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Abstract

Generative models in molecular design tend to be
richly parameterized, data-hungry neural models,
as they must create complex structured objects as
outputs. Estimating such models from data may
be challenging due to the lack of sufficient train-
ing data. In this paper, we propose a surprisingly
effective self-training approach for iteratively cre-
ating additional molecular targets. We first pre-
train the generative model together with a simple
property predictor. The property predictor is then
used as a likelihood model for filtering candidate
structures from the generative model. Additional
targets are iteratively produced and used in the
course of stochastic EM iterations to maximize
the log-likelihood that the candidate structures
are accepted. A simple rejection (re-weighting)
sampler suffices to draw posterior samples since
the generative model is already reasonable after
pre-training. We demonstrate significant gains
over strong baselines for both unconditional and
conditional molecular design. In particular, our
approach outperforms the previous state-of-the-
art in conditional molecular design by over 10%
in absolute gain. Finally, we show that our ap-
proach is useful in other domains as well, such as
program synthesis.

1. Introduction
The goal of molecular generation is to create molecules
with the desired property profile. This task is a key com-
ponent of pharmaceutical drug discovery, and has received
intense attention in recent years, yielding a wide range of
proposed architectures (You et al., 2018; Olivecrona et al.,
2017; Popova et al., 2018; Jin et al., 2019a). A common
feature of these architectures is reliance on a large number
of parameters to generate molecules, which are represented
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as complex graph-structured objects. As a result, these mod-
els require copious amounts of training data, consisting of
molecules with their target properties. Collecting such prop-
erty data is often slow and expensive due to the required
empirical measurements.

Our challenge is to achieve high-quality molecular genera-
tion in data-sparse regimes. While semi-supervised methods
for representation learning have demonstrated significant
benefits in natural language processing and computer vi-
sion (Edunov et al., 2018; Lee, 2013), they are relatively
under-explored in chemistry. In this paper, we propose a
simple and surprisingly effective self-training approach for
iteratively creating additional molecular targets. This ap-
proach can be broadly applied to any generative architecture,
without any modifications.

Our stochastic iterative target augmentation approach,
shown in Figure 2, builds on the idea that it is easier to
evaluate the properties of candidate molecules than to gener-
ate those molecules. Thus a learned property predictor can
be used to effectively guide the generation process. To real-
ize this idea, our method starts by pre-training the generative
model on a small supervised dataset along with the property
predictor. The property predictor then serves as a likelihood
model for filtering candidate molecules from the genera-
tive model. Candidate generations that pass this filtering
become part of the training data for the next training epoch.
Theoretically, this procedure can be viewed as one iteration
of stochastic EM, maximizing the log-likelihood that the
candidate structures are accepted. As the generative model
already produces reasonable samples after pre-training, a
simple rejection (re-weighting) sampler suffices to draw pos-
terior samples. For this reason, it is helpful to apply the filter
at test time as well, or to use the approach transductively1

to further adapt the generation process to novel test cases.
The approach is reminiscent of self-training or reranking
approaches employed with some success for parsing (Mc-
Closky et al., 2006; Charniak et al., 2016). However, in
our case, it is the candidate generator that is complex while
the filter is relatively simple and remains fixed during the
iterative process.

We demonstrate that our target augmentation algorithm is

1Allowing the model to access test set inputs (but not targets)
during training.
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Figure 1. Illustration of conditional molecular design. Molecules can be modeled as graphs, with atoms as nodes and bonds as edges.
Here, the task is to train a translation model to modify a given input molecule into a target molecule with higher drug-likeness (QED)
score. The constraint has two components: the output Y must be highly drug-like, and must be sufficiently similar to the input X .

Figure 2. Illustration of data generation process for conditional molecular design. Given an input molecule, we first use our generative
model to generate candidate modifications, and then select sufficiently similar molecules with high property score using our external filter.
In the unconditional setting where the model takes no input, we simply sample outputs from the model and filter by property score.

effective and consistent across different generation tasks in
its ability to improve molecular design performance. Our
method is tested in two scenarios: molecular generative
modeling (i.e., unconditional molecular design) and graph-
to-graph translation, the corresponding conditional design
problem of modifying an existing molecule to improve its
properties. The latter is illustrated in Figure 1. We demon-
strate significant gains over strong baselines for both set-
tings. For instance, our approach outperforms the previous
state-of-the-art (Jin et al., 2019a) in conditional molecular
design by over 10% in absolute gain on two tasks.

