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A. Detailed Proofs

A.1. Proof of Proposition 1

Proposition 1 (Volume preservation of Gram-Schmidt, see
Chapter 7 in Shafarevich & Remizov (2012), also Lemma
3.1 in Celis et al. (2018).). Let Ui = span{w1, . . . , wi�1}

and wi 2 RP
be the i-th row of W 2 RM⇥P

, thenQM
i=1 k qUi (wi)k2 = det(WW>).

Proof. Such property has been mentioned in linear algebra
textbook, e.g., Chapter 7 in Shafarevich & Remizov (2012).
Celis et al. (2018) also gave out a proof by induction1 in
Lemma 3.1. Here we provide our own intuition of such
property through the classical Gaussian elimination method.

We first define an orthogonalization operator uwi(wj) that
takes an input of a vector wj 2 RP and outputs another
vector that is orthogonal to a given vector wi 2 RP by

uwi (wj) := wj � wihwi, wji/kwik
2 . (13)

Based on the Eq. 13, we know that 8wi, wj , wk 2 RP ,

uwi(wj + wk) = uwi(wj) + uwi(wk).

Besides, we have two properties for the orthogonalization
operator that will be used later; we present as lemmas.

Lemma 1 (Change of Projection Base). Let wi, wj , wk 2

RP
, we have wj · uwi(wk)> = uwi(wj) · uwi(wk)>

.

Proof. Based the definition of Eq. 13, one can easily write
that the left hand side equals to the right hand side. ⌅

Lemma 2 (Subspace Orthogonalization). Let wi, wj ,

wk 2 RP
, we have uuwi (wj)(wk) · uwi(wk)> =

��qUk(wk)
��2

where Uk = span{wi, wj}.

Proof. The left-hand side of equation can be written by

uuwi (wj)(wk) · uwi(wk)>

=
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(14)
On the other hand, qUk(wk) represents the orthogonal pro-
jection of wk to the subspace that is spanned by wi and wj .

1We believe their proof is a special case, as interchanging
the order of rows can actually change the determinant value, i.e.,

det(WW>) 6=
h wk

W 0

ih
w>

k W 0>
i

where the row vectors

are denoted as W = {w1, . . . , wk} and W 0 = {w1, . . . , wk�1}.

Since
n

wi
kwik

,
uwi (wj)

kuwi (wj)k

o
form a set of orthornormal basis

for the subspace Uk = span{wi, wj}, according to the def-
inition of qUk(wk) in Section 3.5, we can write qUk(wk)
as wk minus the projection of wk on the subspace that is
spanned by

n
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kwik
,
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o
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Under the orthonormal property of wi
kwik

·
uwi (wj)

kuwi (wj)k

>

= 0

and
��� wi

kwik

���
2

=
��� uwi (wj)

kuwi (wj)k

���
2

= 1, finally, squaring
the Eq. 15 from both sides leads us to the Eq. 14, i.e.,��qUk(wk)

��2
= uuwi (wj)(wk) · uwi(wk)>. ⌅

Assuming {w1, . . . , wM} being the rows of W , then ap-
plying the Gram-Schmidt orthogonalization process gives

Gram-Schmidt
⇣�

wi

 M

i=1

⌘
=
n

qUi(wi)
oM

i=1

where Ui = span{w1, . . . , wi�1}. Note that we don’t con-
sider normalizing each qUi(wi) in this work.

In fact, the effect on the Gram matrix determinant
det(WW>) of applying the Gram-Schmidt process on
the rows of W is equivalent to applying Gaussian elimina-
tion (Noble et al., 1988) to transform the Gram matrix to
be upper triangular. Since adding a row/column of a matrix
multiplied by a scalar to another row/column of that ma-
trix will not change the determinant value of the original
matrix (Noble et al., 1988), Gaussian elimination, so as the
Gram-Schmidt process, preserves the determinant.

