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A. Vector Space of Invariant and Equivariant
Linear Graph Operators

Denote with Γ(k) the set of all partitions of {1, . . . , k}.
Bell’s number Bell(k) represents the cardinality of Γ(k).
Given a partition γ ∈ Γ(k), we say that multi-index a ∈
{1, . . . , n}k complies with γ if, for any i, j ∈ {1, . . . , n},
we have that ai = aj if and only if i, j belong to the same
set in γ.

For every γ ∈ Γ(k), tensor Iγ ∈ T k is defined as (Iγ)a = 1
for any a complying with γ, and 0 otherwise. With the
scalar tensor product

I ·T :=
∑

a∈{1,...,n}k
IaTa ∈ R,

for any I,T ∈ T k. We obtain that basis {Iγ}γ∈Γ(k) is
orthogonal, because the locations in which the tensors are
non-null are disjoints.

Similarly, for every γ ∈ Γ(k + l), tensor Eγ ∈ T k+l is
defined as (Eγ)a = 1 for any a complying with γ, and 0
otherwise. Here the tensor product E·T between E ∈ T k+l

and T ∈ T k is defined as

E ·T :=
∑

b∈{1,...,n}l

∑
a∈{1,...,n}k

Eb,aTa ∈ T l.

Again, for different γ, γ′, the basis elements Eγ and Eγ′

are orthogonal.

It is not rare that graphs come with both node and edge
attributes, say Fnode- and Fedge-dimensional, respectively.
In this case one can create a the Cartesian product space
of dimension F = Fnode + Fedge, and represent any n-
node graph g as a tensor Ag ∈ T 2 × RF . Accordingly, an
equivariant map is function f : T k × RF → T l × RF ′

, so
that f(π ?T) = π ? f(T) for every π ∈ Sn, and where π
is now acting on all components, but the last one. Similarly,
we extend the definition of invariant maps.

We refer the reader to the original paper for a detailed de-
scription (Maron et al., 2019b).

B. Proofs
B.1. Proof of Lemma 1

The proof employs the functions f⊗ in the form

f⊗(g) =

S∑
s=1

H∑
ks

[
ρe

(
F

(s,1)
2,ks,1

(Ag;θs,1)
)
⊗ . . .

· · · ⊗ ρe
(
F

(s,T )
2,ks,T

(Ag;θs,1)
)

;θH

]
+ b

with functions {H(s)
i } and {F (s,t)

2,j } linear invariant and
equivariant functions as defined in (2), but without the bias

terms. We denote with N⊗(ρe) the set of such functions
letting S, T vary in N, b ∈ R, and for any (k1,1,θs,t,θH) ∈
W . We also denote with N (ρe) the restriction of N⊗(ρe)
to T = 1, which is contained in the closure under finite
sums of set F(id, ρe), where id : R → R is the identity
function.

1) Keriven & Peyré (2019) showed thatN⊗(σ), with σ the
sigmoid activation, separates G [Lem. 2] and that N (ρe) is
dense in N⊗(σ) for any squashing function ρe [Lem. 3].
Since N (ρe) ⊆ F(id, ρe), then F(id, ρe,W) is dense on
N⊗(ρe), and it derives that F(id, ρe,W) separates points
of G, as well. We conclude that for any pair of distinct
graphs g1 6= g2 in G, there is a function f̃ ∈ F(id, ρe,W),
such that f̃(g1) 6= f̃(g2).

2) Notice that, for any a, b ∈ R, fa,b(·) := af̃(·) + b ∈
F(id, ρe,W), and when a 6= 0 we also have fa,b(g1) 6=
fa,b(g2); therefore, we can push fa,b(g1) and fa,b(g2) to
any desired location. Let δ := f̃(g2) − f̃(g1) > 0 and,
without loss on generality, assume that ρi(0) 6= ρi(1) (in
fact, ρi is non-constant). With the choice a = 1

δ and b =

− f̃(g2)
δ , we obtain that fa,b(g2) = 0 and fa,b(g1) = 1

and ρi(fa,b(g2)) 6= ρi(fa,b(g1)), which proves that for any
g1 6= g2 there exists a function f ∈ F(ρi, ρe,W) such that
f(g1) 6= f(g2).