Finally, our proposed method is not tied specifically to the
molecular domain, and can generalize to any conditional or
unconditional generation task with task-specific constraints.
For example, in program synthesis, we show that our method
outperforms a strong reinforcement learning baseline (Bunel
et al., 2018).

2. Stochastic Iterative Target Augmentation
We present our method in the context of conditional molec-
ular design (Jin et al., 2019a;b), the task of transforming a
given molecule X into another compound Y with improved
chemical properties, while constraining Y to remain similar
toX (Figure 1). The corresponding unconditional task takes
no input, seeking only to generate molecules with desired
properties.

As our method can be adapted to the unconditional set-

ting by just dropping the input conditioning, we present
our method in the conditional context. For a given input
X , the model learns to generate an output Y satisfying
c = 1|X,Y for some constraint c, represented as a binary
random variable whose value is a function of X and Y .
(That is, c corresponds to our filter.) For example, in condi-
tional molecular generation, c = 1 if Y exceeds a specified
property score threshold while being sufficiently similar to
X . The proposed augmentation framework can be applied
to any translation model P trained on an existing dataset
D = {(Xi, Yi)}, independent of the specific model archi-
tecture. As illustrated in Figure 2, our method is an iterative
procedure in which each iteration consists of the following
two steps:

• Augmentation Step: Let D be the original dataset and
Dt the training set at iteration t. To construct the next
epoch’s augmented training set Dt1 , we first initialize
Dt+1 = D. We then feed each input Xi ∈ D into the
translation model up toC times to sample candidate trans-
lations Y 1

i . . . Y
C
i .2 We take the first K distinct transla-

tions for each Xi satisfying the constraint c and add them
to Dt+1. When we do not find K distinct valid transla-
tions, we simply add copies of the original translation Yi
to Dt+1 to preserve balance. In the unconditional setting,

2One could initialize Dt+1 = Dt instead of Dt+1 = D and
continuously expand the dataset, but the empirical effect is small
(see Appendix E.6). Note our augmentation step can be trivially
parallelized for speed.
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Algorithm 1 Stochastic iterative target augmentation

Input: Data D = {(X1, Y1), . . . , (Xn, Yn)}, model P (0)

1: procedure AUGMENTDATASET(D, P (t))
2: Dt+1 = D . Initialize augmented dataset
3: for (Xi, Yi) in D do
4: for attempt in 1, . . . , C do
5: Apply P (t) to Xi to sample candidate Y ′

6: if c = 1|Xi, Y
′ and (Xi, Y

′) /∈ Dt+1 then
7: Add (Xi, Y

′) to Dt+1

8: if K successful translations added then
9: break from loop

10: return augmented dataset Dt+1

11: procedure TRAIN(D)
12: for epoch in 1, . . . , n1 do . Regular training
13: Train model on D.
14: for epoch in 1, . . . , n2 do . Augmentation
15: Dt+1 = AUGMENTDATASET(D, P (t))
16: P (t+1) ← Train model P (t) on Dt+1.

we instead just sample up to C|D| outputs and accept up
to K|D| distinct new targets.

• Training Step: We continue to train the model P (t) over
the new training set Dt+1 for one epoch.

The above training procedure is summarized in Algorithm 1.
As the constraint c is known a priori, we can construct an
external property filter to remove generated outputs that
violate c during the augmentation step. At test time, we
also use this filter to screen predicted outputs. To propose
the final translation of a given input X , we sample up to
L outputs from the model until we find one satisfying the
constraint c. If all L attempts fail for a particular input, we
output the first of the failed attempts.

Finally, as an additional improvement specific to the condi-
tional setting, we observe that the augmentation step can be
carried out for unlabeled inputs X that have no correspond-
ing Y . Thus we can further augment our training dataset in
the transductive setting by including test set inputs during
the augmentation step, or in the semi-supervised setting by
simply including unlabeled inputs.

3. Algorithm Motivation
We provide here some theoretical motivation for our method
in the conditional setting. Since molecules are discrete
objects, we assume a discrete output space.

In the conditional context, the primary difficulty lies in
generalizing to unseen inputs (precursors) at test time. Gen-
erating even a single successful Y for a givenX is nontrivial.
Therefore, we focus on maximizing the model’s probability

of generating successful translations.

