
Greedy Subnetwork Selection

7. Details for the Toy Example
Suppose we train the network with n neurons for T time using gradient descent with random initialization, i.e., the network
we obtain is f⇢n

T
using the terminology in Section 3.3. As shown by Song et al. (2018); Mei et al. (2019), L[f⇢n

T
] is actually

O(1/n + ✏) with high probability, where ✏ = L[f⇢1
T
] is the loss of the mean field limit network at training time T . Song

et al. (2018) shows that limT!1 L[f⇢1
T
] = 0 under some regularity conditions and this implies that if the training time T

is sufficient, L[f⇢1
T
] is generally a smaller term compared with the O(1/n) term.

To generate the synthesis data, we first generate a neural network fgen(x) =

1
1000

PN
i=1 bisigmoid(a>

i x), where ai are
i.i.d. sample from a 10 dimensional standard Gaussian distribution and bi are i.i.d. sample from a uniform distribution
Unif(�5, 5). The training data x is also generated from a 10 dimensional standard Gaussian distribution. We choose
fgen(x) = y as the label of data. Our training data consists of 100 data points. The network we use to fit the data is
f =

1
n

Pn
i=1 b

0
itanh(a0>

i x). We use network with 1000 neurons for pruning and the pruned models will not be finetuned.
All networks are trained for same and sufficiently large time to converge.

8. Finding Sub-Networks on CIFAR-10/100
In this subsection, we display the results of applying our proposed algorithm to various model structures on CIFAR-10
and CIFAR-100. On CIFAR-10 and CIFAR-100, we apply our algorithm to the networks already pruned by network
slimming (Liu et al., 2017) provided by Liu et al. (2019b) and show that we can further compress models which have
already pruned by the L1 regularization. We apply our algorithm on the pretrained models, and finetune the model with
the same experimental setting as ImageNet.

As demonstrated in Table 4, our proposed algorithm can further compress a model pruned by Liu et al. (2019b) without
or only with little drop on accuracy. For example, on the pretrained VGG19 on CIFAR-10, Liu et al. (2017) can prune
30% channels and get 93.81% ± 0.14% accuracy. Our algorithm can prune 44% channels of the original VGG19 and get
93.78%± 0.16% accuracy, which is almost the same as the strong baseline number reported by Liu et al. (2019b).

DataSet Model Method Prune Ratio (%) Accuracy (%)

CIFAR10

VGG19 Liu et al. (2017) 70 93.81± 0.14
Ours 56 93.78± 0.16

PreResNet-164

Liu et al. (2017) 60 94.90± 0.04
Ours 51 94.91± 0.06
Liu et al. (2017) 40 94.71± 0.21
Ours 33 94.68± 0.17

CIFAR100

VGG19 Liu et al. (2017) 50 73.08± 0.22
Ours 44 73.05± 0.19

PreResNet-164

Liu et al. (2017) 60 76.68± 0.35
Ours 53 76.63± 0.37
Liu et al. (2017) 40 75.73± 0.29
Ours 37 75.74± 0.32

Table 4. Accuracy on CIFAR100 and CIFAR10. “Prune ratio” stands for the total percentage of channels that are pruned in the whole
network. We apply our algorithm on the models pruned by Liu et al. (2017) and find that our algorithm can further prune the models.
The performance of Liu et al. (2017) is reported by Liu et al. (2019b). Our reported numbers are averaged by five runs.

9. Discussion on Assumption 2 and 5
Let �j(✓) = �(x(j),✓)/

p
m and �(✓) = [�1(✓), ...,�m(✓)] to be the vector of the outputs of the neuron �(x;✓) scaled

by 1/
p
m, realized on a dataset Dm := {x(j)}mj=1. We call �(✓) the feature map of ✓. Given a large network f[N](x) =

PN
i=1 �(x;✓i)/N , define the marginal polytope of the feature map to be

MN := conv {�(✓i) | i 2 {1, . . . , N}} ,
where conv denotes the convex hull. Then it is easy to see that Assumption 2 is equivalent to saying that y :=

[y(1), . . . , y(m)
]/
p
m is in the interior of the marginal polytope MN , i.e., there exists � > 0 such that B (y, �) ✓ MN .

Greedy Subnetwork Selection

Here we denote by B (µ, r) the ball with radius r centered at µ. Similar to Assumption 2, Assumption 5 is equivalent to
require that B (y, �⇤

) ✓M, where
M := conv {�(✓) | ✓ 2 supp(⇢1T)} .

We may further relax the assumption to assuming y is in the relative interior (instead of interior) of MN and M. However,
this requires some refined analysis and we leave this as future work.

