasoning task (Mikolov et al., 2013ayersion of the Bayesian Skip-gram model proposed in (Bam-
VBQ (orange, proposed) leads to much smaller le sizes at equaler & Mandt, 2017)} and trained the model on books pub-
model performance over a wide range of performances. lished betweerd980and2008from the Google Books cor-
pus (Michel et al., 2011), following the preprocessing de-
scribed in (Bamler & Mandt, 2017) with a vocabulary of
regression model = ax + b(see left panel) with only two V = 100;000words and embedding dimensidr+ 100.
latent variablez  (a; b). Due to the elongated shape of
the posterior, VBQ uses a higher accuracydahan forh.
As a result, the algorithm nds a quantizatidr{orange dot
in right panel) that is closer to the optimal (MAP) solution
(green dot) along the-axis than along thb-axis.

In the trained model, we observed that the distribution of
posterior modes ,; across all wordsv and all dimen-
sionsj of the embedding space was quite different from the
prior. To improve the bitrate of our method, we used an “em-
pirical prior” for encoding that is shared acrosswland; ;
The purple dot in Figure 2 (right) compares to a more comwe chose a Gaussian(0; 3) where § is the empirical

solution to thg negrest pqint (which is then entropy COd‘EdQNe compare our method's performance to a baseline that
from a xed grid with spacing > 0. We tuned so that the uantizes to a uniform grid and then uses the empirical

resulting quantized model parameters (purple dot) have th istribution of quantized coordinates for lossless entropy

same distance to the optimum as our proposed solution (OEbding. We also compare to uniform quantization baselines

Qhat replace the entropy coding step with the standard com-
y'pression libraries gzip, bzip2, and lzma. These methods
are not restricted by a factorized distribution of code points
This concludes the description of the proposed Variationaénd could therefore detect and exploit correlations between

Bayesian Quantization algorithm. In the next section, we anquantized code points across words or dimensions.

alyze the algorithm's behaviour experimentally and demong, e o 41ate performance on the semantic and syntactic rea-
strate its performance for variable-bitrate compression O%oning task proposed in (Mikolov et al., 2013a), a popular
both word embeddings and images. dataset of semantic relations like “Japan : yen = Russia : ru-

) ble” and syntactic relations like “amazing : amazingly =
4. Experiments lucky : luckily”, where the goal is to predict the last word

iven the rst three words. We report Hits@10, i.e., the frac-

we testeql our appr_oach on two very different dc_)mains: WorO?ion of challenges for which the compressed model ranks
embeddings and images. For word embeddings, we meg;,

. X e correct prediction among the top ten.

sured the performance drop on a semantic reasoning task

due to lossy compression. Our proposed VBQ method sig-

ni cantly improves model performance over uniform dis- Results. Figure 3 shows the model performance on the
cretization and compression with either Arithmetic Codingsemantic and syntactic reasoning tasks as a function of com-
(AC), gzip, bzip2, or Izma at equal bitrate. For image com-ression rate. Our proposed VBQ signi cantly outperforms
pression, we show that a single standard VAE, compresseall baselines and reaches the same Hits@10 at less than half
with VBQ, outperforms JPEG and other baselines at a widehe bitrate over a wide range.

range of bitrates, both quantitatively and visually.

nds model parameters with higher posterior probabilit
The resulting model ts the data better (left panel).

“See Supplementary Material for hyperparameters. Our code
) ) is available ahttps://github.com/mandt-lab/vbq .
4.1. Compressing Word Embeddings 5The uncompressed model performance (dotted gray line in

. . . igure 3) is not state of the art. This is not a shortcoming of
We consider the Bayesian Skip-gram model for neural wor he compression method but merely of the model, and can be

embeddings (Barkan, 2017), a probabilistic generative forattributed to the smaller vocabulary and training set used compared
mulation of word2vec (Mikolov et al., 2013b) which inter- to (Mikolov et al., 2013b) due to hardware constraints.
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JPEG:we used the libjpeg implementation packaged
with the Python Pillow library, using default con g-
urations (e.g., 4:2:0 subsampling), and we adjust the
quality parameter to vary the rate-distortion trade-off;

Deep learning baselinewe compare to Badl et al.
(2017), who directly optimized for the rate and distor-
tion, training a separate model for each point on the R-
D curve. In our large-scale experiment, we adopte their
model architecture, so their performance essentially
represents the end-to-end optimized performance up-
per bound for our method (which uses a single model).