We can characterize our method as a stochastic expectation-
maximization (EM) algorithm (Celeux et al., 1996). As be-
fore, our external filter c is a binary random variable whose
value is a function of X and Y , representing whether output
Y satisfies the desired constraint in relation to input X . We

would like to generate Y such that Y ∈ B(X)
def
= {Y ′ :

c = 1|X,Y ′}. If the initial translation model P (0)(Y |X)
(after bootstrapping on the gold data, but before our augmen-
tation) serves as a reasonable prior distribution over outputs
Y for any given input X , we could simply “invert” the filter
and use

P (∗)(Y |X) ∝ P (0)(Y |X) · p(c = 1|X,Y ) (1)

as the ideal translation model, noting that the probability
p(c = 1|X,Y ) is either 0 or 1 since c is a function ofX and
Y . This posterior calculation is typically infeasible but can
be approximated through sampling; even so, it relies heavily
on the appropriateness of the prior P (0)(Y |X). Instead, we
go a step further and iteratively optimize our parametrically
defined prior translation model Pθ(Y |X). Note that the
resulting prior can become much more concentrated around
acceptable translations.

We maximize the log-likelihood that candidate translations
satisfy the constraints implicitly encoded in the filter:

EX [logPθ(c = 1 | X)] (2)

In many cases there are multiple viable outputs for any given
input X . The training data may provide only one (or none)
of them. Therefore, we treat the output structure Y as a
latent variable, and expand the inner term of Eq.(2) as

log
∑
Y

Pθ(Y |X) · p(c = 1|X,Y ) (3)

Since the above objective involves discrete latent variables
Y , we propose to maximize Eq.(3) using the standard EM
algorithm, especially its incremental, approximate variant.
The target augmentation step in our approach is a sampled
version of the E-step where the posterior samples are drawn
with rejection sampling guided by the filter. The number of
samples K controls the quality of approximation to the pos-
terior.3 The additional training step based on the augmented
targets corresponds to a generalized M-step (though im-
provement is not guaranteed due to stochasticity). More pre-
cisely, let P (t)

θ (Y |X) be the current translation model after
t epochs of augmentation training. In epoch t+ 1, the aug-
mentation step first samples C different candidates for each
input X using the old model P (t) parameterized by θ(t),
and then removes those which violate the constraint c; the

3See Appendix E.6 for details on the effect of sample size K.
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remaining candidates are interpretable as samples from the
current posterior Q(t)(Y |X) ∝ P (t)

θ (Y |X)p(c = 1|X,Y ).
As a result, the training step maximizes the EM auxiliary
objective via stochastic gradient descent:

J(θ | θ(t)) = EX

[∑
Y

Q(t)(Y |X) logPθ(Y |X)

]
(4)

We train the model with multiple iterations and show em-
pirically that model performance indeed keeps improving
as we add more iterations, both in our main experiments as
well as on a toy model in Appendix B. The EM approach is
likely to converge to a different and better-performing trans-
lation model than the initial posterior calculation discussed
in Equation 1.

4. Experiments
We present experiments showcasing the effectiveness of our
method, starting with conditional molecular design.

4.1. Conditional Molecular Design

The goal of conditional molecular design is to modify
molecules to improve their chemical properties. As illus-
trated in Figure 1, conditional molecular design is formu-
lated as a graph-to-graph translation problem. The training
data is a set of molecular pairs D = {(Xi, Yi)}. X is the
input precursor and Y is a similar molecule with improved
properties. Each molecule is further labeled with its property
score. Our method is well-suited to conditional molecular
design because the target molecule is not unique: each pre-
cursor can be modified in many different ways to optimize
its properties. Thus we can potentially discover several new
targets per precursor during data augmentation.

External Filter The constraint contains two parts: 1) the
chemical property of Y must exceed a certain threshold β,
and 2) the molecular similarity between X and Y must
exceed a certain threshold δ. The molecular similarity
sim(X,Y ) is defined as Tanimoto similarity on Morgan
fingerprints (Rogers & Hahn, 2010), which measures struc-
tural overlap between two molecules.