It is worth mention that when M has dimension m and f⇢1
T

gives zero training loss, then assumption 5 holds. Similarly, if
MN has dimension m and f⇢N

T
gives zero training loss, then assumption 2 holds.

10. Pruning Randomly Weighted Networks
Our theoretical analysis is also applicable for pruning randomly weighted networks. Here we give the following corollary.
Corollary 4. Under Assumption 1 and suppose that the weights {✓i} of the large neurons f[N](x) are i.i.d. drawn from
an absolutely continuous distribution ⇢0 with a bounded support in Rd, without further gradient descent training. Suppose
that Assumption 5 and 6 hold for ⇢0 (changing ⇢1T to ⇢0). Let SRandom

n be the subset obtained by the proposed greedy
forward selection (2) on such f[N] at the n-th step. For any � > 0 and � < �⇤/2, when N is sufficiently large, with
probability at least 1� �, we have

L[fSRandom
n

] = O
⇣

1/ (min (1, �)n)2
⌘

.

This corollary is a special case of Theorem 3 when taking the training time to be zero (T = 0). And as the network is not
trained, Assumption 4 are not needed for this corollary.

11. Forward Selection is Better Than Backward Elimination
A greedy backward elimination can be developed analogous to our greedy forward selection, in which we start with the
full network and greedily eliminate neurons that gives the smallest increase in loss. Specifically, starting from SB

0 = [N],
we sequentially delete neurons via

SB
n+1 SB

n \ {in}⇤, where i⇤n = argmin

i2SB
n

L[fSB
n\{i}], (7)

where \ denotes set minus. In this section, we demonstrate that the forward selection has significant advantages over
backward elimination, from both theoretical and empirical perspectives.

Theoretical Comparison of Forward and Backward Methods Although greedy forward selection guarantees O(1/n)
or O(1/n2

) error rate as we show in the paper, backward elimination does not enjoy similar theoretical guarantees. This is
because the “effective search space” of backward elimination is more limited than that of forward selection, and gradually
shrinkage over time. Specifically, at each iteration of backward elimination (7), the best neuron is chosen among SB

n , which
shrinks as more neurons are pruned. In contrast, the new neurons in greedy selection (2) are always selected from the full
set [N], which permits each neuron to be selected at every iteration, for multiple times. We now elaborate the theoretical
advantages of forward selection vs. backward elimination from 1) the best achievable loss by both methods and 2) the
decrease of loss across iterations.

• On the lower bound. In greedy forward selection, one neuron can be selected for multiple times at different iterations,
while in backward elimination one neuron can only be deleted once. As a result, the best possible loss achievable by back-
ward elimination is worse than that of greedy elimination. Specifically, because backward elimination yields a subnetwork
in which each neuron appears at most once. We have an immediate lower bound of

L[SB
n] � LB⇤

N , 8n 2 [N],

where

LB⇤
N = min

↵

(

L[f
↵

] : ↵i = ↵̄i/
N
X

i=1

↵̄i, ↵̄i 2 {0, 1}
)

.

In comparison, for S⇤
n from forward selection (2), we have from Theorem 1 that

L[S⇤
n] = O(1/n) + L⇤

N ,

Greedy Subnetwork Selection

where L⇤
N equals (from Eq 3)

L⇤
N = min

↵

(

L[f
↵

] : ai � 0,
N
X

i=1

↵i = 1

)

.

This yields a simple comparison result of

L[SB
n] � L[S⇤

n] + (LB⇤
N � L⇤

N) +O(1/n).

Obviously, we have LB⇤
N � L⇤

N because L⇤
N optimizes on a much larger set of ↵, indicating that backward elimination is

inferior to forward selection. In fact, because LB⇤
N is most likely to be strictly larger than L⇤

N in practice, we can conclude
that L[SB

n] = ⌦(1) + L⇤
N where ⌦ is the Big Omega notation. This shows that it is impossible to prove bounds similar to

L[S⇤
n] = O(1/n) + L⇤

N in Theorem 1 for backward elimination.

• On the loss descend. The key ingredient for proving the O(n�1
) convergence of greedy forward selection is a recursive

inequality that bounds L[fSn] at iteration n using L[fSn�1] from the previous iteration n� 1. Specifically, we have

L[fSn] L⇤
N +

L⇤
N � L[fSn�1]

n
+

C

n2
, (8)

where C = max

u,v

n

ku� vk2 : u,v 2MN

o

; see Appendix 12.1 for details. And inequality (8) directly implies that

L[fSn] L⇤
N +

L[fS0]� L⇤
N

n
, 8n 2 [N].

