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Abstract

In this paper, we propose a bootstrap method ap-
plied to massive data processed distributedly in
a large number of machines. This new method
is computationally efficient in that we bootstrap
on the master machine without over-resampling,
typically required by existing methods (Kleiner
et al., 2014; Sengupta et al., 2016), while prov-
ably achieving optimal statistical efficiency with
minimal communication. Our method does not
require repeatedly re-fitting the model but only ap-
plies multiplier bootstrap in the master machine
on the gradients received from the worker ma-
chines. Simulations validate our theory.

1. Introduction
1.1. Background

Modern massive data, with enormous sample size, are usu-
ally so hard to fit on a single machine. A master-slave
architecture is often adopted using a cluster of nodes for
data storage and processing; for example, Hadoop, as one
of the most popular distributed framework, has facilitates
distributed data processing; see Figure 1.1 for a diagram of
the master-slave architecture (Singh & Kaur, 2014), where
the master node has also a portion of the data. A shortcom-
ing of this architecture is that inter-node communication
(between master and worker nodes) is through the TCP/IP
protocol, which can be over a thousand times slower than
intra-node computation and always comes with significant
overhead (Lan et al., 2018; Fan et al., 2019). For these rea-
sons, statistical inference for modern distributed data is very
challenging, and communication efficiency is a desirable
feature when developing distributed learning algorithms.

However, classical statistical procedures, which typically
require hundreds or even thousands passes over the entire
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Figure 1.1. Master-worker architecture for storing and processing
distributed data.

data set, are very communication-inefficient or even impos-
sible to perform, including popular methods such as boot-
strap, Bayesian inference and many maximum likelihood
estimation procedures. Over the last few years, many papers
proposed computational procedures for estimation from the
maximum likelihood criteria (Zhang et al., 2012; Li et al.,
2013; Chen & Xie, 2014; Huang & Huo, 2015; Battey et al.,
2015; Zhao et al., 2016; Fan et al., 2017; Lee et al., 2017;
Wang & Zhang, 2017; Wang et al., 2017; Shi et al., 2018;
Jordan et al., 2019; Volgushev et al., 2019; Banerjee et al.,
2019; Fan et al., 2019).

As a popular method for approximating the sample distri-
bution of an estimator, Bootstrap, without modifications, is
inapplicable in the environment of distributed processing. It
typically requires hundreds or thousands of resamples that
is of the same size as the original data, which is impossible
for large-scale data stored in different locations.

1.2. Our Contributions

In this paper, we first consider a naı̈ve bootstrap method,
named as k-grad, that uses local gradients from each
machine, where k is the number of machines. To pro-
vide a higher accuracy, an improved version, named as
n+k-1-grad bootstrap, is introduced. Both are (inter-
node) communication and (intra-node) computation efficient
for (generalized) linear models. Our methods can be easily
extended to other statistical models. The statistical accuracy
and efficiency are proved theoretically, and validated by
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simulations.

Our n+k-1-grad method overcomes many constraints
faced by the existing methods:

• It preserves bootstrap validity, while relaxing the con-
straints on the number of machines.

• The computational cost of the bootstrap procedure is
as small as it is conducted only on the master node.

• It performs statistical inference on a group of param-
eters simultaneously, rather than on only individual
parameters.

1.3. Related Works

The bag of little bootstraps (BLB) (Kleiner et al., 2014) is
one of the earliest methods that can be used in a distributed
setting. However, to achieve the bootstrap validity, they
require that the number of machines to be smaller than the
sample size on local machine, while our methods relax such
a requirement. In terms of intra-node computational cost,
our methods are more efficient than BLB as expensive model
re-fitting on each worker node is not required; see Table 1
for an empirical comparison on computational cost. The
subsampled double bootstrap (SDB) approach (Sengupta
et al., 2016) was proposed to improve upon BLB in terms
of intra-node computational efficiency; however, it fails for
both small and large number of machines, as witnessed in
our simulation study, while our method can work under
these regimes.

1.4. Outline

In Section 2, we formulate the problem of distributed simul-
taneous inference and present our bootstrap algorithms. We
state our theoretical results of bootstrap validity in Section 3.
Section 4 presents simulation results that corroborate our
theoretical findings. Finally, Section 5 concludes the paper.

1.5. Notations

We denote the `p-norm (p > 0) of any vec-
tor v = (v1, . . . , vn) by kvkp = (

Pn
i=1 |vi|p)1/p

(kvk1 = max1in |vi|). We denote the induced p-
norm and the max-norm of any matrix M 2 Rm⇥n

(with element Mij at i-th row and j-th column) by
|||M |||p = supx2Rn;kxkp=1 kMxkp and |||M |||max =
max1im;1jn |Mi,j |. We write a . b if a = O(b),
and a⌧ b if a = o(b).