In real-world settings, ground truth values of chemical
properties are often evaluated through experimental assays,
which are too expensive and time-consuming to run for
stochastic iterative target augmentation. Therefore, we con-
struct a proxy in silico property predictor F1 to approximate
the true property evaluator F0. To train this proxy pre-
dictor, we use the molecules in the training set and their
labeled property values. The proxy predictor F1 is parame-
terized as a graph convolutional network and trained using
the Chemprop package (Yang et al., 2019). During data aug-
mentation, we use F1 to filter out molecules whose predicted
property score is under the threshold β.

4.1.1. EXPERIMENTAL SETUP

We follow the evaluation setup of Jin et al. (2019b) for two
conditional molecular design tasks:

1. QED Optimization: The task is to improve the drug-
likeness (QED) of a given compound X . The similarity
constraint is sim(X,Y ) ≥ 0.4 and the property con-
straint is QED(Y ) ≥ 0.9, with QED(Y ) ∈ [0, 1] de-
fined by the system of Bickerton et al. (2012).

2. DRD2 Optimization: The task is to optimize bio-
logical activity against the dopamine type 2 receptor
(DRD2). The similarity constraint is sim(X,Y ) ≥ 0.4
and the property constraint is DRD2(Y ) ≥ 0.5, where
DRD2(Y ) ∈ [0, 1] is the predicted probability of biolog-
ical activity given by the model from Olivecrona et al.
(2017).

We treat the output of the in silico evaluators from Bickerton
et al. (2012) and Olivecrona et al. (2017) as ground truth,
and we use them only during test-time evaluation to simulate
a real-world scenario.4

Evaluation Metrics. During evaluation, we are interested
both in the probability that the model finds a successful
modification for a given molecule, as well as the diversity of
the successful modifications when there are multiple. Thus
we translate each molecule in the test set Z = 20 times,5

yielding candidate modifications Y1 . . . YZ (not necessarily
distinct), and use the following two evaluation metrics:

1. Success: The fraction of molecules X for which any of
the outputs Y1 . . . YZ meet the required similarity and
property constraints (specified previously for each task).
This is our main metric.

2. Diversity: For each molecule X , we measure the average
Tanimoto distance (defined as 1− sim(Yi, Yj)) between
pairs within the set of successfully translated compounds
among Y1 . . . YZ . If there are one or fewer successful
translations then the diversity is 0. We average this quan-
tity across all test precursors X .

Models and Baselines. We consider the following two
model architectures from Jin et al. (2019a) to show that our
algorithm is not tied to specific neural architectures.

1. VSeq2Seq, a sequence-to-sequence translation
model generating molecules by their SMILES string
(Weininger, 1988).

4Although the Chemprop model we use in our filter is quite
powerful, it fails to perfectly approximate the ground truth mod-
els for both QED and DRD2. The test set RMSE between our
Chemprop model and the ground truth is 0.015 on the QED task
and 0.059 on DRD2, where both properties range from 0 to 1.

5Our budget constraint Z limits the number of accesses to the
ground truth evaluator, not the proxy predictor. In practice the
ground truth evaluator is expensive while the proxy is cheap.
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Model QED Succ. QED Div. DRD2 Succ. DRD2 Div.

VSeq2Seq 58.5 0.331 75.9 0.176
VSeq2Seq+ (Ours) 89.0 0.470 97.2 0.361
VSeq2Seq+, semi-supervised (Ours)* 95.0 0.471 99.6 0.408
VSeq2Seq+, transductive (Ours)* 92.6 0.451 97.9 0.358

HierGNN 76.6 0.477 85.9 0.192
HierGNN+ (Ours) 93.1 0.514 97.6 0.418

Table 1. Performance of different models on QED and DRD2 conditional generation tasks. Italicized models with + are augmented by
our algorithm. Best performance for each model architecture in bold, not including models that use additional unlabeled data. *Note
that the semi-supervised and transductive settings for VSeq2Seq are not directly comparable to VSeq2Seq and VSeq2Seq+ due to using
additional unlabeled data. However, they show that having access to such unlabeled inputs can substantially improve performance. But we
emphasize that iterative target augmentation remains critical to performance in these settings: augmentation without an external filter
instead decreases performance.
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Figure 3. Left: QED test success rate vs. Chemprop predictor’s RMSE with respect to ground truth. The red line shows the performance
of the (unaugmented) VSeq2Seq baseline. Right: Same plot for DRD2. In each plot, the far left point with zero RMSE is obtained by
reusing the ground truth predictor, while the second-from-left point is the Chemprop predictor we use to obtain our main results. Points
further to the right are weaker predictors, simulating a scenario where the property is more difficult to model.