An importance reason for this inequality to hold is that the best neuron to add is selected from the whole set [N] at each
iteration. However, similar result does not hold for backward elimination, because the neuron to eliminate is selected from
SB
n , whose size shrinks when n grows. In fact, for backward elimination, we guarantee to find counter examples that violate

a counterpart of (8), as shown in the following result, and thus fail to give the O(n�1
) convergence rate.

Theorem 5. For the SB
n constructed by backward elimination in (7). There exists a full network f[N](x) =

PN
i=1 �(x; ✓i)/N and a dataset Dm = (x

(i), y(i))mi=1 that satisfies Assumption 1, 2, such that LB*
N > 0 and 9n 2 [N]

L[fSB
N�n

] > LB⇤
N +

L[fSB
N
]� LB⇤

N

n
,

In comparison, the Sn from greedy forward selection satisfies

L[fSn] L⇤
N +

L[fS0]� L⇤
N

n
, 8n 2 [N]. (9)

In fact, on the same instance, we have L⇤
N = 0, and the faster rate L[fSn] L⇤

N = O(n�2
) also holds for greedy forward

selection.

Proof. Suppose the data set contains 2 data points and we represent the neurons as the feature map as in section 9. Suppose
that N = 43, �(✓1) = [0, 1.5], �(✓2) = [0, 0], �(✓3) = [�0.5, 1], �(✓4) = [2, 1] and �(✓i) = [(�1.001)i�3

+ 2, 1],
i 2 {5, 6,, 43} and the target y = [0, 1] (it is easy to construct the actual weights of neurons and data points such that
the above feature maps hold). Deploying greedy backward elimination on this case gives that

L[fSB
N�n

] >
L[fSB

N
]� LB⇤

N

n
+ LB⇤

N ,

for n 2 [38], where LB⇤
N = minn2[N] LB⇤

N,n > 0.03. In comparison, for greedy forward selection, (9) holds from the proof
of Theorem 1. In addition, on the same instance, we can verify that L⇤

N = 0, and the faster O(n�2
) convergence rate also

holds for greedy forward selection. In deed, the greedy forward selection is able to achieve 0 loss using two neurons (by
selecting �(✓3) for four times and �(✓4) once).

Greedy Subnetwork Selection

Model Method Top1 Acc FLOPs

ResNet34

Backward 73.1 2.81G
Forward 73.5 2.64G

Backward 72.4 2.22G
Forward 72.9 2.07G

MobileNetV2

Backward 71.4 257M
Forward 71.9 258M

Backward 70.8 215M
Forward 71.2 201M

Table 5. Comparing greedy forward selection and backward elimination on Imagenet.

Empirical Comparison of Forward and Backward Methods We compare forward selection and backward elimination
to prune Resnet34 and MobilenetV2 on Imagenet. As shown in Table 5, forward selection tends to achieve better top-1
accuracy in all the cases, which is consistent with the theoretical analysis above. The experimental settings of the greedy
backward elimination is the same as that of the greedy forward selection.

12. Proofs
Our proofs use the definition of the convex hulls defined in Section 9 of Appendix.

12.1. Proof of Proposition 1

The proof of Proposition 1 follows the standard argument of proving the convergence rate of Frank-Wolfe algorithm with
some additional arguments. Our algorithm is not a Frank-Wolfe algorithm, but as illustrated in the subsequent proof, we
can essentially use the Frank-Wolfe updates to control the error of our algorithm.

Define `(u) = ku� yk2, then the subnetwork selection problem can be viewed as solving

min

u2MN

`(u),

with L⇤
N = min

u2MN `(u). And our algorithm can be viewed as starting from u

0
= 0 and iteratively updating u by

u

k
= (1� ⇠k)u

k�1
+ ⇠kq

k, q

k
= argmin

q2Vert(MN)
`
�

(1� ⇠k)u
k�1

+ ⇠kq
�

, (10)

where Vert(MN) := {�(✓1), ...,�(✓N)} denotes the vertices of MN , and we shall take ⇠k = 1/k. We aim to prove that
`(uk

) = O(1/k) + L⇤
N . Our proof can be easily extended to general convex functions `(·) and different ⇠k schemes.

By the convexity and the quadratic form of `(·), for any s, we have

`(s) � `(uk�1
) +r`(uk�1

)

>
(s� u

k�1
) (11)

`(s) `(uk�1
) +r`(uk�1

)

>
(s� u

k�1
) +

�

�

s� u

k�1
�

�

2
. (12)

Minimizing s in MN on both sides of (11), we have

L⇤
N = min

s2MN

`(s) � min

s2MN

�

`(uk�1
) +r`(uk�1

)

>
(s� u

k�1
)

= `(uk�1
) +r`(uk�1

)

>
(s

k � u

k�1
).

