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9. Additional Proofs
In addition to providing proofs not in the main text in
chronological order, we restate what is being proved for
convenience.

Lemma For Theorem 2.2. Let ψ : RM × Y → [0,∞) be
a nonnegative loss function. L∗ψ : ∆M → R defined by
L∗ψ(η) = infs∈RM

∑M
i=1 ηiψ(s, i) is continuous.

Proof. First, note that L∗ψ is concave, because it is a point-
wise infimum of affine functions of η. Also, it is finite
valued, because ψ is lower bounded (thus L∗ψ(η) > −∞)
and clearly L∗ψ(η) <∞.
By Theorem 10.2 of Rockafellar (1970), any concave func-
tion taking finite real values on a locally simplicial sub-
set S ⊆ RM is lower semicontinuous. That is, for all
x ∈ S and sequences {x(n)} converging to x, f(x) ≤
limn→∞ f(x(n)) if the limit on the right exists.
∆M is locally simplicial (it is the probability simplex) and
L∗ψ satisfies the assumptions, so L∗ψ is lower semicontinu-
ous.
Now we just need to show upper semicontinuity, which
can be stated as: for any ε > 0, η ∈ ∆M , there exists
δ > 0 where for all η′ ∈ ∆M , ‖η′ − η‖2 ≤ δ implies
L∗ψ(η′) ≤ L∗ψ(η) + ε.
Let η ∈ ∆M , ε > 0. Choose s so that Lψ(s, η) ≤
L∗ψ(η)+ε/2, which is possible by definition of L∗. Now set

δ = ε

(
2 max

{√∑M
i=1 ψ(s, i)2, 1

})−1

(taking the max

with 1 is to avoid a zero in the denominator), and suppose
η′ ∈ ∆, ‖η − η′‖2 ≤ δ. We have,

L∗ψ(η′) ≤ Lψ(s, η′) =

M∑
i=1

η′iψ(s, i)

=

M∑
i=1

ηiψ(s, i) +

M∑
i=1

(η′i − ηi)ψ(s, i)

≤ L∗ψ(η) + ε/2 + ‖η′ − η‖2

√√√√ M∑
i=1

ψ(s, i)2

≤ L∗ψ(η) + ε/2 + ε/2 = L∗ψ(η) + ε.

The first inequality is by definition of L∗, and the second
inequality uses the Cauchy-Schwartz inequality. Therefore,
L∗ is upper semicontinuous. Since it is also lower semicon-
tinuous, it is continuous.

Theorem 2.2. Suppose ψ is a nonnegative top-k calibrated
loss function. Then ψ is top-k consistent in the sense that
for any sequence of measurable functions f (n) : X → RM ,
we have

Lψ(f (n))→ L∗ψ =⇒ Lerrk(f (n))→ L∗errk
.

Proof. We place top-k classification in the abstract decision
model in Appendix A. of Zhang (2004a) with output-model
spaceQ = ∆M , decision spaceD equal to the set of subsets
of [M ] of size k, and estimation-model space Ω = RM . The
risk function is the top-k error and the decision rule is equal
to rk, the top-k thresholding operator.
By Corollary 26 of Zhang (2004a) we just need to show that
for any ε > 0,

∆H(ε) = inf
{

∆Lψ(s, η) | ∆L∗errk
(s, η) ≥ ε

}
> 0,

where ∆L(s, η) := L(s, η) − L∗(η). In other words, we
need to show that given any ε > 0, there is a δ > 0 such
that ∆Lerrk(s, η) ≥ ε implies ∆Lψ(s, η) ≥ δ.
Proof by contradiction. Given ε > 0, assume there does
not exist δ > 0 such that the above holds. Then, there is a
sequence {s(n), η(n)} such that ∆Lerrk(s(n), η(n)) ≥ ε for
all n ∈ N and yet ∆Lψ(s(n), η(n))→ 0. Since η(n) comes
from a compact set ∆M , we may assume that η(n) → η
without loss of generality, since otherwise we could take a
convergent subsequence.
We will show that ∆Lψ(s(n), η) → 0, which provides a
contradiction in the following. Because ψ is top-k cali-
brated, s(n) is top-k preserving with respect to η for all n
greater than some N . This means there exists N where
∆Lerrk(s(n), η) = 0 for all n > N , i.e. Lerrk(s(n), η) =
L∗errk

(η). By continuity of L∗errk
, there exists N ′ such that

|L∗errk
(η(n)) − L∗errk

(η)| < ε
2 for all n > N ′. But this

means ∆L∗errk
(s(n), η(n)) < ε

2 for n > max{N,N ′}, a
contradiction.
Since ∆Lψ(s(n), η(n)) → 0, for any ε′ > 0, there exists
N > 0 such that for all n > N , we have

|Lψ(s(n), η(n))− L∗ψ(η(n))| ≤ ε′/2.