To illustrate the above equivalence, we demonstrate the
Gaussian elimination process step-by-step on the case of
M = 3, the determinant of such a Gram matrix is

det
�
WW>

�
= det

0

@
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(16)

To apply Gaussian elimination to turn the Gram matrix to be
upper triangular, first, we multiply the 1-st row by �

w2w
>
1

w1w>
1

and then add the result to the 2-nd row; without affecting
the determinant, we have the 2-nd row transformed into
h
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. (Lemma 1)

(17)
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Similarly, we can apply the same process on the 3-rd row,
which can be written as
h
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To make WW> upper triangular, we need to make the 2-nd
element in the 3-rd row be zero. To achieve that, we multiply
�
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>
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> to Eq. 17 and add the multiplication

to Eq. 18, and the 3-rd row can be further transformed into
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(19)
In the fourth equation of Eq.19, we use the property that
uw1(·) · uuw1 (·)(w1)> = 0, i.e., the inner product between
a vector and its own orthogonalization equals to zero.

Given the Gran matrix is now upper triangular, by putting
Eq. 17 and Eq. 19 into Eq. 16, and define U1 = ;, U2 =
{w1}, U3 = {w1, w2}, we can write the determinant to be

det
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When M � 3, the consequence of eliminating all j-th ele-
ments (j < i) in the i-th row of the Gram matrix WW>

(i,j)

by Gaussian elimination is equivalent to the i-th step of the
Gran-Schmidt process applied on the vector set {wi}

M
i=1,

in other words, the (i, i)-th element of the Gram matrix
after Gaussian elimination is essentially the squared norm
of qUi(wi). Finally, since the determinant of an upper-
triangular matrix is simply the multiplication of its diagonal
elements, we have

QM
i=1

��qUi (wi)
��2

. ⌅

A.2. Proof of Theorem 1

Theorem 1 (Approximation Guarantee of Orthogonaliz-
ing Sampler). For a Q-DPP defined in Definition 1, under

Assumption 1, the Orthogonalizing Sampler described in

Algorithm 1 returns a sampled subset Y 2 C(o) with proba-

bility P(Y )  1/�N
· P̃(Y = Y ) where N is the number of

agents, P̃ is defined in Eq. 4, � is defined in Assumption 1.

Proof. This result can be regarded as a special case of The-
orem 3.2 in Celis et al. (2018) when the number of sample
from each partition in P -DPP is set to one (please find Ap-

pendix A.3 for the differences between P -DPP and Q-DPP).

Sine our sampling algorithm generates samples with
the probability in proportional to the determinant value
det(LY ), which is also the nominator in Eq. 4, it is then
necessary to bound the denominator of the probability of
samples from our proposed sampler so that the error to the
exact denominator defined in Eq. 4 can be controlled. We
start from the Lemma that is going to be used.

Lemma 3 (Eckart-Young-Mirsky Theorem). For a real ma-

trix W 2 RM⇥P
with M � P , suppose that W = U⌃V >

is the singular value decomposition (SVD) of W , then the

best rank k approximation to W under the Frobenius norm

k · kF described as

min
W0:rank(W0)=k

��W � W 0
��2

F

is given by W 0 = Wk =
Pk

i=1 �iuiv>

i where ui and vi

denote the i-th column of U and V respectively, and,
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��2

F
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F
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PX
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i .

Note that the singular values �i in ⌃ is ranked by size by

the SVD procedures such that �1 � . . . � �P . ⌅

Lemma 4 (Lemma 3.1 in (Deshpande et al., 2006)). For a

matrix W 2 RM⇥P
with M � P � N , assume {�i}

P
i=1

are the singular values of W and WY is the submatrix of

W with rows indexed by the elements in Y , then we have

X

|Y |=N

det
�
WY W>

Y

�
=

X

k1<···<kN

�2
k1

· · · �2
kN

. ⌅

To stay consistency on notations, we use N for number
of agents, M for the size of ground set of Q-DPP, P
is the dimension of diverse feature vectors, we assume
M � P � N . Let Y be the random variable representing
the output of our proposed sampler in Algorithm 1. Since
the algorithm visit each partition in Q-DPP sequentially, a
sample Ỹ =

�
(o1

1, a
1
1), . . . , (o

|O|

N , a|A|

N )
 

is therefore an or-
dered set. Note that the algorithm is agnostic to the partition
number (i.e. the agent identity), without losing generality,
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we denote the first partition chosen as Y1. We further de-
note Ỹi, i 2 {1, . . . , N} as the i-th observation-state pair in
Ỹ , and I(Ỹi) 2 {1, . . . , N} denotes the partition number
where i-th pair is sampled.