(13)

Here we define

s

k
= argmin

s2MN

r`(uk�1
)

>
(s� u

k�1
)

= argmin

s2Vert(MN)
r`(uk�1

)

>
(s� u

k�1
),

(14)

Greedy Subnetwork Selection

where the second equation holds because we optimize a linear objective on a convex polytope MN and hence the solution
must be achieved on the vertices Vert(MN). Note that if we update u

k by u

k
= (1� ⇠k)uk�1

+ ⇠ksk, we would get the
standard Frank-Wolfe (or conditional gradient) algorithm. The difference between our method and Frank-Wolfe is that we
greedily minimize the loss `(uk

), while the Frank-Wolfe minimizes the linear approximation in (14).

Define DMN := max

u,v{ku� vk : u,v 2MN} to be the diameter of MN . Following (17), we have

`(uk
) = min

q2Vert(MN)
`
�

(1� ⇠k)u
k�1

+ ⇠kq
�

 `
�

(1� ⇠k)u
k�1

+ ⇠ks
k
�

 `
�

u

k�1
�

+ ⇠kr`(uk�1
)

> �
s

k � u

k�1
�

+ C⇠2k (15)

 (1� ⇠k)`
�

u

k�1
�

+ ⇠kL⇤
N + C⇠2k, (16)

where we define C := D2
MN

, (15) follows (12), and (16) follows (13). Rearranging this, we get

`(uk
)� L⇤

N � C⇠k (1� ⇠k)
�

`(uk�1
)� L⇤

N � C⇠k
�

By iteratively applying the above inequality, we have

`(uk
)� L⇤

N � C⇠k

k
Y

i=1

(1� ⇠i)

!

�

`(u0
)� L⇤

N � C⇠1
�

.

Taking ⇠k = 1/k. We get

`(uk
)� L⇤

N �
C

k
 1

k

�

`(u0
)� L⇤

N � C
�

.

And thus

`(uk
) 1

k

�

`(u0
)� L⇤

N

�

+ L⇤
N = O

✓

1

k

◆

+ L⇤
N .

This completes the proof.

12.2. Proof of Theorem 2

The proof leverages the idea from the proof of Proposition 1 of Chen et al. (2012) for analyzing their Herding algorithm,
but contains some extra nontrivial argument.

Following the proof of Proposition 1, our problem can be viewed as

min

u2MN

n

`(u) := ku� yk2
o

,

with L⇤
N = min

u2MN `(u), our greedy algorithm can be viewed as starting from u

0
= 0 and iteratively updating u by

u

k
=

k � 1

k
u

k�1
+

1

k
q

k, q

k
= argmin

q2Vert(MN)

�

�

�

�

k � 1

k
u

k�1
+

1

k
q � y

�

�

�

�

2

(17)

where Vert(MN) := {�(✓1), ...,�(✓N)} denotes the vertices of MN . We aim to prove that `(uk
) =

O(1/(kmax(1, �))2), under Assumption 2.

Define w

k
= k(y� u

k
), then `(uk

) =

�

�

w

k
�

�

2
/k2. Therefore, it is sufficient to prove that

�

�

w

k
�

�

= O(1/(max(1, �))).

Greedy Subnetwork Selection

Similar to the proof of Proposition 1, we define

s

k+1
= argmin

s2MN

r`(uk
)

>
(s� u

k
)

= argmin

s2MN

r`(uk
)

>
s

= argmin

s2MN

hwk, si.

= argmin

s2MN

hwk, (s� y)i.

Because B(y, �) is included in MN by Assumption 2, we have s

0
:= y� �wk/

�

�

w

k
�

� 2MN . Therefore

hwk, (s

k+1 � y)i = min

s2MN

hwk, (s� y)i hwk, (s

0 � y)i = �� ��wk
�

� .

Note that
�

�

w

k+1
�

�

2
= min

q2Vert(MN)

�

�kuk
+ q � (k + 1)y

�

�

2

= min

q2Vert(MN)

�

�

w

k
+ q � y

�

�

2

 ��wk
+ s

k+1 � y
�

�

2

=

�

�

w

k
�

�

2
+ 2hwk, (sk+1 � y)i+ ��sk+1 � y

�

�

2

 ��wk
�

�

2 � 2�
�

�

w

k
�

�

+D2
MN

,

where DMN is the diameter of MN . Because w

0
= 0, using Lemma 6, we have

�

�

w

k
�

� max(DMN , D2
MN

/2, D2
MN

/(2�)) = O
✓

1

min(1, �)

◆

, 8k = 1, 2, . . . ,

This proves that `(uk
) =

kwkk2
k2 = O

⇣

1
k2 min(1,�)2

⌘

.