2. HierGNN, a hierarchical graph-to-graph architecture that
achieves state-of-the-art performance on the QED and
DRD2 tasks, outperforming VSeq2Seq by a wide margin.

We apply our iterative augmentation procedure to the above
two models, generating up to K = 4 new targets per pre-
cursor in each augmentation epoch. Additionally, we eval-
uate our augmentation of VSeq2Seq in a transductive set-
ting, as well as in a semi-supervised setting where we pro-
vide 100K additional source-side precursors from the ZINC
database (Sterling & Irwin, 2015). Full hyperparameters are
provided in Appendix E.1.

4.1.2. RESULTS

As shown in Table 1, our iterative augmentation paradigm
significantly improves the performance of VSeq2Seq and
HierGNN. On both datasets, the translation success rate
increases by over 10% in absolute terms for both mod-
els. In fact, VSeq2Seq+, our augmentation of the simple
VSeq2Seq model, outperforms the non-augmented version
of HierGNN. This result strongly confirms our hypothesis
about the inherent challenge of learning translation models
in data-sparse scenarios. Moreover, we find that adding

more precursors during data augmentation further improves
the VSeq2Seq model. On the QED dataset, the translation
success rate improves from 89.0% to 92.6% by just adding
test set molecules as precursors (VSeq2Seq+, transductive).
When instead adding 100K precursors from the external
ZINC database, the performance further increases to 95.0%
(VSeq2Seq+, semi-supervised). We observe similar im-
provements for the DRD2 task as well. Beyond accuracy
gain, our augmentation strategy also improves the diversity
of generated molecules. For instance, on the DRD2 task,
our approach yields a 100% relative gain in output diversity.

These improvements over the baselines are perhaps unsur-
prising when considering the much greater amount of aug-
mented “data” pairs seen by our augmented model. For
example, VSeq2Seq+ has seen over 20 times as much “data”
as the base model by the end of training on the QED task
(Figure 4).
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Model Train-Aug Train+ Test+ QED Succ. QED Div. DRD2 Succ. DRD2 Div.

VSeq2Seq 7 7 7 58.5 0.331 75.9 0.176
VSeq2Seq(test) 7 7 3 77.4 0.471 87.2 0.200
VSeq2Seq(train) 3 3 7 81.8 0.430 92.2 0.321
VSeq2Seq+ 3 3 3 89.0 0.470 97.2 0.361
VSeq2Seq(no-filter) 3 7 7 47.5 0.297 51.0 0.185

Table 2. Ablation analysis of filtering at training and test time. “Train-Aug” indicates a model whose training process uses self-generated
candidates to augment the data, while “Train+” is a model that additionally filters these candidates using the proxy according to our
framework. “Test+” indicates a model that filters outputs at prediction time using the learned proxy predictor. We emphasize that the
ground truth predictor is used only for final evaluation. The evaluation for VSeq2Seq(no-filter) is conducted after 10 augmentation epochs,
as the best validation set performance only decreases over the course of training.
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Figure 4. Cumulative number of unique training pairs seen by
VSeq2Seq+ model after each augmentation epoch, on QED task.

Importance of Property Predictor Although the property
predictor used in data augmentation differs from the ground
truth property evaluator used at test time, the difference
in evaluators does not derail the overall training process.
Here we analyze the influence of the quality of the property
predictor used in data augmentation. Specifically, we rerun
our experiments using less accurate proxy predictors for
our external filter. We obtain these weakened predictors by
undertraining Chemprop and decreasing its hidden dimen-
sion. For comparison, we also report results with the oracle
property predictor which is the ground truth evaluator.

As shown in Figure 3, on the DRD2 dataset we can maintain
strong performance despite using predictors that deviate
significantly from the ground truth. This implies that our
framework can potentially be applied to other properties
that are harder to predict. On the QED dataset, our method
is less tolerant of inaccurate property prediction because the
property constraint is much tighter — it requires the QED
score of an output Y to be in the range [0.9, 1.0].