Moreover, sinceL∗ψ is continuous by Lemma ?? and η(n) →
η, there exists N ′ > 0 such that for all n > N ′, we have

|L∗ψ(η(n))− L∗ψ(η)| ≤ ε′/2.

Then, for all n > max{N,N ′},

|Lψ(s(n), η(n))− L∗ψ(η)| ≤ |Lψ(s(n), η(n))− L∗ψ(η(n))|

+ |L∗ψ(η(n))− L∗ψ(η)| ≤ ε′.

Since ε′ was arbitrary, we have Lψ(s(n), η(n))→ L∗ψ(η).
Now we extend to Lψ(s(n), η) → L∗ψ(η) by showing that
Lψ(s(n), η(n)) is close to Lψ(s(n), η). Given any ε′ > 0, let
N be such that for all n > N , Lψ(s(n), η(n))−L∗ψ(η) ≤ ε′.
Then we have for all n > N

Lψ(s(n), η(n))−Lψ(s(n), η) ≤ Lψ(s(n), η(n))−L∗ψ(η) ≤ ε′.

Let I be the support of η. For every i ∈ I , {ψ(s(n), i)} is
bounded, since ψ ≥ 0 and if it were unbounded above then
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Lψ(s(n), η(n)) ≥ ηi
2 ψ(s(n), i) → ∞ > L∗(η) eventually.

Now suppose C > 0 upper bounds {ψi(s(n))} for every
i ∈ I . Since η(n) → η, There exists N ′ such that n > N ′

implies η(n)
i ≥ ηi − ε′/(MC) for every i ∈ [M ]. Then,

Lψ(s(n), η(n))− Lψ(s(n), η) =

M∑
i=1

(η
(n)
i − ηi)ψ(s(n), i)

≥
∑
i∈I

(η
(n)
i − ηi)ψ(s(n), i)

≥M
(
−ε′

MC
C

)
= −ε′.

Therefore, for all n > max{N,N ′}, we have

|Lψ(s(n), η(n))− Lψ(s(n), η)| ≤ ε′.

Since ε′ > 0 was arbitrary, this implies that {Lψ(s(n), η)}
converges to the same limit as {Lψ(s(n), η(n))}. Thus,
Lψ(s(n), η)→ L∗ψ(η). We have thus reached the contradic-
tion laid out earlier.

Proof of Theorem 3.1. To prove Theorem 3.1, we use the
following two lemmas. The first establishes the openness of
the set {s ∈ RM | Pk(s, η)} for any η ∈ RM . The second
says that a convex function with a unique minimizer has
bounded sublevel sets.

Lemma 9.1. Pk(η) := {s ∈ RM | Pk(s, η)} is open for
any η ∈ RM , k ∈ Z+.

Proof. Let η ∈ RM and s ∈ Pk(η). Define

δ1 = min
i∈[M ]

{si − s[k+1] | si > s[k+1]}

δ2 = min
i∈[M ]

{s[k] − si | si < s[k]}

Take δ = min{δ1, δ2}, and notice δ > 0. Then, take s′ ∈
RM with |s′i − si| < δ/2 for all i ∈ [M ]. If si > s[k+1],
then

s′i > si − δ/2 > s[k+1] + δ/2 > s′[k+1],

and similarly if si < s[k] then s′i < s′[k]. Therefore,
Pk(s

′, η). This holds for every s′ in the neighborhood –
thus Pk(η) is open.

Lemma 9.2. If f : RM → R is convex and has a unique
minimizer, the sublevel sets {x ∈ RM | f(x) ≤ α} are
bounded for every α ∈ R.

Proof. Suppose x0 ∈ RM is the unique minimizer. We can
assume x0 = 0 by taking f(x + x0), which has the same
sublevel sets just shifted by x0, and a unique minimizer at
x = 0.