Lemma 6. Assume {zk}k�0 is a sequence of numbers satisfying z0 = 0 and

|zk+1|2 |zk|2 � 2�|zk|+ C, 8k = 0, 1, 2, . . .

where C and � are two positive numbers. Then we have |zk| max(

p
C, C/2, C/(2�)) for all k = 0, 1, 2,

Proof. We prove |zk| max(

p
C, C/2, C/(2�)) := u⇤ by induction on k. Because z0 = 0, the result holds for k = 0.

Assume |zk| u⇤, we want to prove that |zk+1| u⇤ also holds.

Define f(z) = z2 � 2�z + C. Note that the maximum of f(z) on an interval is always achieved on the vertices, because
f(z) is convex.

Case 1: If |zk| C/(2�), then we have

|zk+1|2 f(|zk|) max

z

⇢

f(z) : z 2 [0, C/(2�)]

�

= max

⇢

f(0), f(C/(2�))

�

= max

⇢

C, C2/(4�2
)

�

 u2
⇤.

Case 2: If |zk| � C/(2�), then we have

|zk+1|2 |zk|2 � 2�|zk|+ C |zk|2 u2
⇤.

In both cases, we have |zk+1| u⇤. This completes the proof.

Greedy Subnetwork Selection

12.3. Proof of Theorem 3

We first introduce the following Lemmas.
Lemma 7. Under the Assumption 1, 3, 4, 5 and 6. For any � > 0, when N is sufficient large, with probability at least
1� �,

B
✓

y,
1

2

�⇤
◆

✓ conv
�

�(✓) | ✓ 2 supp(⇢NT)

.

Here ⇢NT is the distribution of the weight of the large network with N neurons trained by gradient descent.

12.3.1. PROOF OF THEOREM 3

The above lemmas directly imply Theorem 3.

12.3.2. PROOF OF LEMMA 7

In this proof, we simplify the statement that ‘for any � > 0, when N is sufficiently large, event E holds with probability at
least 1� �’ by ‘when N is sufficiently large, with high probability, event E holds’.

By the Assumption 5, there exists �⇤ > 0 such that

B (y, �⇤
) ✓ conv {�(✓) | ✓ 2 supp(⇢1T)} = M.

Given any ✓ 2 supp(⇢1T), define
�

N
(✓) = argmin

✓

02supp
(

⇢N
T)

�

�

�(✓

0
)� �(✓)

�

�

where �

N
(✓) is the best approximation of �(✓) using the points �(✓i),✓i 2 supp(⇢NT).

Using Lemma 11, by choosing ✏ = �⇤/6, when N is sufficiently large, we have

sup

✓2supp(⇢1
T)

�

�

�(✓)� �

N
(✓)

�

� �⇤/6, (18)

with high probability. (18) implies that MN can approximate M for large N . Since M is assumed to contain the ball
centered at y with radius �⇤, as MN approximates M, intuitively MN would also contain the ball centered at y with a
smaller radius. And below we give a rigorous proof for this intuition.

Step 1: kˆy� yk �⇤/6. When N is sufficiently large, with high probability, we have

kˆy� yk
M
X

i=1

qi
�

�

�

N
(✓

⇤
i)� �(✓

⇤
i)
�

� �⇤/6.

Step 2 B �ˆy, 5
6�

⇤� ✓ M By step one, with high probability, kˆy� yk �⇤/4, which implies that ˆy 2 B (y, �⇤/4) ✓
B (y, �⇤

) ✓M. Also, for any A 2 @M (here @M denotes the boundary of M), we have

kˆy�Ak � ky�Ak � ky� ˆyk � �⇤ � �⇤/4.

This gives that B �ˆy, 5
6�

⇤� ✓M.

Step 3 B �ˆy, 2
3�

⇤� ✓MN Notice that ˆy is a point in Rm and suppose that A belongs to the boundary of MN (denoted
by @MN) such that

kˆy�Ak = min

Ã2@MN

�

�

�

ˆy� ˜A
�

�

�

.

We prove by contradiction. Suppose that we have kˆy�Ak < 2
3�

⇤.

Using support hyperplane theorem, there exists a hyperplane P = {u : hu�A,vi = 0} for some nonempty vector v,
such that A 2 P and

sup

q2MN

hq,vi hA,vi .