2. Methodology
We introduce the distributed framework and the problem
setup in Section 2.1, and present the main methodology
in Section 2.2. The application to statistical inferences is
detailed in Sections 2.3.

We first discuss some preliminaries on the simultaneous
inference. Suppose data {Zi}N

i=1 are i.i.d., and L(✓; Z)
is a twice-differentiable convex loss function of ✓ =
(✓1, . . . , ✓d) 2 Rd, which depends on a random variable
Z. Suppose that the parameter of interest ✓

⇤ is the mini-
mizer of an expected loss:

✓
⇤ = arg min

✓2Rd
L⇤(✓), where L⇤(✓) : = EZ [L(✓; Z)].

2.1. Distributed Data Processing

Assuming N is so large that the data cannot be processed by
a single machine, so an estimator of ✓

⇤ cannot be straightfor-
wardly obtained by minimizing the empirical loss. Instead,
we consider a distributed computation framework. Suppose
the data are stored distributedly in k machines, where each
machine has n data. Denote by {Zij}i=1,...,n;j=1,...,k the
entire data, where Zij is i-th datum on the j-th machine
Mj , and N = nk. Without loss of generality, assume that
the first machine M1 is the master node (see Figure 1.1).
Define the local and global loss functions as

global loss: LN (✓) =
1

k

kX

j=1

Lj(✓), where

local loss: Lj(✓) =
1

n

nX

i=1

L(✓; Zij), j = 1, . . . , k.

(2.1)

Recall that the communication between the master and
worker nodes is costly in the parallel processing framework,
e.g. Hadoop.

The goal in this paper is to obtain simultaneous confidence
region for ✓

⇤. Simultaneous inference has become a com-
mon problem in many areas of application, such as financial
economics, signal processing, marketing analytics, biologi-
cal sciences, and social science (Cai & Sun, 2017; Zhang &
Cheng, 2017), where researchers want to investigate a group
of variables at the same time, instead of a single variable at
a time. Variable selection is usually done by simultaneous
inference.

The empirical loss minimizer is defined as:

b✓ = arg min
✓2Rd

LN (✓). (2.2)

Simultaneous confidence intervals can be found with confi-
dence ↵, for large ↵ 2 (0, 1), by finding the quantile

c(↵) : = inf{t 2 R : P ( bT  t) � ↵} where (2.3)
bT : =

��pN
�b✓ � ✓

⇤���
1. (2.4)

The asymptotic distribution of b✓ has been derived (Eicker
et al., 1963; Gourieroux & Monfort, 1981), and confidence
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intervals can be constructed by finding the quantiles of bT in
(2.4).

While the procedure above has been well-developed if the
data can be processed with a single machine, implementing
b✓ in a distributed framework faces two challenges:

• b✓ usually cannot be easily obtained due to significant
communication requirement, so statistical inference for
✓

⇤ has to be done via a surrogate estimator e✓, which
imitates the distribution of b✓ that is called the oracle
estimator.

• Estimating c(↵) is usually done via bootstrapping the
distribution of (2.4) (DasGupta, 2008; Efron & Tibshi-
rani, 1994). Unfortunately, implementing bootstrap is
difficult in the distributed computational framework.
The existing methods suffer from high computational
cost due to resampling/model refitting in each worker
nodes (Kleiner et al., 2014; Sengupta et al., 2016) or
requiring a large number of machines (Sengupta et al.,
2016).

To perform statistical inference in distributed computational
framework, a surrogate estimator e✓ satisfying ke✓ � b✓k1 =
op(N�1/2) (if d is fixed) will be obtained (see Section 2.3),
and then we propose new distributed bootstrap algorithms
to estimate the quantile c(↵) of bT in (2.4).

2.2. Distributed Bootstrap Algorithms

We utilize the fact that under weak conditions, the central-
ized estimator b✓ has the following expansion:
p

N(b✓ � ✓
⇤)

= �r2L⇤(✓⇤)�1 1p
N

nX

i=1

kX

j=1

rL(✓⇤; Zij)

| {z }
: =A

+oP (1).

(2.5)

It can be seen that the asymptotic distribution of
p

N(b✓�✓
⇤)

is determined by that of A.