According to the Algorithm 1, at first step, we choose Y1,
and based on the corresponding observation o1, we then
locate the valid subsets 8(o, a) 2 Yi(oi), and finally sample
one observation-action pair from the valid set Yi(oi) with
probability proportional to the norm of the vector defined in
the Line 4 � 5 in Algorithm 1, that is,

P(Ỹi) /
��wJ (o,a)

��2
=
��bJ (o,a)

��2
exp

�
DJ (o,a),J (o,a)

�
.

(20)
After Ỹi is sampled, the algorithm then moves to the next
partition and repeat the same process until all N partitions
are covered.

The specialty of this sampler is that before sampling at each
partition i 2 {1, . . . , N}, the Gram-Schmidt process will
be applied to ensure all the rows in the i-th partition of W
to be orthogonal to all previous sampled pairs

bi
j = qspan{Bi}

�
bi�1

j

�
, 8j 2 {1, ..., M} � J.

where Bi = {bt
J (ot,at)}

i�1
t=1, J = {J (ot, at)}i�1

t=1. Note
that since D only contributes a scalar to wj , and bj is a
P -dimensional vector same as wj , in practice, the Gram-
Schmidt orthorgonalization needs only conducting on bj in
order to make rows of W mutually orthogonal.

Based on the above sampling process and each time-step i,
we can write the probability of getting a sample Ỹ by
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I(Ỹi)

⌘���
2⌘

QN
i=1

⇣P
(o,a)2YI(Ỹi)
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(21)
where the 4-th equation in Eq. 21 is valid because of Propo-
sition 1.

For each term in the denominator, according to the definition
of the operator qspan{Bi}, we can rewrite into
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I(Ỹi)

are {wI(o,a)}(o,a)2YI(Ỹi)
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Therefore, we have the denominator of Eq. 21 as:
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Taking Eq. 23 into Eq. 21, we can obtain that

P(Y = Ỹ ) 
�N

· det
�
W Ỹ W>

Ỹ

�
P

Y 2C(o) det
�
WY W>

Y

� = 1/�N
·P̃(Y = Ỹ )

where P(Y = Ỹ ) is the probability of obtaining the sam-
ple Ỹ from our proposed sampler and P̃(Y = Ỹ ) is the
probability of getting that sample Ỹ under Eq. 4. ⌅
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A.3. Difference between Q-DPP and P -DPP

The design of Q-DPP and its samply-by-projection sampling process is inspired by and based on P -DPP (Celis et al., 2018).
However, we would like to highlight the multiple differences in that 1) P -DPP is designed for modeling the fairness for data
summarization whereas Q-DPP serves as a function approximator for the joint Q-function in the context of multi-agent
learning; 2) though we analyze Eq. 21 based on W , the actual orthorgonalziation step of our sampler only needs performing
on the vectors of bj rather than the entire matrix W due to our unique quality-diversity decomposition on the joint Q-function
in Eq. 6; 3) the set of elements in each partition Yi(oi) of Q-DPP change with the observation at each time-step, while
the partitions stay fixed in the case of P -DPP; 4) the parameters of W are learned through a trail-and-error multi-agent
reinforcement learning process compared to the cases in P -DPP where the kernel is given by hand-crafted features (e.g.
SIFT features on images); 5) we implement the constraint in Assumption 1 via a penalty term during the CTDE learning
process, while P -DPP does not consider meeting such assumption through optimization.

A.4. Time Complexity of Algorithm 1

Let’s analyze the time complexity of the proposed Q-DPP sampler in steps 1 � 10 of Algorithm 1. Given the observation o,
and the input matrices D, B (whose sizes are M ⇥ M , P ⇥ M , with M = |A| ⇥ N being the size of all N agents’ allowed
actions under o and P being the diversity feature dimension), the sampler samples one action for each agent sequentially, so
the outer loop of step 3 is O(N). Within the partition of each agent, step 4 is O(P ), step 5 is O(P |A|), step 6 is O(1), so
the complexity so far is O(NP |A|). Computing step 8 for ALL partitions is of O(N2P |A|)†. The overall complexity is
O(N2P |A|) = O(NMP ), since the input is O(MP ) and the agent number N is a constant, our sampler has linear-time
complexity with respect to the input, also linear-time with respect to the number of agents. Such argument is in line with the
project-and-sample sampler in Celis et al. (2018).
†: In the Gram-Schmidt process, orthogonalizing a vector to another takes O(P ). Considering all valid actions for each
agent takes O(P |A|). Note that while looping over different partitions, the remaining unsampled partitions do not need
repeatedly orthogonalizing to all the previous samples, in fact, they only need orthogonalizing to the LATEST sample. In
the example of Fig 2, after agent 2 selects action 5, agent 3’s three actions only need orthogonalizing to action 5 but not
action 2 because it has been performed when the partition of agent 1 was visited. So the total number of orthogonalization is
(N � 1)N/2 across all partitions, leading to O(N2P |A|) time for step 8.