4.2.1. QIALITATIVE ANALYSIS ON TOY DATASETS

We trained a VAE on the MNIST dataset and the Frey Faces
dataset, using 5 and 4-dimensional latent spaces, respec-

Figure 4.Qualitative behavior of our proposed VBQ algorithm on _. . . .
two data sets of small-scale images (MNIST and Frey Faces). Witrtllvely' See Supplemental Material for experimental details.

decreasing bitrate, the method starts to confuse the encoded objeEigure 4 shows example image reconstructions from our
with a generic one (encoded by the median of the mp{a)). VBQ algorithm with increasing , and thus decreasing bi-
trate. The right-most column is the extreme cadel
resulting in the shortest possible bistring encoding
(0:1), = % (i.e.,2 being the median of the prig(z)) for
While Section 4.1 demonstrated the proposed VBQ metho@very dimension. As the bitrate decreases @¢") ! 0),

for model compression, we now apply the same method t@our method gradually “confuses” the original image with
data compression using a variational autoencoder (VAER generic image (roughly in the center of the embedding
We rst provide qualitative insight on small-scale images,space), while preserving approximately the same level of
and then quantitative results on full resolution color imagessharpness. This is in contrast to JPEG which typically intro-

duces blocky and/or pixel-level artifacts at lower bitrates.

Model. For simplicity, we consider regular VAEs with a
standard normal prior and Gaussian variational posterioft-2-2- FULL-RESOLUTION COLOR IMAGES

The generative network parameterizes a factorized categqjye apply our VBQ method to a VAE trained on color im-
ical or Gaussian likelihood model in experiments in SeCages and obtain practical image compression performance
4.2.1 or 4.2.2, respectively. Network architectures are d&qyajing JPEG, while outperforming baselines that ignore
scribed below and in more detail in Supplementary Materialyosterior uncertainty and directly quantize latent variables.

4.2. Image Compression

Baselines. We consider the following baselines: Model and Dataset. The inference and generative net-
works of our VAE are identical to the analysis and syn-
Uniform quantizationfor a given imagex, we quan-  thesis networks of Baél et al. (2017), using 3 layers of
tize each dimension of the posterior mean vecttx) 256 Iters each in a convolutional architecture. We used a
to a uniform grid. We report the bitrate for encoding diagonal Gaussian likelihood model, whose mean is com-

the resulting quantized latent representation via starputed by the generative net and the varifanée's xed
dard entropy coding (e.g., arithmetic coding). Entropyas a hyper-parameter, similar to avVAE (Higgins et al.,
coding requires prior knowledge of the probabilities of 2017) approach ¢ was tuned to 0.001 to ensure the VAE

each grid point. Here, we use the empirical frequenciegchieved overall good R-D trade-off; see (Alemi et al.,
of grid points over a subset of the training set; 2018)). We trained the model on the same subset of the

ImageNet dataset as used in (Badt al., 2017). We evalu-

ated performance on the standard Kodak (Kodak) dataset,

a separate set of 24 uncompressed color images. As in the
Avord embedding experiment, we also observed that using an
Quantization wittgeneralized Lloyd algorithosimilar ~ empirical prior for our method improved the bitrate; for this,
to above, but the grid points are optimized using generwe used the exible density model of Ballet al. (2018),
alized Lloyd algorithm (Chou et al., 1989), a widely- tting a different distribution per latent channel, on samples
used state-of-the-art classical quantization method; of posterior means (treating spatial dimensions as i.i.d.).

k-means quantizatiorsimilar to “uniform quantiza-
tion”, but with the placement of grid points optimized
via k-means clustering on a subset of the training dat