The multiplier bootstrap (Chernozhukov et al., 2013) can
be applied to simulate the distribution of A. In particu-
lar, one repeatedly generates N i.i.d. N (0, 1) multipliers
{✏

(b)
ij }i=1,...,n;j=1,...,k for each b = 1, . . . , B, and then ap-

proximate c(↵) by the percentile of {W
⇤(b)}B

b=1, where

W
⇤(b) =

�����r
2LN (b✓)�1 1p

N

kX

j=1

nX

i=1

✏
(b)
ij (bgij � bg)

����
1

,

(2.6)

Algorithm 1 DistBoots(method, e✓, {gj}k
j=1,

e⇥): only
need the master node M1

Input: master node M1 obtains local gradient gj , esti-
mate e⇥ of inverse population Hessian
ḡ k

�1
Pk

j=1 gj

for b = 1, . . . , B do
if method=‘k-grad’ then

Draw ✏
(b)
1 , . . . , ✏

(b)
k

i.i.d.⇠ N (0, 1)
Compute W

(b) by (2.7)
else if method=‘n+k-1-grad’ then

Draw ✏
(b)
11 , . . . , ✏

(b)
n1 , ✏

(b)
2 , . . . , ✏

(b)
k

i.i.d.⇠ N (0, 1)
Compute W

(b) by (2.8)
end if

end for
Compute the percentile cW (↵) of {W

(1)
, . . . , W

(B)} for
↵ 2 (0, 1)

Return e✓l ± N
�1/2

cW (↵), l = 1, . . . , d

with bgij = rL(b✓; Zij), bg = N
�1

Pk
j=1

Pn
i=1 bgij . How-

ever, computing W
⇤(b) for each b requires one round of

communication in the distributed computational framework,
so the computational cost is formidable when, e.g. B = 500.

To adapt the above multiplier bootstrap for the distributed
computational framework, we propose the k-grad boot-
strap, which replaces (2.6) by

W
(b)

: =

�����e⇥ 1p
k

kX

j=1

✏
(b)
j

p
n(gj � ḡ)

| {z }
: =A

����
1

, (2.7)

with ✏
(b)
j

iid⇠ N (0, 1), gj = rLj(e✓), ḡ = k
�1

Pk
j=1 gj ,

and a communication-efficient surrogate estimator e✓ to re-
place b✓ for communication efficiency, and an estimator e⇥
of the inverse Hessian r2L⇤(b✓)�1. The key advantage of
bootstrapping (2.7) over (2.6) is that, once the master has
the gradients gj from the worker nodes, the percentile of
{W

(b)}B
b=1 can be computed in the master node only, with-

out the need to communicate with worker nodes. See Algo-
rithm 1 (method=‘k-grad’) for a detailed description of
the k-grad bootstrap.

A problem with the k-grad procedure is that it may per-
form rather poorly when k is small, e.g. k = 2 or 3, as can
be seen from the simulation studies (Section 4). This is due
to the failure of bootstrapping the variance with only 2 or
3 multipliers. This problem can be alleviated by using a
unique multiplier to each datum in the master node M1;
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that is,

fW (b) : =

����� e⇥ 1p
n + k � 1

✓ nX

i=1

✏
(b)
i1 (gi1 � ḡ)

+
kX

j=2

✏
(b)
j

p
n(gj � ḡ)

◆

| {z }
: = eA

����
1

.

(2.8)

where ✏
(b)
i1 and ✏

(b)
j are i.i.d. N (0, 1) multipliers in i, j and b,

and gi1 = rL(e✓; Zi1) is based on a single datum Zi1 in the
master. We call this method the n+k-1-grad bootstrap.
Note that the percentile of {fW (b)}B

b=1 can still be computed
using only M1, without needing to communicate with other
machines. See Algorithm 1 (method=‘n+k-1-grad’)
for details.

We remark that besides simultaneous inference, our methods
can also be applied apply to pointwise confidence intervals
and circular confidence region, by replacing k · k1 with
|(·)l| and k · k2, where we denote by (·)l the l-th element of
a vector.

2.3. CSL Estimator

To apply k-grad or n+k-1-grad, we use the
communication-efficient surrogate likelihood [CSL, (Jor-
dan et al., 2019)] algorithm with a quadratic approximation
to compute the surrogate estimator e✓ of b✓1. The CSL estima-
tor e✓ converges to b✓ even if n  k with sufficient rounds of
communication, and when n > k, only one round of com-
munication is required to achieve ke✓ � b✓k1 = op(N�1/2)

if d is fixed. We compute e⇥ in (2.7) and (2.8) by inverting
r2L1(e✓) at M1. See Algorithm 2 for a detailed descrip-
tion of using k-grad or n+k-1-grad for constructing
simultaneous confidence intervals with ⌧ rounds of commu-
nication.

