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1. Details for Generating Relational Graphs
Here we provide more details for how we generate graphs in
Section 3.2. For all generators, we fix the number of nodes
n = 64, and constrain the graph sparsity within [0.125, 1.0].

Watts-Strogatz (WS) graphs. WS graphs are character-
ized by: (1) number of nodes n, (2) initial node degree k
(must be an integer), (3) edge rewiring probability (random-
ness) p. We search over:

• degree k ∈ np.arange(8,62)
• randomness p ∈ np.linspace(0,1,300)**2
• 30 random seeds

Since graph measures are more sensitive when p is small,
we increase the sample density of small p value by squaring
p. In total, we generate 54 × 300 × 30 = 486, 000 WS
graphs.

Erdős-Rényi (ER) graphs. ER graphs are characterized
by: (1) number of nodes n, (2) number of edges m. We
search over:

• edge number m ∈ np.arange(64× 4, 64× 63/2)
• 30 random seeds

In total, we generate 1760× 30 = 52, 800 ER graphs.

Barabási-Albert (BA) graphs. ER graphs are character-
ized by: (1) number of nodes n, (2) number of existing
nodes m that a new node connects to. We search over:

• m ∈ np.arange(4,30)
• 300 random seeds

In total, we generate 26× 300 = 7, 800 ER graphs.

Harary graphs. Harary graphs are determined by: (1)
number of nodes n, (2) number of edges m. We search
over:

• edge number m ∈ np.arange(64*4,64*63/2)
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In total, we generate 1760 Harary graphs.

Ring graphs. Ring graphs are characterized by: (1) number
of nodes n, (2) node degree k (integer). We search over:

• degree k ∈ np.arange(8,62)

In total, we generate 54 ring graphs.

WS-flex graphs. We describe the detailed procedures of
getting 3942 WS-flex graphs that we used in the experiments.
WS-flex graphs are characterized by: (1) number of nodes n,
(2) average node degree k (real number), (3) edge rewiring
probability (randomness) p. We search over:

• degree k ∈ np.linspace(8,62,300)
• randomness p ∈ np.linspace(0,1,300)**2
• 30 random seeds

In total, we generate 300×300×30 = 2, 700, 000 WS-flex
graphs. Generating these WS-flex graphs (and computing
their average path length and clustering coefficient) only
takes about 1 hour on a 80 CPU core machine.

Next, we sub-sample 3942 graphs from these 2.7M candi-
date graphs. We create 2-d bins over the graph structure
measures: (1) for average path length, we create 15× 9 bins
whose bin edges are given by np.linspace(1, 4.5, 15×
9 + 1); (2) for clustering coefficient, we create 15× 9 bins
whose bin edges are given by np.linspace(0, 1, 15 ×
9 + 1). We sub-sample 1 graph, whose graph structure
measures fall within a given 2-d bin, for each of the 2-d bins.
After gathering bins that have graphs, we get 3942 graphs
in total.

For ImageNet experiments, we further sub-sample 52 graphs
from these 3942 graphs. Specifically, we collect graphs in
the bins whose bin ID (i mod 9) = 5, so that the sub-
sampled graphs are roughly uniformly distributed in the
graph measure space.

2. Details for Matching the Reference FLOPS
Here we provide more details on matching the reference
FLOPS for a given model. As described in Section 3.3,
we vary the layer width of a neural network to match the
reference FLOPS.
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5-layer 512-dim MLP on CIFAR-10, 3942 graphs

Figure 1: More graph measures vs. neural network performance. Global (left 3) and local (right 3) graph measures
versus 5-layer 512-dim MLP performance on CIFAR-10.

Figure 2: Ablation study: varying width/depth of neural networks. Pearson correlation between MLPs with different
width/depth over the same set of 52 relational graphs. 5-layer 512-d MLP is the default architecture.