Importance of External Filtering Our full model
VSeq2Seq+ uses the external filter during both training
and testing. We further experiment with Vseq2seq(test), a
version of our model trained without data augmentation but
which uses the external filter to remove invalid outputs at
test time. As shown in Table 2, VSeq2Seq(test) performs
significantly worse than our full model trained under data

augmentation. Similarly, a model VSeq2Seq(train) trained
with data augmentation but without prediction time filtering
also performs much worse than the full model.

We also run an augmentation-only version of the model
without an external filter. This model (referred to as
VSeq2Seq(no-filter) in Table 2) augments the data in each
epoch by simply using the first K distinct candidate trans-
lations for each training precursor X , without using the ex-
ternal filter at all. We additionally provide this model with
the 100K unlabeled precursors from the semi-supervised
setting. Nevertheless, we find that during augmentation,
this model’s performance steadily declines from that of the
bootstrapped prior. Thus the external filter is necessary to
prevent poor targets from leading the model training astray.

4.2. Unconditional Molecular Design

In unconditional molecular design, we learn a distribution
over molecules with desired properties. The setup is similar
to the conditional case, and we reuse the same QED and
DRD2 datasets. However, as there is no input in the uncon-
ditional case, we drop the precursors X and use only the
set of targets Y as our training data. Additionally, we drop
the similarity component from our external filter; we now
require only that each generated molecule has sufficiently
high property score. We use the same property thresholds
for the QED and DRD2 tasks as in the conditional case.

Evaluation Metrics. We modify our metrics for the uncon-
ditional case:

1. Success: The fraction of sampled molecules Y above the
property score threshold.

2. Uniqueness: The number of unique molecules generated
in 20000 samples passing the property score threshold,
as a fraction of 20000. This is our main metric.

In the unconditional case, a model can achieve perfect suc-
cess and high pairwise diversity simply by memorizing a
small number of molecules with high property score. There-
fore, uniqueness is our main metric in the unconditional
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Model QED Succ. QED Uniq. DRD2 Succ. DRD2 Uniq.

VSeq 62.4 0.499 51.4 0.221
VSeq+ (Ours) 95.8 0.957 92.8 0.927

REINVENT 61.9 0.610 92.2 0.686

Table 3. Performance of different models on QED and DRD2 unconditional generation tasks. VSeq+ is our full augmented model.
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Figure 5. Left: Epoch number vs. uniqueness, evaluated with the Chemprop proxy predictor, for VSeq-based models on QED dataset.
VSeq+ and VSeq in blue and red respectively. Right: Same plot for DRD2. VSeq+ is trained without iterative target augmentation for the
initial epoch 0, and trained with augmentation thereafter.

setting, as a diverse distribution of molecules with high
property scores is necessary to achieve high uniqueness.

Models and Baselines. We consider two baselines:

1. A modified version of VSeq2Seq which simply drops the
input and corresponding attention layers; the resulting
model is essentially a variational autoencoder (Kingma
& Welling, 2013). We refer to this model as VSeq.

2. REINVENT, a sequence-based model from Olivecrona
et al. (2017) which uses the external property scorer to
fine-tune the model via reinforcement learning. This
can be viewed as an alternate method of leveraging the
external filter. We note that although Olivecrona et al.
(2017) also originally evaluated on the DRD2 property,
our setup is more challenging: we allow significantly
less training data for bootstrapping, and prohibit the use
of the ground truth predictor before test time.

REINVENT and our augmented model VSeq+ (obtained by
augmenting VSeq) are trained to convergence. For VSeq,
whose uniqueness score decreases with prolonged training,
we choose the checkpoint maximizing uniqueness under the
Chemprop proxy predictor. Although the VSeq and REIN-
VENT architectures differ slightly, we match the number of
trainable parameters. We provide full hyperparameters and
ablations in Appendices E.1 and E.8 respectively.

4.2.1. RESULTS

As shown in Table 3, our iterative augmentation scheme
significantly improves the performance of VSeq, especially
in uniqueness. In fact, uniqueness steadily decreases over

time for the VSeq baseline as it overfits the training data
(Figure 5). On the other hand, our augmented model VSeq+
sees a steady increase in uniqueness over time.