B.2. Proof of Theorem 1

1) Since the δ(g1, g2) := (ψ(g1) − ψ(g2))2 ≥ 0,
δ(g1, g2) = δ(g2, g1) and δ(g1, g1) = 0 for any g1, g2 ∈
G, then the same properties hold also for dP (g1, g2) =√

E[δ(g1, g2)].

2) The Cauchy-Schwarz inequality

|E[X1X2]|2 ≤ E[X2
1 ]E[X2

2 ], (19)

holds for any pair of random variables X1, X2; in fact, no-
tice that

0 ≤ 1

2
E

[(
X√
E[X2]

− Y√
E[Y 2]

)2
]

= 1− E [XY ]√
E[X2]

√
E[Y 2]

;

3) By (19), we have

E[(X1 +X2)2] ≤ E[X2
1 ] + 2

√
E[X2

1 ]E[X2
2 ] + E[X2

2 ]

=

(√
E[X2

1 ] +
√
E[X2

2 ]

)2

. (20)

The triangular inequality follows from the choice X1 =
ψ(g1;w)− ψ(g3;w) and X2 = ψ(g3;w)− ψ(g2;w).
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4) Finally, the identifiability property (5) is proved by the
following Lemma 2.

Lemma 2. Under Assumptions (A1) and (A2), we have that
for any pair of graphs g1, g2 ∈ G

g1 = g2 ⇐⇒ dP (g1, g2) = 0.

Proof. Denote withWk the parameter setW in which the
hidden tensor order is fixed to k.

1) Assumption (A1) enables Lemma 1, therefore for any
pair g1, g2 ∈ G with g1 6= g2 there exists a parameter
configuration w̃ ∈ W so that ψ(g1, w̃) 6= ψ(g2, w̃).

2) Again from Assumption (A1), for any k ∈ N, we have
that ψ(g; ·) :W → R limited toWk, is continuous, as it is
the composition of linear operators and continuous activa-
tions ρi, ρe. This holds in particular for k̃, the hidden tensor
order associated with w̃. Therefore, there is a neighbour-
hood Ug1,g2(w̃) of w̃ such that

|ψ(g1,w)− ψ(g2,w)| ≥ εg1,g2
2

, ∀w ∈ U(w̃),

with εg1,g2 = |ψ(g1; w̃)− ψ(g2; w̃)| > 0.

3) Assumption (A2) ensures that supp(P ) = W , and
that P (Ug1,g2(w̃)) is strictly positive, independently on the
choice of graphs g1, g2. We conclude that for any pair g1, g2

of distinct graphs,

dP (g1, g2) ≥ P (Ug1,g2(w̃))
εg1,g2

2
> 0.

C. Limiting the Order of the Hidden Tensor:
Weighted GRNF

Allowing order k to grow indefinitely might result in an
infeasible computation load. In the following section, we
show how to cope with this problem by defining a dP and
κP over a distribution P , while sampling parameter w from
a different and more convenient one, P .

Limiting k to be less or equal than k∗ results in dis-
tance dP (·, ·) which is not metric, in general, and one
can build practical counterexamples. Consider a P with
supp(P ) =W , and assume p to be the marginal probability
mass function associated to k. Consider also a nonempty
subset K ⊆ N and define the probability function P with
marginal probability mass function

p̄(k) =
p(k)

P (K)
, k ∈ K, and 0 otherwise

where P (K) is the normalizing factor
∑
l∈K p(l). We obtain

that approximating κP and d2
P by sampling the parameters

w from P , and considering the following modified GRNF

z( · ;W) :=
√
P (K) z( · ;W), (21)

yields a practical alternative, as shown in the following
lemma. We call z in (21) bounded-order GRNF to distin-
guish it from the plain GRNF (10).

Lemma 3. Consider the bounded-order GRNF (21). If ρi
is bounded by a constant Cρi , then

E
[
|z(g1;W)− z(g2;W)|22

]
{
≥ dP (g1, g2)2 − (1− Pp(K)) 4C2

ρi

≤ dP (g1, g2)2.