Then, f(x) > f(0) for all x ∈ RM . Consider the set
B = {x ∈ RM | ‖x‖2 = 1}. B is compact. Therefore,
the image of B under f , f(B) ⊂ R, is compact and has a
minimum. Since f(x) > f(0) for all x ∈ B, we have

δ := min(f(B))− f(0) > 0.

Now, suppose x ∈ RM such that ‖x‖2 = D ≥ 1. Since
D ≥ 1, we have 0 < 1/D ≤ 1. Note ‖x/D‖2 = 1. Now
we apply convexity:

f
( x
D

)
≤ 1

D
f(x) +

(
1− 1

D

)
f(0).

Rearranging,

f(x) ≥ Df
( x
D

)
+ (1−D)f(0)

= D(f(x/D)− f(0)) + f(0)

≥ Dδ + f(0).

Thus, ifD ≥ 1, we have ‖x‖2 ≥ D implies f(x) > Dδ/2+
f(0). The contrapositive is, f(x) ≤ Dδ/2 + f(0) implies
‖x‖2 < D for D ≥ 1. Therefore, for all x ∈ RM

f(x) ≤ α =⇒ ‖x‖2 ≤ max

{
2(α− f(0))

δ
, 1

}
.

This says that the sublevel sets are bounded.

Now we prove the theorem.

Theorem 3.1. Suppose φ : RM → RM is strictly convex
and differentiable. If g : RM → RM is inverse top-k
preserving, continuous, and ∆M ⊆ range(g), then ψ :
RM × Y → R defined by

ψ(s, y) = Dφ(g(s), ey)

is top-k calibrated.

Proof. Let η ∈ ∆M . By Theorem 1 from Banerjee et al.
(2005),

arg min
η̄∈RM

EY∼ηDφ(η̄, Y ) = E[Y ] = η.

We view the label Y as an indicator vector in {0, 1}M where
the position of the one corresponds to the label. Therefore,

arg min
s∈RM

Lψ(s, η) = arg min
s∈RM

EY∼ηDφ(g(s), Y )

= {s ∈ RM | g(s) = η},

and since ∆M ⊆ range(g) the last set is nonempty. Let s∗

be such that g(s∗) = η.

Since g is inverse top-k preserving, Pk(s
∗, η). This holds

for any s∗ in O := {s ∈ RM | g(s) = η}. Given any s for
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which ¬Pk(s, η), s 6∈ O, and thus g(s) 6= η, Lψ(s, η) =
EY∼ηDφ(g(s), Y ) > EY∼ηDφ(η, Y ). Therefore,

inf
s∈RM :¬Pk(s,η)

Lψ(s, η) > min
s′∈RM

Lψ(s′, η).

To see this, first note Ey∼ηDφ(g, ey) is convex in g while at-
taining a unique minimum by Banerjee et al. (2005). There-
fore, by Lemma 9.2 the sublevel sets {g | Ey∼ηDφ(g, ey) ≤
α} are bounded for any α ∈ R. Then

inf
g∈RM :¬Pk(g,η)

Ey∼ηDφ(g, ey) = min
g∈RM :¬Pk(g,η)

Ey∼ηDφ(g, ey)

> min
s∈RM

Lψ(s, η),

as {g ∈ RM : ¬Pk(g, η)} is closed by 9.1, and for the
infimum we only have to consider its intersection with some
bounded closed (i.e. compact) set, due to the boundedness
of the sublevel sets. Then since continuous functions map
compact sets to compact sets, we can switch the infimum to
a minimum.

Because g is inverse top-k preserving, Pk(s, g(s)). Then,
if Pk(g(s), η), we see by transitivity of Pk that Pk(s, η).
Therefore, ¬Pk(s, η) =⇒ ¬Pk(g(s), η). So, A :=
{Lψ(s, η) | ¬Pk(s, η)} ⊆ {Ey∼ηDφ(g, η) | ¬Pk(g, η)} =:
B, and

inf A ≥ minB > min
s∈RM

Lψ(s, η).

Thus, ψ is top-k calibrated.

Theorem 4.1. Say a permutation π : [M ] → [M ] sorts a
vector v ∈ RM if vπ1

≥ vπ2
≥ . . . ≥ vπM

. Denote S(v) as
the set of permutations that sort v.

Let η ∈ ∆M , and suppose it has no zero entries. Then,
for each of the following cases, the set of minimzers
arg mins Lψ1

(s, η) is precisely described by the conditions
on s in the case.