The number of iterations ⌧ in Algorithm 2 steers the trade-
off between accuracy and communication efficiency. A
larger ⌧ generally leads to a more accurate coverage of the
simultaneous confidence interval; meanwhile, it induces
a higher communication cost. We theoretically study the
minimal ⌧ that warrants the bootstrap accuracy in Section 3.
Remark 2.1. Although in Algorithm 1 the same e✓ is used

for the center of the confidence interval and for evaluating

the gradients gij , allowing them to be different (such as in

Algorithm 2) can save one round of communication. For

example, we can use e✓(⌧)
for the center of the confidence

interval, while the gradients are evaluated with e✓(⌧�1)
from

the last iteration.

1Particular, we adopt the e✓H described in Section 3.1 of Jordan
et al. (2019).

Algorithm 2 k-grad/n+k-1-grad with CSL: ⌧ rounds
of communication, ⌧ � 1

Compute e✓(0) = arg min✓ L1(✓) at M1

for t = 1, . . . , ⌧ do
Transmit e✓(t�1) to {Mj}j=2,...,k

Compute rL1(e✓(t�1)) and r2L1(e✓(t�1))�1 at M1

for j = 2, . . . , k do
Compute rLj(e✓(t�1)) at Mj

Transmit rLj(e✓(t�1)) to M1

end for
rLN (e✓(t�1)) k

�1
Pk

j=1rLj(e✓(t�1)) at M1

e✓(t)  e✓(t�1)�r2L1(e✓(t�1))�1rLN (e✓(t�1)) at M1

end for
Run DistBoots(‘k-grad’ or ‘n+k-1-grad’,

e✓ = e✓(⌧)
, {gj = rLj(e✓(⌧�1))}k

j=1,

e⇥ = r2L1(e✓(⌧�1))�1) at M1

Remark 2.2. There exist other options than CSL for e✓ such

as the one-shot averaging estimator (Zhang et al., 2012),

but an additional round of communication may be needed

to compute the local gradients. More importantly, they may

be inaccurate when n < k.

3. Theoretical Results
Section 3.1 provides an overview of the theoretical results.
Section 3.2 presents the theory in a linear model framework
for k-grad and n+k-1-grad. Section 3.3 shows the
results for the generalized linear models (GLMs).

3.1. An Overview

As discussed in Section 2.3, we would like ⌧ to be large
enough to ensure the accuracy of the simultaneous confi-
dence interval, yet it may induce unmerited communication
cost. Hence, we theoretically study the minimal number of
iterations that is sufficient for Algorithm 2 to achieve the
bootstrap validity; we denote it by ⌧min. The results are
illustrated in Figure 3.1. Panels in the top row illustrate the
lower bound of ⌧ for linear models given in Theorems 3.1
and 3.2 of Section 3.2, and those in the bottom row illustrat-
ing the results for the GLMs given in Theorems 3.6 and 3.7
of Section 3.3

As a general pattern of Figure 3.1, ⌧min is (logarithmically)
increasing in k and decreasing in n for both k-grad and
n+k-1-grad in (generalized) linear models; in addition,
⌧min is (logarithmically) increasing in d.

For the difference between k-grad and n+k-1-grad,
we compare the left and right panel of Figure 3.1. With
fixed (n, k, d), the ⌧min for n+k-1-grad is always no
larger than that for k-grad, which indicates a greater effi-
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ciency of n+k-1-grad. As k is small, k-gradwould not
work, while n+k-1-grad can provably work. In addition,
⌧min = 1 can work for certain instances of n+k-1-grad
but never for k-grad.

For the comparison between the linear models (top panels)
and GLMs (bottom panels), GLMs require larger n than lin-
ear models in order to ensure that our bootstrap procedures
work.
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Figure 3.1. Illustration of Theorems 3.1 (top left: linear model,
k-grad), 3.2 (top right: linear model, n+k-1-grad), 3.6
(bottom left: GLM, k-grad), and 3.7 (bottom right: GLM,
n+k-1-grad). Gray area represents the region where the theo-
rems do not validate the bootstrap procedures, and the other area
is colored blue of varying lightness according to the lower bound
of iteration ⌧ .

3.2. Linear Model

For simplicity, we start with the linear model. Suppose
that N i.i.d. observations come from a linear model, y =
x

>
✓

⇤ + e, with unknown coefficient vector ✓
⇤ 2 Rd, co-

variate random vector x 2 Rd, and noise e 2 R inde-
pendent of x with zero mean and variance of �

2. We
define ⌃ = E[xx

>]. We consider the least-squares loss
L(✓; z) = L(✓; x, y) = (y � x

>
✓)2/2.