Moreover, our iterative augmentation scheme outperforms
the REINVENT baseline on both tasks by over 0.2 in ab-
solute terms. Especially on the QED task, the REINVENT
algorithm struggles to generate high-property molecules
consistently, performing comparably to the unaugmented
VSeq baseline in success rate. Additionally, we observed
that the REINVENT model is sometimes unstable on our
DRD2 task, where the initial training dataset is smaller.
Meanwhile, VSeq+ showed consistently strong performance
on both tasks. Overall our experiments in this unconditional
setting indicate that stochastic iterative target augmentation,
at least in certain scenarios, is capable of leveraging the ex-
ternal property signal more effectively than an RL method.

4.3. Program Synthesis Experiments

Finally, we present additional experiments using the
conditional version of our method in the program synthesis
domain, demonstrating its generalizability across domains.
Program synthesis is the task of generating a program (using
domain-specific language) based on given input-output
specifications (Bunel et al., 2018; Gulwani, 2011; Devlin
et al., 2017). That is, the source is a set of input-output
specifications for the program, and the target is a program
that passes all test cases. Our method is suitable for this
task because the target program is not unique. Multiple
programs may be consistent with the given input-output
specifications.
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Figure 6. Illustration of our data generation process in the program synthesis setting. Given an input-output specification, we first use
our generation model to generate candidate programs, and then select correct programs using our external filter. Images of input-output
specification and the program A are from Bunel et al. (2018).

External Filter The external filter is straightforward for
this task: we simply check whether the generated output
passes all test cases. Note that at evaluation time, each
instance contains extra held-out input-output test cases; the
program must pass these in addition to the given test cases
to be considered correct. When we perform prediction time
filtering, we do not use held-out test cases in our filter.

4.3.1. EXPERIMENTAL SETUP

Our task is based on the educational Karel programming
language (Pattis, 1981) used for evaluation in Bunel et al.
(2018) and Chen et al. (2019). Commands in the Karel
language guide a robot’s actions in a 2D grid, and may
include for loops, while loops, and conditionals. Figure 6
contains an example. We follow the experiment setup of
Bunel et al. (2018).

Evaluation Metrics. The evaluation metric is top-1 gener-
alization. This metric measures how often the model can
generate a program that passes the input-output test cases
on the test set. At test time, we use our model to generate
up to L candidate programs and select the first one to pass
the input-output specifications (not including held-out test
cases).

Models and Baselines. Our main baseline is the MLE base-
line from Bunel et al. (2018). This model consists of a CNN
encoder for the input-output grids and an LSTM decoder
along with a hand-coded syntax checker. It is trained to
maximize the likelihood of the provided target program.
Our model is the augmentation of this MLE baseline by our
iterative target augmentation framework. As with molecular
design, we generate up to K = 4 new targets per precursor
during each augmentation step. Additionally, we compare
against the best model from Bunel et al. (2018), which fine-
tunes the same MLE architecture using an RL method with
beam search to estimate gradients.6 We use the same hyper-

6More recently, Chen et al. (2019) achieved state-of-the-art
performance on the same Karel task, with top-1 generalization ac-
curacy of 92%. They use a different architecture highly specialized

Model Top-1

MLE 71.91
MLE + RL + Beam Search 77.12
MLE+ (Ours) 85.02

Table 4. Model performance measured by top-1 generalization ac-
curacy on Karel program synthesis task. MLE+ is our augmented
version of the MLE model (Bunel et al., 2018), while MLE + RL +
Beam Search is their reinforcement learning method applied to the
same architecture.

parameters as the original MLE baseline; see Appendix E.1
for details.

4.3.2. RESULTS

Table 4 shows the performance of our model in comparison
to previous work. Our model (MLE+) outperforms the base
MLE model in Bunel et al. (2018) model by a wide margin.
Moreover, our model outperforms the best reinforcement
learning model (RL + Beam Search) in Bunel et al. (2018),
which was trained to directly maximize the generalization
metric. This demonstrates the efficacy of our approach in
the program synthesis domain. Since our method is comple-
mentary to architectural improvements, we hypothesize that
other techniques, such as execution based synthesis (Chen
et al., 2019), can benefit from our approach as well.