Greedy Subnetwork Selection

We choose A0 2 P such that A0 � ˆy ? P (A and A0 can be the same point). Notice that

kˆy�A0k2 = kˆy�A+A�A0k2 = kˆy�Ak2 + kA�A0k2 + 2 hˆy�A,A�A0i .

Since A0 � ˆy ? P and A,A0 2 P , we have hˆy�A,A�A0i = 0 and thus kˆy�A0k kˆy�Ak < 2
3�

⇤. We have

A0 2 B (

ˆy, kˆy�Ak) ✓ B
✓

ˆy,
2

3

�⇤
◆

✓ B
✓

ˆy,
5

6

�⇤
◆

✓M.

Notice that as both ˆy, A0 2M we choose � � 1 such that ˆy + � (A0 � ˆy) 2 @M, where @M denotes the boundary of M.
Define B =

ˆy + � (A0 � ˆy). As we have shown that B �ˆy, 5
6�

⇤� ✓M, we have kˆy�Bk � 5
6�

⇤. And thus

kB �A0k = kB � ˆyk � kˆy�A0k
>

5

6

�⇤ � 2

3

�⇤

>
1

6

�⇤.

Also notice that

hB �A,vi = hˆy + � (A0 � ˆy)�A,vi
= (1� �) hˆy�A,vi+ � hA0 �A,vi
= (1� �) hˆy�A,vi
� 0.

This implies that B and M are on different side of P .

With high probability, we are able to find D 2 {�(✓);✓ 2 supp(⇢NT)} such that

kD �Bk �⇤

6

.

By the definition, D 2MN and thus hD �A,vi 0 as shown by the supporting hyperplane theorem. Also remind that
hB �A,vi � 0. These allow us to choose �0 2 [0, 1] such that

h�0D + (1� �0
)B �A,vi = 0.

We define E = �0D + (1� �0
)B and thus E 2 P . Notice that

kB � Ek = kB � �0D � (1� �0
)Bk = �0 kB �Dk kB �Dk �⇤

6

.

Also,
kB � Ek2 = kB �A0

+A0 � Ek2 = kB �A0k2 + kA0 � Ek2 + 2 hB �A0, A0 � Ei .
As B�A0 ? P and A0, E 2 P , we have hB �A0, A0 � Ei = 0, which implies that kB � Ek � kB �A0k > 1

6�
⇤, which

makes contradiction.

Step 4 B �y, 1
2�

⇤� ✓MN As for sufficiently large N , we have kˆy� yk 1
6�

⇤ and thus

B
✓

y,
1

2

�⇤
◆

✓ B
✓

ˆy,
2

3

�⇤
◆

✓MN .

13. Technical Lemmas
Lemma 8. Under assumption 1 and 3, for any N , at training time T < 1, for any ✓ 2 supp(⇢NT) or ✓ 2 supp(⇢1T), we
have k✓k C, k�(✓)k C and k�(✓)kLip C for some constant C <1.

Greedy Subnetwork Selection

Lemma 9. Suppose ✓i 2 Rd, i = 1, ..., N are i.i.d. samples from some distribution ⇢ and ⌦ ✓ Rd is bounded. For any
radius rB > 0 and � > 0, define the following two sets

A =

⇢

✓B 2 ⌦

�

�

�

�

P
✓⇠⇢ (✓ 2 B (✓B , rB)) >

4

N
((d+ 1) log (2N) + log (8/�))

�

B =

n

✓B 2 ⌦

�

�

�

�

�

�

✓B � ✓

N
B

�

�

�

 rB
o

,

where ✓

N
B = argmin

✓

02{✓i}N
i=1

�

�

✓B � ✓

0�
� . With probability at least 1� �, A ✓ B.

Lemma 10. For any � > 0 and ✏ > 0, when N is sufficiently large (N depends on �), with probability at least 1 � �, we
have

sup

✓2supp(⇢1
T)

�

�

�(✓)� ¯

�

N
(✓)

�

� ✏,

where ¯

�

N
(✓) = argmin

�(✓̄0)2{�(✓̄i)}N
i=1

�

�

�

�(

¯

✓

0
)� �(✓)

�

�

�

and ¯

✓i are i.i.d. samples from ⇢1T .

Lemma 11. For any � > 0 and ✏ > 0, when N is sufficiently large (N depends on �), with probability at least 1 � �, we
have

sup

✓2supp(⇢1
T)

�

�

�(✓)� �

N
(✓)

�

� ✏,

where �

N
(✓) = argmin

✓

02supp
(

⇢N
T)

�

�

�(✓

0
)� �(✓)

�

�.