B. Experimental Parameter Settings

The hyper-parameters settings for Q-DPP are given in Table 1. For all experiments we update the target networks after every
100 episodes. All activation functions in hidden layers are ReLU. The optimization is conducted using RMSprop with a
learning rate of 5 ⇥ 10�4 and ↵ = 0.99 with no weight decay or momentum.

If not particularly indicated, all the baselines use common settings as listed in Section B. IQL, VDN, QMIX, MAVEN and
QTRAN use common individual action-value networks as those used by Q-DPP; each consists of two 32-width hidden
layers. The specialized parameter settings for each algorithm are provided in Table 2:
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Table 1: Q-DPP Hyper-parameter Settings.

COMMON SETTINGS VALUE DESCRIPTION

LEARNING RATE 0.0005 OPTIMIZER LEARNING RATE.
BATCH SIZE 32 NUMBER OF EPISODES TO USE FOR EACH UPDATE.
GAMMA 0.99 LONG TERM DISCOUNT FACTOR.
HIDDEN DIMENSION 64 SIZE OF HIDDEN STATES.
NUMBER OF HIDDEN LAYERS 3 NUMBER OF HIDDEN LAYERS.
TARGET UPDATE INTERVAL 100 INTERVAL OF UPDATING THE TARGET NETWORK.
MULTI-STEP MATRIX GAME

STEP 40K MAXIMUM TIME STEPS.
FEATURE MATRIX SIZE 176⇥ 32 NUMBER OF OBSERVATION-ACTION PAIR TIMES EMBEDDING SIZE.
INDIVIDUAL POLICY TYPE RNN RECURRENT DQN.
EPSILON DECAY SCHEME LINEAR DECAY FROM 1 TO 0.05 IN 30K STEPS.
COORDINATED NAVIGATION

STEP 100K MAXIMUM TIME STEPS.
FEATURE MATRIX SIZE 720⇥ 32 NUMBER OF OBSERVATION-ACTION PAIR TIMES EMBEDDING SIZE.
INDIVIDUAL POLICY TYPE RNN RECURRENT DQN.
EPSILON DECAY SCHEME LINEAR DECAY FROM 1 TO 0.1 IN 10K STEPS.
BLOCKER GAME

STEP 200K MAXIMUM TIME STEPS.
FEATURE MATRIX SIZE 420⇥ 32 NUMBER OF OBSERVATION-ACTION PAIR TIMES EMBEDDING SIZE.
INDIVIDUAL POLICY TYPE RNN RECURRENT DQN.
EPSILON DECAY SCHEME LINEAR DECAY FROM 1 TO 0.01 IN 100K STEPS.
PREDATOR-PREY WORLD (FOUR PREDATORS, TWO PREYS)
STEP 4M MAXIMUM TIME STEPS.
FEATURE MATRIX SIZE 3920⇥ 32 NUMBER OF OBSERVATION-ACTION PAIR TIMES EMBEDDING SIZE.
INDIVIDUAL POLICY TYPE FEEDFORWARD FEEDFORWARD DQN.
EPSILON DECAY SCHEME LINEAR DECAY FROM 1 TO 0.1 IN 300K STEPS.

Table 2: Hyper-parameter Settings for Baseline Algorithms.