1. η[k] >
M∑

i=k+1

η[i] : ∃c ∈ R, π ∈ S(η)

sπk+1
= . . . = sπM

= c, sπk
= c+ 1,

∀i ∈ {1, . . . , k − 1}, sπi
∈ [c+ 1,∞).

2. η[k] <

M∑
i=k+1

η[i] : ∃c ∈ R, π ∈ S(η)

sπk
= . . . = sπM

= c,

∀i ∈ {1, . . . , k − 1}, sπi ∈ [c+ 1,∞).

3. η[k] =

M∑
i=k+1

η[i] : ∃c ∈ R, π ∈ S(η)

sπk+1
= . . . = sπM

= c, sπk
∈ [c, c+ 1],

∀i ∈ {1, . . . , k − 1}, sπi
∈ [c+ 1,∞).

Proof. Suppose τ ∈ ΠM sorts s. Define δ := sτk−sτk+1
=

s[k] − s[k+1] ≥ 0. Since

max{1 + sτk+1
− sτk , 0} ≥ max{1− δ, 0}

max{1 + sτk − sτi , 0} ≥ 1 + δ, ∀i ∈ {k + 1, . . . ,M},

Lψ(s, η) is lower bounded as follows:

Lψ(s, η) ≥ max{1− δ, 0}ητk + (1 + δ)

M∑
i=k+1

ητi

≥ max{1− δ, 0}η[k] + (1 + δ)

M∑
i=k+1

η[i] =: F (δ).

(5)

In the following, we discuss when equality in (5) is obtained
in three cases. We may assume that sτk+1

is equal to an
arbitrary c ∈ R. Shifting each entry of s by a constant
does not change the loss value. Before we begin, we note
common requirements, regardless of case. Since η has no
zero entries, the first line is an equality if and only if sτi ≥
sτk+1

+ 1 = c+ 1 for all i ∈ [k − 1], and sτk+1
= sτk+2

=
. . . = sτM = c. And in any case where the second line is
an equality, the sums on the right of both lines equal, which
happens if and only if {τk+1, . . . , τM} = {πk+1, . . . , πM}
for some π ∈ ΠM which sorts η.

Case 1: If η[k] >
∑M
i=k+1 η[i], F (δ) is minimized uniquely

at δ = 1 in the interval [0, 1]; by our assumption that η does
not have 0 entries and k < M , δ > 1 is suboptimal. Thus,
L∗ψ(η) = 2

∑M
i=k+1 η[i] (achieved by s described below).

The equality is achieved if and only if the common require-
ments hold and δ = 1, giving sτk = c+ 1.

Case 2: If η[k] <
∑M
i=k+1 η[i], then F (δ) is minimized by δ

= 0, and L∗ψ(η) =
∑M
i=k η[i]. Therefore, the equality holds

if and only if sτk = sτk+1
= c and τk = πk for some π ∈

SM which sorts η, along with the common requirements.

Case 3: If η[k] =
∑M
i=k+1 η[i], then L∗ψ(η) =

∑M
i=k η[i] =

2
∑M
i=k+1 η[i]. Thus F (δ) is minimized by δ ∈ [0, 1].

If δ ∈ (0, 1), the inequality in (5) requires

M∑
i=k

ητi =

M∑
i=k

η[i] = 2

M∑
i=k+1

ητi = 2

M∑
i=k+1

η[i].

Thus, the equality holds if and only if in addition to the
common requirements, sτk ∈ (c, c+ 1), and for some π ∈
SM which sorts η, πk = τk.

If δ = 1 or δ = 0, we have the same iff conditions for the
equality as in case 1 and case 2.

Proposition 4.2. For any ψ ∈ {ψ2, ψ3, ψ4}, if∑M
m=k+1 η[m] >

k
k+1 , we have 0 ∈ arg mins Lψ(s, η),

and thus L∗ψ(η) = mins Lψ(s, η) = Lψ(0, η) = 1.
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Proof. We will show that L∗ψ(η) = 1. WLOG, we can
assume that η1 ≥ . . . ≥ ηM , s1 ≥ s2 ≥ . . . ≥ sM , and
sk+1 = sk+2 = . . . = sM = 0.

Suppose si ≥ 1 for some i ∈ [M ]. Then, for each ψ ∈
{ψ2, ψ3, ψ4}, ψ(s, i) ≥ 1 + 1

k for all i ∈ {k + 1, . . . ,M},
and so Lψ(s, η) ≥

(
1 + 1

k

)
(ηk+1 + . . . + ηm) > k+1

k ·
k
k+1 = 1. This implies that s is suboptimal, since
Lψ(0, η) = 1.