Specifically, to match the reference FLOPS, if all the layers
have the same width, we incrementally vary the layer width
by 1 for all the layers, then pick the layer width that has the
fewest FLOPS above the reference FLOPS. In the scenarios
where layer width varies in different stages, we fine-tune
the network width in each of the stages via an iterative
mechanism: (1) we incrementally vary the layer width of
the narrowest stage by 1, while maintaining the ratio of
layer width across all the stages, then fix the layer width for
that stage; (2) we repeat (1) for the narrowest stage in the
remaining stages. Using this technique, we can control the
complexity of a model within 0.5% of the baseline FLOPS.

3. Details for Wall Clock Running Time
Training a baseline MLP (translated by a complete graph)
on CIFAR-10 roughly takes 5 minutes on a NVIDIA V100
GPU, while training all baseline ResNets and EfficientNets
approximately take a day on 8 NVIDIA V100 GPU. Due
to the lack of mature support of sparse CUDA kernels, we
implement relational graphs via applying sparse masks over
dense weight matrices. The most sparse graph that we
experiment with (sparsity = 0.125) is around 2x slower (in
wall clock time) than the corresponding baseline graph.

4. Analysis with More Graph Measures
In the paper, we focus on 2 classic graph measures: clus-
tering coefficient and average path length. Here we include
the analysis using more graph measures. Specifically, we

consider the following additional local and global graph
measures.

Local graph measures. (1) Average degree: node degree
averaged over all the nodes. (2) Local efficiency: a measure
of how well information is exchanged by a node’s neighbors
when the node is removed, averaged over all the nodes.

Global graph measures. (1) Algebraic Connectivity: the
second smallest eigenvalue of graph Laplacian. Graph
Laplacian is defined as A − D, where A is the adjacency
matrix and D is the degree matrix. (2) Global efficiency: a
measure of how well information is exchanged across the
whole network.

We plot the performance of 5-layer MLPs on CIFAR-10
dataset versus one of the graph structure measures, over the
3942 relational graphs that we experimented with. We use
locally weighted linear regression to visualize the overall
trend. From Figure 1, we can see that more graph measures
exhibit the interesting U-shape correlation with respect to
neural network predictive performance.

5. Ablation Study
5.1. Varying Width/Depth of Neural Networks

Here we investigate the effect of network width/depth on the
performance of neural networks translated by the same set
of relational graphs. Specifically, we study 5-layer MLPs
with [256, 512, 1024] dimension hidden layers, and 512-dim
MLP with [3, 5, 7] layers. We can see that the performance
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5-layer MLP on CIFAR-10, 52 nodes 5-layer MLP on CIFAR-10, 71 nodes
Complete graph: 
33.34 ± 0.36
Best graph: 
32.08 ± 0.42

Complete graph: 
33.34 ± 0.36
Best graph: 
32.09 ± 0.32

5-layer MLP on CIFAR-10, 64 nodes
Complete graph: 
33.34 ± 0.36
Best graph: 
32.07 ± 0.24

Figure 3: Ablation study: varying number of nodes in relational graphs. We average results from 482 relational graphs
for 52-node graphs, 449 graphs for 64-node graphs, and 422 graphs for 71-node graphs.

of relational graphs with certain structural measures highly
correlates across networks with different width.

The behavior is different when varying the network depth:
while increasing the depth of MLP to 7 layers maintains a
high correlation with 5-layer MLP, decreasing the depth of
MLP to 3 layers completely reverse the correlation1. One
possible explanation is that while sparse relational graphs
may represent a more efficient neuron connectivity pattern,
more rounds of message exchange are necessary for these
neurons to fully communicate. Understanding how many
rounds of message exchange are required by a given rela-
tional graph to reach optimal performance is an interesting
direction left for future work.

5.2. Varying Number of Nodes in Relational Graphs

In Section 2.3, we show that an m-dim neural network layer
can be flexibly represented by an n-node relational graph,
as long as n ≤ m. Here we show that varying the number of
nodes in a relational graph has little effect on our findings.