We impose the following assumptions on the linear model.

(A1) x is sub-Gaussian, that is,

sup
kwk21

E
⇥
exp((w>

x)2/L
2)
⇤

= O(1),

for some absolute constant L > 0. Moreover,
1/�min(⌃)  µ for some absolute constant µ > 0.

(A2) e is sub-Gaussian, that is,

E
⇥
exp(e2

/L
02)

⇤
= O(1),

for some absolute constant L
0
> 0. Moreover, � > 0

is an absolute constant.

Under the assumptions, we first investigate the theoretical
property of Algorithm 2, where we apply k-grad along
with the CSL estimator that takes advantage of multiple
rounds of communication. We define

T : =
��pN

�e✓ � ✓
⇤���

1, and (3.1)

cW (↵) : = inf{t 2 R : P✏(W  t) � ↵},

where P✏ denotes the probability with respect to the random-
ness from all the multipliers, W has the same distribution as
W

(b)
in (2.7), and e✓ and ✓̄ are the ⌧ -step and ⌧�1-step CSL

estimators as specified in Algorithm 2. Recall the definition
of bT in (2.4) with b✓ defined in (2.2). Now, we state a result
for k-grad bootstrap procedure with the CSL estimator.
Theorem 3.1 (k-grad, linear model). Suppose (A1)-(A2)

hold, and that we run Algorithm 2 with k-grad method

in linear models. Assume n = d
�n and k = d

�k for some

constants �n, �k > 0. If �n > 1, �k > 3, ⌧ � ⌧min, where

⌧min = 1 +

�
max

⇢
�k + 1

�n � 1
, 1 +

3

�n � 1

�⌫
,

then we have

sup
↵2(0,1)

|P (T  cW (↵))� ↵| = o(1). (3.2)

In addition, (3.2) also holds if T is replaced by bT .

Theorem 3.1 states that under certain conditions, simul-
taneous confidence intervals given by Algorithm 2 with
k-grad method provide sufficient coverage. It also sug-
gests that the bootstrap quantile approximates the quantile
of the centralized estimator b✓, and therefore, the bootstrap
procedure is also statistically efficient.

Next, we present a theorem that establishes the validity
and the efficiency of n+k-1-grad bootstrap procedure in
Algorithm 2. We define

cfW (↵) : = inf{t 2 R : P✏(fW  t) � ↵},

where fW has the same distribution as fW (b) in (2.8).
Theorem 3.2 (n+k-1-grad, linear model). Suppose (A1)-

(A2) hold, and that we run Algorithm 2 with n+k-1-grad
method in linear models. Assume n = d

�n and k = d
�k
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for some constants �n, �k > 0. If �n > 1, �n _ �k > 3,

�n + �k > 4, ⌧ � ⌧min, where

⌧min = 1 +

�
(�k � 1) _ (�n ^ �k) _ 1 + 2

�n � 1

⌫
,

then we have

sup
↵2(0,1)

|P (T  cfW (↵))� ↵| = o(1). (3.3)

In addition, (3.3) also holds if T is replaced by bT .

For a deeper look into the difference between k-grad
and n+k-1-grad, we compare the difference between the
covariance of the oracle score A (defined in (2.5)) and the
conditional covariance of A (for k-grad, defined in (2.7)),
and eA (for n+k-1-grad, defined in (2.8)) conditioning on
the data. These key quantities which determine how well
the bootstrap procedure approximates the distribution of bT .
Conditioning on the data, we have the bounds
������cov✏(A)� cov(A)

������
max
 dke✓(⌧�1) � ✓

⇤k1

+ ndke✓(⌧�1) � ✓
⇤k21 + OP

✓r
d2

k
+

r
d

n

◆
,

(3.4)

���
���
���cov✏( eA)� cov(A)

���
���
���
max
 dke✓(⌧�1) � ✓

⇤k1

+ (n ^ k)dke✓(⌧�1) � ✓
⇤k21 + OP

✓r
d2

n + k
+

r
d

n

◆
,

(3.5)

up to factors that are logarithmic in d, n or k. Compar-
ing the two preceding equations, we first see that overall,
n+k-1-grad (3.5) has a smaller error than k-grad (3.4).
In particular, k-grad requires both n and k to be large,
while n+k-1-grad requires a large n but not a large k. In
addition, a single round of communication could be enough
for n+k-1-grad, but not for k-grad. To see it, if ⌧ = 1,
ke✓(0)�✓

⇤k1 is of order OP (d/
p

n), and the right-hand side
of (3.4) will grow with d; by contrast, the error in (3.5) still
shrinks to zero as long as k ⌧ n.