Thus, at optimum 0 ≤ si < 1 for every i, under which
ψ2(s, i) = ψ3(s, i) = ψ4(s, i) for every i. This is because
in this regime, max{1 + sj − si, 0} = 1 + sj − si, and the
kth highest value of 1̄(i) + s coincides with the kth highest
value of 1 + s excluding the ith index. Now for all i ∈ [k],
we have si ∈ (0, 1) and thus

∂Lψ(s, η)

∂si
=

1

k

∑
m∈[M ],m 6=i

ηm − ηi =
1

k
(1− ηi)− ηi

>
1

k

k

k + 1
− 1

k + 1
= 0.

The derivative is positive (and constant) in (0, 1), so the
minimum value of si is achieved at 0, for every i. Therefore,
L∗ψ(η) = 1, achieved by a score vector of 0. This proves
the desired statement.

Proposition 4.3. ψ5 : RM × Y defined by ψ5(s, y) =
max{1 + s[k+1] − sy, 0} is top-k calibrated.

Proof. Let η ∈ ∆M . For any s ∈ RM , we have

Lψ5
(s, η) =

M∑
i=1

ηiψ5(s, i) =

M∑
i=1

ηi max{1+s[k+1]−si, 0}.

We may assume η1 ≥ η2 ≥ . . . ≥ ηM WLOG. By inspec-
tion, setting s1 = . . . = sk = 1 and sk+1 = . . . = sM = 0

gives Lψ5
(s, η) =

∑M
i=k+1 η[i] =: C.

We will show that any s ∈ RM such that ¬Pk(s, η) has
Lψ(s, η)− L∗ψ(η) ≥ Lψ(s, η)− C ≥ δ for some constant
δ > 0, which implies top-k calibration.

Suppose ¬Pk(s, η). Define δ1 = min{ηi − η[k+1] | i ∈
[M ], ηi > η[k+1]} and δ2 = min{η[k] − ηi | i ∈ [M ], ηi <
η[k]}. If either set is empty, define its minimum to be ∞.
Furthermore, define the set I := {i ∈ [M ] | si ≤ s[k+1]}.
Note by definition of s[k+1], |I| ≥ M − k. We have
Lψ(s, η) ≥

∑
i∈I ηi. There are two cases.

If there exists i ∈ [M ] such that ηi > η[k+1] and si ≤
s[k+1], then i ∈ I . But then

∑
j∈I ηj ≥

∑M
j=k+1 η[j] + δ1.

If there exists i ∈ [M ] such that ηi < η[k], but si ≥ s[k],
then consider if si > s[k+1]. Then, i 6∈ I . That is, ηi does
not appear in the sum

∑
j∈I ηj . Since |I| ≥ M − k, ηi

must be replaced with a term ηi′ ≥ η[k]. Thus,
∑
j∈I ηj ≥

∑M
j=k+1 η[j] + δ2. If si = s[k+1], then since si ≥ s[k] ≥

s[k+1], we have si = s[k]. This implies |I| > M − k, and∑
j∈I ηj ≥

∑M
j=k η[j] ≥

∑M
j=k+1 η[j] + δ2.

Thus, for any s such that ¬Pk(s, η), we have Lψ(s, η) ≥
L∗ψ(η) + δ where δ = min{δ1, δ2} > 0. Therefore,

inf
s:¬Pk(s,η)

Lψ(s, η) ≥ inf
s
Lψ(s, η) + δ > inf

s
Lψ(s, η),

so ψ = ψ5 is top-k calibrated.

Proposition 5.1. Let X = Rd and F = {x 7→Wx : W ∈
RM×d}. Then if we consider top-k separable probability
distributions over X × Y , i.e. L∗errk

(F) = 0 = L∗errk
, then:

1. If k = 1, Ent is F-consistent.

2. If d ≥ 3,M ≥ 3, and k = 2, Ent is not F-consistent.

3. ψ1 and ψ5 are F-consistent.