13.1. Proof of Lemma 8

We prove the case of training network with N neurons. Notice that
�

�

�

�

@

@t
✓(t)

�

�

�

�

=

�

�

g[✓(t), ⇢Nt]

�

�

=

�

�

�

E
x,y⇠D

⇣

y � f⇢N
t
(x)

⌘

r
✓

�(✓(t),x)
�

�

�

r

E
x,y⇠D

⇣

y � f⇢N
t
(x)

⌘2
q

E
x,y⇠D kr✓

�(✓(t),x)k2

r

E
x,y⇠D

⇣

y � f⇢N
0
(x)

⌘2
q

E
x,y⇠D kr✓

�(✓(t),x)k2

Notice that by the assumption 1, we have
r

E
x,y⇠D

⇣

y � f⇢N
0
(x)

⌘2
 C. Remind that ✓(t) = [a(t), b(t)], �(✓(t),x) =

b(t)�+(a
>
(t)x). Thus we have

�

�

�

�

@

@t
b(t)

�

�

�

�

 C k�+k1 .

And thus for any i 2 {1, ..., N}, sup

t2[0,T]
kbi(t)k

R T
0

�

�

@
@tbi(s)

�

� ds TC. Also

�

�

�

�

@

@t
a(t)

�

�

�

�

 C|b(t)| ���0
+

�

�

1

q

E
x⇠D kxk2

 TC.

By assumption 3, that k✓0(t)k C, we have

sup

t2[0,T]
k✓i(t)k

Z T

0

�

�

�

�

@

@t
✓i(s)

�

�

�

�

ds T 2C.

Greedy Subnetwork Selection

Notice that this also holds to training the network with infinite number of neurons. Notice that k�(✓)k =

q

1
m

Pm
j=1 �

2
(✓,x(j)

) CT . And

k�(✓)kLip = sup

✓1,✓2

k�(✓1)� �(✓2)k
k✓1 � ✓2k

= sup

✓1,✓2

q

1
m

Pm
j=1

�

�(✓1,x(j)
)� �(✓2,x(j)

)

�2

k✓1 � ✓2k
 TC k�+kLip + k�+k1 .

Thus given any T <1, all those three quantities can be bounded by some constant.

13.2. Proof of Lemma 9

The following proof follows line 1 and and line 2 of the proof of Lemma 16 of (Chaudhuri & Dasgupta, 2010).

Define g
✓B (✓) = I {✓ 2 B (✓B , rB)} and �N =

p

(4/N)(dVC log 2N + log(8/�)), where dVC is the VC dimension of
the function class G = {g

✓B ,✓B 2 ⌦} and thus dVC d + 1 (Dudley, 1979). Let Eg
✓B = P

✓⇠⇢ (✓ 2 B (✓B , rB)) and
ENg

✓B =

PN
i=1 g✓B (✓i)/N . So

A = {✓B |Eg
✓B > �2

N}
and we further define

A2 = {✓B |ENg
✓B > 0} .

From theorem 15 of (Chaudhuri & Dasgupta, 2010) (which is a rephrase of the generalization bound), we know that: for
any � > 0, with probability at least 1� �, the following holds for all g

✓B 2 G,

Eg
✓B � ENg

✓B �N

p

Eg
✓B (19)

Notice that for any g
✓B which satisfies (19),

Eg
✓B > �2

N) ENg
✓B > 0

So this means: for any � > 0, with probability at least 1� �,

A ✓ A2 = B

where the last equality follows from the following:

A2 = {✓B |ENg
✓B > 0} = {there exists some ✓i such that ✓i 2 B(✓B , rB)} = B

13.3. Proof of Lemma 10

Given ✏ > 0, we choose r0 sufficiently small such that Cr0 ✏ (here C is some constant defined in Lemma 8). For this
choice of r0, given the corresponding p0 (defined in assumption 6), for any � > 0, there exists N(�) such that 8N � N(�),
we have

p0 >
4

N
((d+ 1) log(2N) + log(8/�)) := �2

N .

And thus from assumption 6, we have

8✓ 2 supp(⇢1T), P
✓

0⇠⇢1
T

�

✓

0 2 B(✓, r0)
� � p0 > �2

N .

This implies
supp(⇢1T) ✓ A =

�

✓B |P
✓⇠⇢ (✓ 2 B (✓B , r0)) > �2

N

From Lemma 9 (set rB = r0), we know: with probability at least 1� �,

A ✓ B =

n

✓B 2 ⌦

�

�

�

�

�

�

✓B � ✓

N
B

�

�

�

 r0
o

,

Greedy Subnetwork Selection

Thus, with probability at least 1� �,
supp(⇢1T) ✓ B

and this means: with probability at least 1� �, we have

8✓ 2 supp(⇢1T),
�

�

�

✓ � ✓

N
�

�

�

 r0.