SETTINGS VALUE DESCRIPTION

QMIX

MONOTONE NETWORK LAYER 2 LAYER NUMBER OF MONOTONE NETWORK.
MONOTONE NETWORK SIZE 64 HIDDEN LAYER SIZE OF MONOTONE NETWORK.
QTRAN

JOINT ACTION-VALUE NETWORK LAYER 2 LAYER NUMBER OF JOINT ACTION-VALUE NETWORK.
JOINT ACTION-VALUE NETWORK SIZE 64 HIDDEN LAYER SIZE OF JOINT ACTION-VALUE NETWORK.
MAVEN

z 2 NOISE DIMENSION.
�MI 0.001 WEIGHT OF MI OBJECTIVE.
�QL 1 WEIGHT OF QL OBJECTIVE.
ENTROPY REGULARIZATION 0.001 FEEDFORWARD DQN.
DISCRIMINATOR LAYER 1 NUMBER OF DISCRIMINATOR NETWORK LAYER.
DISCRIMINATOR SIZE 32 HIDDEN LAYER SIZE OF DISCRIMINATOR NETWORK.
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C. Solution for Continuous States: Deep Q-DPP

Although our proposed Q-DPP serves as a new type of function approximator for the value function in multi-agent
reinforcement learning, deep neural networks can also be seamlessly applied on Q-DPP. Specifically, one can adopt deep
networks to respectively represent the quality and diversity terms in the kernels of Q-DPP to tackle continuous state-action
space, and we name such approach Deep Q-DPP. In Fig. 2, one can think of Deep Q-DPP as modeling D and B by neural
networks rather than look-up tables. An analogy of Deep Q-DPP to Q-DPP would be Deep Q-learning (Mnih et al., 2015) to
Q-learning (Watkins & Dayan, 1992). As the main motivation of introducing Q-DPP is to eliminate structural constraints
and bespoke neural architecture designs in solving multi-agent cooperative tasks, we omit the study of Deep Q-DPP in the
main body of this paper. Here we demonstrate a proof of concept for Deep Q-DPP and its effectiveness on StarCraft II
micro-management tasks (Samvelyan et al., 2019b) as an initiative. However, we do believe a full treatment needs substantial
future work.

C.1. Neural Architectures for Deep Q-DPP.

Mixing Network

MLP

GRU

MLP
Agent 1 Agent Nexpexp

log det

indexindex

state encoderstate encoder

Figure 6: Neural Architecture of Deep Q-DPP. The middle part of the diagram shows the overall architecture of Q-DPP,
which consists of each agent’s individual Q-networks and a centralized mixing network. Details of the mixing network are
presented in the left. We compute the quality term, di, by applying the exponential operator on the individual Q-value, and
compute the diversity feature term, bi, by index the corresponding vector in B through the global state s and each action ai.

A critical advantage of Deep Q-DPP is that it can deal with continuous states/observations. When the input state s is
continuous, we first index the raw diversity feature b0

i based on the embedding of discrete action ai. To integrate the
information of the continuous state, we use two multi-layer feed-forward neural networks fd and fn, which encodes the
direction and norm of the diversity feature separately. fd outputs a feature vector with same shape as b0

i indicating the
direction, and fn outputs a real value for computing the norm. In practice, we find modeling the direction and norm of the
diversity features separately by two neural networks helps stabilize training, and the diversity feature vector is computed as
bi = fd(b0

i, s) ⇥ �(fn(b0

i, s)). Finally, the centralized Q-value can then be computed from di and bi following Eq. 6.
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C.2. Experiments on StarCraft II Micro-Management

(a) Scenario Screenshot (b) 2m vs 1z

Figure 7: StarCraft II micro-management on the scenario of 2 Marines vs. 1 Zealot and its performance.

We study one of the simplest continuous state-action micro-management games in StarCraft II in SMAC (Samvelyan et al.,
2019b), i.e., 2m vs 1z, the screenshots of scenarios are given in Fig. 7(a). In the 2m vs 1z map, we control a team of 2
Marines to fight with 1 enemy Zergling. In this task, it requires the Marine units to take advantage of their larger firing range
to defeat over Zerglings which can only attack local enemies. The agents can observe a continuous feature vector including
the information of health, positions and weapon cooldown of other agents. In terms of reward design, we keep the default
setting. All agents receive a large final reward for winning a battle, at the meantime, they also receive immediate rewards
that are proportional to the difference of total damages between the two teams in every time-step. We compare Q-DPP with
aforementioned baseline models, i.e., COMA, VDN, QMIX, MAVEN, and QTRAN, and plot the results in Fig. 7(b). The
results show that Q-DPP can perform as good as the state-of-the-art model, QMIX, even when the state feature is continuous.
However, the performance is not stable and presents high variance. We believe full treatments need substantial future work.