Proof. Proof of 2. Let X = R3, M = 3, and k = 2. It
does not matter if we increase dimensions or M . Let the
dataset S consist of the following 7 points, where ei denotes
the standard basis element with a 1 in the ith coordinate:
S = [2×(e1, 1), 2×(e2, 2), 2×(e3, 2), (−e1, 1)] ⊂ X×Y .
The intuition is that having e1 and −e1 both labeled 1 bla-
tantly precludes linear separability.
Note that S is top-2 separable, since Wsep is a top-2 separa-
tor for S:

Wsep =

2 0 0
1 1 0
3 0 1

 .
The following score vectors are returned for each input:

Wsepe1 =

2
1
3

 Wsepe2 =

0
1
0


Wsepe3 =

0
0
1

 Wsep(−e1) =

−2
−1
−3

 .
Wsepe2 and Wsepe3 respectively have their second and third
entries as their strictly greatest entries. Since they are re-
spectively labeled 2 and 3, they are classified correctly.
Wsepe1 and Wsep(−e1) both have their first entry strictly
greater than their third entry. This means they are clas-
sified correctly by a top-2 classifier, as their label is 1:
(Wsepe)1 > (Wsepe)[3] for e ∈ {e1,−e1}.
Now we show the solution returned by cross entropy min-
imization is not a top-k separator. Ent(W,S) denotes the
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cross entropy loss incurred by W on the probability distribu-
tion defined by the dataset S, times the number of samples.

Ent(W,S) =
∑

(x,y)∈S

log

(
3∑

m=1

e(Wx)m−(Wx)y

)

= 2

3∑
i=1

log

(
3∑

m=1

e(Wei)m−(Wei)i

)

+ log

(
3∑

m=1

e(We1)1−(We1)m

)

= 2

3∑
i=1

log

(
3∑

m=1

eWmi−Wii

)

+ log

(
3∑

m=1

eW11−Wm1

)
.

For each different i, the entries of W appearing in the ith
term in the sum correspond to different columns of W –
entries appearing in different terms are independent of each
other. For i 6= 1, we see that log

(∑3
m=1 e

Wmi−Wii

)
=

log
(

1 +
∑
m 6=i e

Wmi−Wii

)
can be taken to 0 by taking

Wmi −Wii → −∞ for each m 6= i. We cannot do the
same for i = 1 because of the appearance of both (e1, 1)
and (−e1, 1). But at this point, we have gotten rid of terms
with i 6= 1 and determined that the minimizer of Ent looks
like the following:

WCE =

? W22 −∞ W33 −∞
? W22 W33 −∞
? W22 −∞ W33

 .
The remainder of the loss function is

Ent(W,S) =2 log
(
1 + eW21−W11 + eW31−W11

)
+ log

(
1 + eW11−W21 + eW11−W31

)
.

Denote x1 = W21−W11 and x2 = W31−W11, so we may
write the loss as

Ent(W,S) = 2 log (1 + ex1 + ex2)+log
(
1 + e−x1 + e−x2

)
.

We have

∂ Ent

∂x1
=

2ex1

1 + ex1 + ex2
− e−x1

1 + e−x1 + e−x2
,

∂ Ent

∂x2
=

2ex2

1 + ex1 + ex2
− e−x2

1 + e−x1 + e−x2
.

By the convexity of log(1 + ex1 + ex2), we may minimize
the function by setting the derivatives equal to 0. Note
that if x1 6= x2, this is not achievable – suppose it were
the case that ∂ Ent

∂x1
= 0. If x2 > x1, then ex2 > ex1 and

e−x2 < e−x1 , so ∂L
∂x2

> ∂L
∂x1

= 0. A similar argument

holds if x2 < x1. Therefore, we may assume x1 = x2.
Then we simply need

2ex

1 + 2ex
− e−x

1 + 2e−x
= 0 ⇐⇒ 2ex + 4− e−x − 2 = 0

⇐⇒ 2ex − e−x = −2.

If x ≥ 0, then clearly 2ex − e−x > 0. Thus, x < 0 (we can
solve a quadratic, or note that there exists x where 2ex −
e−x = −2 because the LHS goes to −∞ as x → −∞).
Therefore, at minimum W21 −W11 = W31 −W11 = x
for some x < 0, so the cross entropy minimizer is the
following:

WCE =

 W11 W22 −∞ W33 −∞
W11 + x W22 W33 −∞
W11 + x W22 −∞ W33

 .
This is not a top-2 separator because WCE(−e1) =[
−W11, −W11 − x, −W11 − x,

]>
, whose first entry is

strictly the lowest entry since x < 0. Thus, −e1 is not
classified as its label, 1.
Proof of 3. Recall ψ1, ψ5:

ψ1(s, y) = max{1 + (s\y)[k] − sy, 0},
ψ5(s, y) = max{1 + s[k+1] − sy, 0}.