The result concludes from

sup

✓2supp(⇢1
T)

�

�

�(✓)� �

N
(✓)

�

�

 sup

✓2supp(⇢1
T)

�

�

�

�(✓)� �(✓

N
)

�

�

�

 sup

✓2supp(⇢1
T)

C
�

�

�

✓ � ✓

N
�

�

�

Cr0 ✏.

Here the last inequality uses Lemma 8.

13.4. Proof of Lemma 11

In this proof, we simplify the statement that ‘for any � > 0, when N is sufficiently large, event E holds with probability at
least 1� �’ by ‘when N is sufficiently large, with high probability, event E holds’.

Suppose that ✓i, i 2 [N] is the weight of neurons of network f⇢N
T

. Given any ✓ 2 supp(⇢1T), define

�

N
(✓) = argmin

�(✓0)2Vert(MN)

�

�

�(✓

0
)� �(✓)

�

� .

Notice that the training dynamics of the network with N neurons can be characterized by

@

@t
✓i(t) = g[✓i(t), ⇢

N
t],

✓i(0)
i.i.d.⇠ ⇢0.

Here g[✓, ⇢] = E
x,y⇠D (y � f⇢(x))r✓

�(✓,x). We define the following coupling dynamics:

@

@t
¯

✓i(t) = g[

¯

✓i(t), ⇢
1
t],

¯

✓i(0) = ✓i(0).

Notice that at any time t, ¯✓i(t) can be viewed as i.i.d. sample from ⇢1t . We define ⇢̂Nt (✓) =

1
N

PN
i=1 �✓̄i(t)(✓). Notice

that by our definition ✓i = ✓i(T) and we also define ¯

✓i =
¯

✓i(T). Using the propagation of chaos argument as Mei et al.
(2019) (Proposition 2 of Appendix B.2), for any T <1, for any � > 0, we have

sup

t2[0,T]
max

i2{1,..,N}

�

�

¯

✓i(t)� ✓i(t)
�

� Cp
N

⇣

p

logN +

p

log 1/�
⌘

.

By Lemma 10 and the bound above, when N is sufficiently large, with high probability, we have

sup

✓2supp(⇢1
T)

�

�

�(✓)� ¯

�

N
(✓)

�

� ✏/2

max

i2[N]

�

�

¯

✓i(T)� ✓i(T)
�

� ✏

2C
,

where C = k�kLip and
¯

�

N
(✓) = argmin

✓

02supp(⇢̂N
T)

�

�

�(✓)� ¯

�

N
(✓)

�

� .

Greedy Subnetwork Selection

We denote ¯

✓i✓ 2 supp(⇢̂NT) such that ¯

�

N
(✓) = �(

¯

✓i✓). It implies that

sup

✓2supp(⇢1
T)

�

�

�(✓)� �

N
(✓)

�

� sup

✓2supp(⇢1
T)
k�(✓)� � (✓i✓)k

= sup

✓2supp(⇢1
T)

�

�

�(✓)� ¯

�

N
(✓) +

¯

�

N
(✓)� � (✓i✓)

�

�

= sup

✓2supp(⇢1
T)

�

�

�(✓)� �

�

¯

✓i✓

�

+ �

�

¯

✓i✓

�� � (✓i✓)
�

�

 sup

✓2supp(⇢1
T)

�

�

�(✓)� �

�

¯

✓i✓

�

�

�

+ sup

✓2supp(⇢1
T)

�

�

�(✓)� �

�

¯

✓i✓

�

�

�

 ✏/2 + max

i2[N]

�

�

¯

✓i(T)� ✓i(T)
�

� k�kLip

 ✏.

	Introduction
	Problem and Method
	Theoretical Analysis
	General Convergence Rate
	Faster Rate With Over-parameterized Networks
	Assumption 2 Under Gradient Descent
	Pruning Randomly Weighted Networks
	Greedy Backward Elimination
	Further Discussion

	Practical Algorithm and Experiments
	Finding Subnetworks on ImageNet
	Rethinking the Value of Finetuning
	On the Value of Pruning from Large Networks

	Related Works
	Conclusion
	Details for the Toy Example
	Finding Sub-Networks on CIFAR-10/100
	Discussion on Assumption 2 and 5
	Pruning Randomly Weighted Networks
	Forward Selection is Better Than Backward Elimination
	Proofs
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 3
	Proof of Lemma 7

	Technical Lemmas
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11