5. Related Work
Molecular Design Several previous works explore molecu-
lar design using different architectures. Segler et al. (2017);
Kusner et al. (2017); Gómez-Bombarelli et al. (2018); Kang
& Cho (2018) adopt generative modeling approaches for
molecular design. You et al. (2018); Popova et al. (2018);
Olivecrona et al. (2017) use reinforcement learning methods
for this task. Jin et al. (2019a;b) formulate this problem
as graph-to-graph translation and significantly outperform
previous methods in the conditional setting. However, their

for program synthesis as well as a specialized ensemble method.
Thus their results are not directly comparable to our results in this
paper for the MLE architecture.
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performance remains imperfect due to the limited size of
given training sets.

On the other hand, recent advances in graph convolutional
networks (Duvenaud et al., 2015; Gilmer et al., 2017) have
provided effective solutions for the related problem of prop-
erty prediction. Our work leverages strong property predic-
tion models to improve the performance of generative mod-
els for molecular design, by checking whether generated
molecules have desired chemical properties and augmenting
the training set with molecules passing the property filter.

Program Synthesis When correctness in program synthe-
sis is defined by input-output test cases (Bunel et al., 2018;
Gulwani, 2011; Devlin et al., 2017), one can check a gener-
ated program’s correctness by simply executing it on each
input and verifying its output. Indeed, Zhang et al. (2018);
Chen et al. (2019) use this idea in their respective decoding
procedures, while also using structural constraints on valid
programs. We leverage this ability to check correctness
during training time data augmentation as well.

Reward-guided Generation Recent work has proposed to
incorporate rewards (e.g., properties) into generative models.
In machine translation, Norouzi et al. (2016) propose reward
augmented maximum likelihood, which samples new targets
from a stationary exponentiated payoff distribution centered
at a ground truth target based on edit distance. Their ap-
proach is only viable when ground truth targets are given.
In the case of molecular design, the number of ground truth
targets is very limited. Our approach, based on stochas-
tic EM, samples new targets from a learned non-stationary
distribution which is not tied to any ground truth.

Jaques et al. (2017) use reinforcement learning to im-
pose task-specific rewards for sequence generation, while
Brookes et al. (2019b) propose an adaptive sampling ap-
proach which generates additional targets based on paramet-
ric conditional density estimation. In contrast to these two
approaches, our method is based on maximum likelihood
and stochastic EM; Brookes et al. (2019a) explore additional
theoretical connections.

Semi-supervised Learning Our method is related to vari-
ous approaches to semi-supervised learning in different do-
mains. In chemistry, Hu et al. (2019) and Sun et al. (2019)
demonstrate pre-training approaches which use unlabeled
molecules to learn initial representations for property pre-
diction models. Our method instead tackles the problem
of molecular generation, addressing the problem of lim-
ited data by generating additional data via a self-training
technique. In machine translation, back-translation (Sen-
nrich et al., 2015; Edunov et al., 2018) creates additional
translation pairs by using a backward translation system to
translate unlabeled sentences from a target language into
a source language. In contrast, our method works in the

forward direction because many translation tasks are not
symmetric.

In image and text classification, data augmentation and la-
bel guessing (Lee, 2013; Berthelot et al., 2019; Xie et al.,
2019) are commonly applied to obtain artificial labels for
unlabeled data. Rather than generating new source-target
pairs by augmenting the source side, we augment the target
side. In syntactic parsing, our method is closely related to
self-training (McClosky et al., 2006). They generate new
parse trees from unlabeled sentences by applying an existing
parser followed by a reranker, and then treat the resulting
parse trees as new training targets. However, their method
is not iterative, and their reranker is explicitly trained to
operate over the top k outputs of the parser; in contrast, our
filter is independent of the generative model. In addition
we show that our approach, which can be viewed as itera-
tively combining reranking and self-training, is theoretically
motivated and can improve the performance of highly com-
plex neural models. Co-training (Blum & Mitchell, 1998)
and tri-training (Zhou & Li, 2005; Charniak et al., 2016)
also augment a parsing dataset by adding targets on which
multiple baseline models agree. Instead of using multiple
learners, our method uses task-specific constraints to select
correct outputs.

6. Conclusion
In this work, we have presented a stochastic iterative tar-
get augmentation framework for molecular design. Our
approach is theoretically motivated, and we demonstrate
strong empirical results in both the conditional and uncondi-
tional molecular design settings, significantly outperform-
ing baseline models in each case. Moreover, we find that
stochastic iterative target augmentation is complementary to
architectural improvements, and that its effect can be quite
robust to the external filter’s quality. Finally, in principle
our approach is applicable to other domains as well.
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