Remark 3.3. Given fixed d, ⌧ = dlog k/ log ne is enough

for CSL to achieve the optimal estimation error rate (Jordan

et al., 2019). Under same circumstance, bootstrap consis-

tency is warranted at the expense of at most one additional

communication round ⌧min = 1 + blog k/ log nc (Theorem

3.2).

Remark 3.4. To apply BLB in the distributed setting, k . n

is required to achieve the higher order correctness of the

bootstrap procedure (Kleiner et al., 2014). We conjecture

that SDB requires k . n as well, based on the observations

from simulation study in Section 4.2. In contrast to BLB and

SDB, k-grad (if k � d
3
) and n+k-1-grad are both

scalable to k � n, at the cost of a larger ⌧ .

Remark 3.5. The non-asymptotic rate of

sup↵2(0,1) |P (T  cW (↵))� ↵| may be proven to

be polynomial in n and k, with a more delicate analysis.

As an alternative, simultaneous inference can also be

done with the the alternative extreme value distribution

approach, but the convergence rate is at best logarithmic

(Chernozhukov et al., 2013; Zhang & Cheng, 2017).

3.3. Generalized Linear Model

In this section, we consider GLMs, which generate i.i.d.
observations (x, y) 2 Rd ⇥ R. We assume that the loss
function L is of the form L(✓; z) = g(y, x

>
✓) for ✓, x 2 Rd

and y 2 R with g : R ⇥ R ! R, and g(a, b) is three
times differentiable with respect to b, and denote @

@bg(a, b),
�

@
@b

�2
g(a, b),

�
@
@b

�3
g(a, b) by g

0(a, b), g
00(a, b), g

000(a, b)
respectively. We let ✓

⇤ be the unique minimizer of the
expected loss L⇤(✓).

We impose the following assumptions on the GLM.

(B1) For some � > 0, and �0
> 0 such that |x>

✓
⇤|  �0,

sup
|b|_|b0|�+�0

sup
a

|g00(a, b)� g
00(a, b

0)|
|b� b0|  1,

max
|b0|�

sup
a

|g0(a, b0)| = O(1), and

max
|b|�+�0

sup
a

|g00(a, b)| = O(1).

(B2) kxk1 = O(1).

(B3) The smallest and largest eigenvalues ofr2L⇤(✓⇤) and
E
⇥
rL(✓⇤; Z)rL(✓⇤; Z)>⇤ are bounded away from

zero and infinity respectively.

(B4) For some constant L > 0,

max
l

max
q=1,2

E[|h2+q
l |/L

q]+E[exp(|hl|/L)] = O(1), or

max
l

max
q=1,2

E[|h2+q
l |/L

q]+E[(max
l

|hl|/L)4] = O(1),

where h = r2L⇤(✓⇤)�1rL(✓⇤; Z) and hl is the l-th
coordinate.

Assumption (B1) imposes smoothness conditions on the
loss function. For example, the logistic regression model
has g(a, b) = �ab + log(1 + exp(b)). It is easy to see that
|g0(a, b)|  2, |g00(a, b)|  1, |g000(a, b)|  1. Therefore,
Assumption (B1) is met for the loss function of the logistic
regression model. Assumption (B2) imposes boundedness
condition on the input variables. Assumption (B3) is a stan-
dard assumption in the GLM literature. Assumption (B4)
is required for proving the validity of multiplier bootstrap
(Chernozhukov et al., 2013).
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The following two theorems states the validity and the effi-
ciency of k-grad and n+k-1-grad in the GLM. Recall
the definitions of T , bT , W , and fW in (3.1), (2.4), (2.7), and
(2.8), respectively.

Theorem 3.6 (k-grad, GLM). Suppose (B1)-(B4) hold,

and that we run Algorithm 2 with k-grad method in GLMs.

Assume n = d
�n and k = d

�k for some constants �n, �k >

0. If �n > 4, �k > 3, ⌧ � ⌧min, where

⌧min = ⌧0 + max

⇢�
�k � 2

�n � 1
+ ⌫0

⌫
, 1

�
,

⌧0 = 1 +

�
log2

�n � 1

�n � 4

⌫
, ⌫0 = 2� 2⌧0(�n � 4)

�n � 1
2 (0, 1],

(3.6)

then we have (3.2). In addition, (3.2) also holds if T is

replaced by bT .