We will show these losses are linearly top-k consistent.
Suppose S = ((x1, y1), . . . , (xn, yn)) is top-k separable,
that is, ∃W ∈ RM×d such that ∀ i ∈ [n], (Wxi)yi >
(Wxi)[k+1]. In other words, there is a δ > 0 such that
for every i ∈ [n], (Wxi)yi − (Wxi)[k+1] ≥ δ. Then, for
C ≥ 1

δ , (CWxi)yi − (CWxi)[k+1] ≥ Cδ ≥ 1 for every
i ∈ [n].
Now let i ∈ [n] and denote s = CWxi. Since syi > s[k+1],
we have s[k+1] = (s\y)[k]. Thus,

ψ1(s, yi) = ψ5(s, yi) = max{1 + s[k+1] − syi , 0} = 0.

Therefore, CW achieves 0 loss on the dataset for both ψ1

and ψ5. This means their minimizers (over linear functions)
achieve 0 loss. If 0 loss is achieved, it is clear that the
resulting classifiers achieve 0 top-k error, since these losses
upper bound the top-k error. Therefore, their minimizers
are top-k separators.
We have shown that if a dataset is linearly top-k separable,
then the minimizers of ψ1 and ψ5 are top-k linear separators
for the dataset. This proves that ψ1 and ψ5 are linearly
top-k

10. Discussion of general hinge-like losses
Recall that the hinge loss for binary classification is defined
by φ(x) = max{1 − x, 0}. There are several extensions
of the binary hinge loss to the setting of multiclass classifi-
cation (often with multiclass error i.e. top-1 loss). We list
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them here because they serve as inspiration for designing
hinge-like top-k losses, and the analysis of their consistency
in the literature also informs the analysis of the top-k case.

The method of Crammer & Singer (2001) uses as its loss
function ψ : RM × Y → R where

ψ(s, y) = max{1 + (s\y)[1] − sy, 0} = φ(sy −max
y′ 6=y

sy′).

(6)
When y ∈ Y appears in a subscript it refers to the label as
an index in {1, . . . ,M}. Furthermore, the notation s\y =
(s1, . . . , sy−1, sy+1, . . . , sM ) ∈ RM−1 denotes the vector
s with the yth entry removed.

The method of Weston & Watkins (1999) solves a multiclass
SVM problem for which the corresponding loss function is

ψ(s, y) =
∑
y′ 6=y

φ(sy − sy′),

where φ is still the binary hinge loss. Furthermore, the one
vs. all method Rifkin & Klautau (2004) solves M binary
classification problems using the hinge loss for each class,
using the instances of the class as positive examples and the
rest of the instances as negative examples. The M scores
returned by the M resulting classifiers are compiled into an
M length vector, and the method proceeds like all the above
methods by taking the argmax of the vector. Similarly, the
method of Lee et al. (2004) minimizes the expectation of
the loss function

ψ(s, y) =
∑
y′ 6=y

φ(−sy′)

under the constraint that
∑M
m=1 sm = 0. Interestingly,

Zhang (2004a) showed the first three Crammer & Singer
(2001); Weston & Watkins (1999); Rifkin & Klautau (2004)
to be inconsistent, i.e. not top-1 calibrated, and the con-
strained Lee et al. (2004) to be consistent. These results
were also found by Tewari & Bartlett (2005).
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Table 5. Examples of predicted score vector s = f(0) with the zero vector as input, where f is a neural net trained with the losses below.

s1 s2 s3 s4 s5 s6 s7 s8

ψ1 0.87793601 -0.12823531 -0.12382337 -0.12676451 -0.12382337 -0.12235278 -0.12529394 -0.12764691
ψ2 0.00176411 0.00044059 -0.00058873 -0.00176518 -0.00220636 0.0002936 0.00073477 0.00132302
ψ3 0.00117588 0.00191117 0.00102892 -0.0010299 -0.0020593 -0.00029462 0.00073478 -0.00147108
ψ4 0.00073472 0.00161706 0.00029361 -0.00264753 0.00117595 0.00088184 -0.00191224 -0.00014757
ψ5 0.75734961 0.75734961 -0.25529474 -0.24823636 -0.2523534 -0.24823636 -0.25529483 -0.25529486