In Figure 3, we show the results of 5-layer MLP on CIFAR-
10, where we consider using 52-node (number of nodes of
the cat cortex graph) and 71-node (number of nodes of the
macaque whole cortex graph) relational graphs in addition
to 64-node graphs used in the main paper. To cover the
space of clustering C and path length L, we generate 482
graphs for 52-node graphs, 449 graphs for 64-node graphs,
and 422 graphs for 71-node graphs. To save computational
cost, we use fewer graphs than the 3942 graphs in the main
paper. From the results, we can see the performance of the
best graph is almost identical across these varied number
of nodes, which justifies our claimed flexibility of selecting
the number of nodes in a relational graph.

1Recall that when translating a relational graph, we leave the
input and output layer unchanged; therefore, a 3-layer MLP only
has 1 round of message passing over a given relational graph.

6. Discussion of Failure Cases
There are some special cases for convolutional neural net-
works on CIFAR-10, where the consistent sweet spot pattern
(C ∈ [0.43, 0.50], L ∈ [1.82, 2.28]) breaks and the best
results are obtained with approximately fully-connected
graphs. We visualize and discuss this phenomenon in Fig-
ure 4. We start from analyzing the results of 8-layer 64-dim
CNN on ImageNet, where consistent sweep spot region
emerges (Figure 4(a)). We then hold the model fixed, and
switch the dataset to CIFAR-10. On CIFAR-10, we find that
the complete graph performs better than most sparse graphs
(Figure 4(b)).

Without a theoretical discussion on network overparameteri-
zation (Zhang et al., 2017) and intrinsic task difficulty (Li
et al., 2018), we provide some empirical intuitions for those
cases. As we have shown in main paper Figure 7, fully-
connected neural networks can automatically learn graph
structures during training. We hypothesize that the structural
prior matters less when the task is simple, relative to the
representation capacity and efficiency of the neural network
and the learned graph structure is sufficient in those settings.

To verify this hypothesis, we reduce the model capacity by
reducing the width of CNN from 64 to 16 dimensions (Fig-
ure 4(c)), and train it again on CIFAR-10. In this setting, we
show that sparse graph structure significantly outperforms
the complete graph again. We provide more examples that
compares two scenarios in Figure 5. Note that with Im-
ageNet, sparse relational graphs consistently yield better
performance in the sweet spot regions, even when the model
capacity is increased.
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a 8-layer 64-dim CNN on ImageNet b 8-layer 64-dim CNN on CIFAR-10 c 8-layer 16-dim CNN on CIFAR-10

Switch to 
CIFAR-10

Narrow to 
16-dim

Figure 4: (a) We recap the results of 8-layer 64-dim CNN on ImageNet. (b) We apply the same architecture to CIFAR-10.
Results from 449 relational graphs are averaged to 52 bins, using the technique in Section 5.2. We find that the complete
graph performs better than most sparse graphs in this setting. (c) We hypothesize that since CIFAR-10 is an intrinsically
much easier task than ImageNet, the graph structural priors might not matter when the representation capacity is abundant.
To verify the hypothesis,we reduce the model capacity by reducing the width of CNN from 64 to 16 dimensions. Due to
the narrowed dimensions, we explore relational graphs with 16 nodes instead of 64. Results of 326 relational graphs are
averaged to 48 bins. In this setting, sparse graph structure significantly outperforms the complete graph again.

5-layer MLP on CIFAR-10

11-layer MLP on CIFAR-10

8-layer CNN on ImageNet

8-layer CNN on CIFAR-10 ResNet on CIFAR-10

ResNet on ImageNet

Figure 5: There are some special cases where the consistent sweet spots disappear, when training CNN models on CIFAR-10
(bottom row). For a simple task, we hypothesize that the graph structural priors might not matter when the representation
capacity is abundant. However, for challenging tasks like ImageNet, sweet spots are consistent and sparse relational graphs
always produce better results than the fully-connected/complete graph counterpart. (For 11-layer MLP on CIFAR-10, no
sweet spot can be identified.)