Theorem 3.7 (n+k-1-grad, GLM). Suppose (B1)-(B4)

hold, and that we run Algorithm 2 with n+k-1-grad
method in GLMs. Assume n = d

�n and k = d
�k for some

constants �n, �k > 0. If �n > 4, �n + �k > 5, ⌧ � ⌧min,

where

⌧min = ⌧0 +

�
(�k � 1) _ (�n ^ �k)� 1

�n � 1
+ ⌫0

⌫
,

⌧0 and ⌫0 defined as in (3.6), then we have (3.3). In addition,

(3.3) also holds if T is replaced by bT .

See Figure 3.1 for a comparison between the results of linear
models and GLMs.

Remark 3.8. In both Theorems 3.6 and 3.7, ⌧0 is the com-

munication rounds needed for the CSL estimator to go

through the regions which are far from ✓
⇤
. As d grows, the

time spent in these regions can increase. However, when n is

large, e.g., n� d
7
, the loss function is more well-behaved,

and the time required reduces to ⌧0 = 1.

4. Experiments
4.1. Accuracy and Efficiency

Fix the total sample size N = 216. Choose d from
{21

, 23
, 25

, 27} and k from {20
, 21

, . . . , 211}. ✓
⇤ is deter-

mined by drawing uniformly from [�0.5, 0.5]d and keep it
fixed for all replications. We generate each covariate vector
x independently from N (0, ⌃) and specify two different
covariance matrices: Toeplitz (⌃l,l0 = 0.9|l�l0|) and equi-
correlation (⌃l,l0 = 0.8 for all l 6= l

0, ⌃l,l = 1 for all l),
and the results for the latter are deferred to the appendix
as they are similar to that under the Toeplitz design. For
linear model, we generate e independently from N (0, 1),
simulate the response from y = x

>
✓

⇤ + e; for GLM, we

consider logistic regression and obtain each response from
y ⇠ Ber(1/(1 + exp[�x

>
✓

⇤])). Under each choice of d

and k, we run k-grad and n+k-1-grad with CSL on
1000 independent data sets, and compute the empirical cov-
erage probability and the average width based on the results
from these 1000 replications. At each replication, we draw
B = 500 bootstrap samples, from which we calculate the
95% empirical quantile to further obtain the 95% simulta-
neous confidence interval (the level 95% is represented by a
black solid line in all figures).

The average widths are compared against the oracle width.
We compute the oracle width (represented by a black dashed
line in all figures) for each model as follows. For a fixed
N and d, we generate 500 independent data sets, and for
each data set, we compute the centralized b✓. The oracle
width is defined as two times the 95% empirical quantile of
kb✓ � ✓

⇤k1.

The empirical coverage probabilities and the average widths
of k-grad and n+k-1-grad are displayed in Figures 4.1
(linear regression with Toeplitz design) and 4.2 (logistic
regression with Toeplitz design). Note that the sub-sample
size n is determined by k as N is fixed, and therefore, a
larger k indicates a smaller n.

When k is small, k-grad fails because k multipliers cannot
provide enough perturbation to approximate the sampling
distribution whereas n+k-1-grad has a good coverage
(Theorems 3.2 and 3.7). When k gets too large (or n gets
too small), the coverage of both algorithms starts to fall, due
to both the deviation of the center (the estimator e✓(⌧)) from
the centralized estimator b✓ and the deviation of the width
from the oracle width [(3.4) and (3.5)]. We also see that the
larger the dimension is, the harder it is for both algorithms
to achieve 95% coverage, and the earlier both algorithm
fail as k grows (or n decreases) [(3.4) and (3.5)]. However,
increasing the number of communication rounds improves
the coverage, and thus, the coverage of both algorithms,
even when k � n. When k is too large (or n is too small;
see, for example, Figure 4.1, n+k-1-grad, d = 27), the
width could go further away from the oracle width as the
number of communication rounds increases, as predicted by
the increase of the right-hand sides of both (3.4) and (3.5)
as n decreases.

The cases of d = 23 and 25 and the equi-correlation case
are deferred to the appendix, as the patterns are similar to
Figure 4.1 and Figure 4.2. Results on pointwise confidence
intervals are also included in the appendix.

4.2. Comparisons to existing methods: BLB and SDB

Note that BLB (Kleiner et al., 2014) and SDB (Sengupta
et al., 2016) do not give a confidence interval but just a
bootstrap estimate of the percentile c(↵) in (2.3). Here, we
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Figure 4.1. Empirical coverage probability (left axis) and aver-
age width (right axis) of simultaneous confidence intervals by
k-grad (top) and n+k-1-grad (bottom) in a linear regression
model with varying dimension (left: d = 21, right: d = 27).
Black solid line represents nominal confidence level (95%) and
black dashed line represents oracle width.

compare the width of k-grad and n+k-1-grad against
BLB and SDB, using Toeplitz design and similar experi-
mentals setting in Section 4.1. We use BLB and SDB to
compute the width of a confidence interval and compare it
against the oracle width, instead of constructing the entire
confidence interval. The results are displayed in Figures
4.3.

SDB always has a significant deviation from the oracle
width for small k and has the same behavior as BLB when k

is large. The width of n+k-1-grad is closer to the oracle
width than k-grad, as discussed in Section 4.1.

As n+k-1-grad and BLB appear to be the two best-
performing methods, we compare the two into more details.
For linear regression, n+k-1-grad performs as well as
BLB, except in a few cases of large k. For logistic regres-
sion, the width of both n+k-1-grad and BLB deviate
from the oracle width for large k, but n+k-1-grad mostly
outperforms BLB, because n/k is too small for BLB, while
n+k-1-grad improves as the number of communications
⌧ increases.

4.3. Computational cost

Table 1 shows the computational cost of different boot-
strap methods. The average run time (in seconds) is com-
puted with 50 independent runs, and in each run a boot-
strap method is carried out for linear regression model
with Toeplitz design. We set ⌧ = 1 for k-grad and
n+k-1-grad.
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Figure 4.2. Empirical coverage probability (left axis) and aver-
age width (right axis) of simultaneous confidence intervals by
k-grad (top) and n+k-1-grad (bottom) in a logistic regres-
sion model with varying dimension (left: d = 21, right: d = 27).
Black solid line represents nominal confidence level (95%) and
black dashed line represents oracle width.

Both BLB and SDB require each worker node to repeatedly
resample and re-fit the model, so we expect they require
more time. Particularly, Table 1 shows that BLB is much
more computationally expensive than the others, and its
computational time greatly increases as k and d grow. SDB
has much lower computational time than BLB, but the com-
putational time grows rapidly with the number of machines.
On the other hand, computational time of k-grad and
n+k-1-grad remains low as k grows, since the bootstrap
is done only on the master node. We have even observed
a decrease in the run time as k increases for k-grad and
n+k-1-grad, which show that our methods can better
take advantage of parallelism.

Table 1. Average run times (in seconds) of k-grad,
n+k-1-grad, SDB, and BLB with different k and d
(top: d = 23, bottom: d = 27).

Method k = 22 k = 26 k = 29

k-grad 0.29 0.29 0.30
n+k-1-grad 0.85 0.45 0.45
SDB 0.08 0.30 5.39
BLB 22.66 35.12 159.88

Methods k = 22 k = 26 k = 29

k-grad 0.82 0.51 0.50
n+k-1-grad 1.49 0.67 0.64
SDB 3.44 3.83 12.66
BLB 981.17 842.50 1950.91
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Figure 4.3. Comparison of k-grad, n+k-1-grad, BLB, and
SDB in average width of simultaneous confidence intervals in lin-
ear regression (top) and logistic regression (bottom) with varying
dimension (left: d = 25, right: d = 27). Black dashed line
represents oracle width.

5. Discussions
We propose two communication-efficient and computation-
efficient bootstrap methods, k-grad and n+k-1-grad,
for simultaneous inference on distributed massive data. Our
methods are robust to the number of machines. The ac-
curacy and efficiency of the algorithms are theoretically
proven and validated through simulations. Furthermore,
our methods can potentially be extended for applications to
high-dimensional (generalized) linear models and graphical
models, which we discuss below.

5.1. Extension to High-Dimensional Models

We need to overcome the following two challenges for the
high dimension extension (d > n). First, none of the exist-
ing high-dimensional distributed estimators enjoys a sample-
average-like expression as in (2.5), when `1 regularization
is used to induce sparsity. To meet this challenge, we can de-
bias some distributed estimator (e.g., Wang et al. (2017)) by
adapting approaches such as Van de Geer et al. (2014) to the
distributed framework while maintaining communication ef-
ficiency. Second, the sample-average-like expression cannot
be trivially approximated as done in the low-dimensional
regime, as the local sample Hessian matrix is not invertible.
We can apply approaches such as nodewise lasso (Van de
Geer et al., 2014) on local sample to acquire approximate
inverse Hessian matrices.

5.2. Applications in Graphical Models

Chang et al. (2018) and Yu et al. (2019) adopted Gaussian
approximation and multiplier bootstrap to graphical models,
based on sample-average-like approximations (see Equation
(12) in Chang et al. (2018) and Equation (15) in Yu et al.
(2019)). Therefore, we conjecture that our methods can be
applied to the graphical models in a communication-efficient
way under the distributed framework, by communicating
vectors from the sample-average-like approximations, anal-
ogously to communicating gradients in our paper.
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