Proof. 1) Let us start with a generic random variable X .

Ep [X] =

∞∑
k=1

p(k)X =
∑
k∈K

p(k)X =
1

Pp(K)

∑
k∈K

p(k)X

=
1

Pp(K)

∞∑
k=1

p(k)X −
∑
k 6∈K

p(k)X

=
1

Pp(K)
Ep[X]− 1

Pp(K)

∑
k 6∈K

p(k)X.

2) Substituting X = (z(g1;w)− z(g2;w))2, and then tak-
ing the expectation with respect to the joint P , we get
EP [X] ≤ dP (g1, g2)2. Finally, being ρi bounded by a
constant Cρi , we get X ≤ 4C2

ρi , hence the thesis.

We stress that, despite the hidden orders are sampled from
the bounded-order distribution p, the result relates to dis-
tance dP (·, ·), which is with respect to the original distribu-
tion P with supp(P ) =W .

As we can see, completely avoiding certain hidden ten-
sor orders k comes with the price of biased estimations,
which does not ensure convergence in (13) and (11). One
can obtain consistent approximations (13) and (11) while
mitigating the computational and memory burden by select-
ing probability distribution P , which down-weights large
hidden-tensor orders maintaining supp(P ) = W . We can
also make a step further and let the entire distribution P vary.
We result in the Weighted GRNF defined in (14). This type
of embedding is a generalization of both the plain GRNF
(10) and the bounded-order GRNF (21).

We prove that a generalized version of Theorem 2 that ap-
plies to the weighted GRNF.
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Theorem 3. Consider a distribution P over W , with
supp(P ) =W . If there exists a positive constant CG such
that the fourth momentum

Ew∼P

[
p(w)2

p(w)2
ψ(g;w)4

]
< CG

for any choice of g ∈ G, then for any value ε > 0 and
δ ∈ (0, 1), when M ≥ 16CG

δ ε2 we have

P
(∣∣∣|z(g1)− z(g2)|22 − dP (g1, g2)2

∣∣∣ ≥ ε) ≤ δ.
Proof. Following the rationale of the proof of Theorem 2,
we prove that E[|z(g1)− z(g2)|22] = dP (g1, g2)2 and that
E[|z(g1)− z(g2)|22] scales as O(M−1). Finally, we apply
the Chebyshev’s inequality.

1) Denote with ∆(w) = |ψ(g1;w)− ψ(g2;w)|22.

E
P

M

[
|z(g1)− z(g2)|22

]
=

=

M∑
m=1

EP

[
1

M

p(wm)

p(wm)
∆(wm)

]

=
1

M

M∑
m=1

∫
W

p(w)

p(w)
∆(w) dP (w)

=

∫
W
p(w)

p(w)

p(w)
∆(w) dw

= EP [∆(w)] = dP (g1, g2)2

This holds thanks to the fact that p(w) 6= 0 for every w ∈
W , otherwise we would end up with a result similar to
Lemma 3.

2) The variance can be bound in the same manner of (12),
obtaining

Var
[
|z(g1)− z(g2)|22

]
=

1

M
Var

[
p(w)

p(w)
(ψ(g1;w)− ψ(g2;w))

2

]
≤ 16CG

M

3) Chebyshev’s inequality gives us the bound

P
P

M

(∣∣∣|z(g1)− z(g2)|22 − dP (g1, g2)
∣∣∣ ≥ ε) ≤ 16CG

M ε2

from which the thesis follows.

D. Computational Complexity
Let us consider M random features with hidden tensor of
order k. The computational complexity of (10) is given by:

• Bell(2 + k) operations of the form EγT, each with
cost O(n2+k F Fh);

• then, we perform M linear combinations
∑
γ θγIγT

and addition of the bias term, each with cost
O((2Bell(2 + k) + 1)nk Fh);

• in order to compute Hk(T) (2) for each of the M
features, we perform Bell(k) operations of the form
IγT , which scale as O(nk · Fh). Considering also the
linear combination

∑
γ θγIγT and the bias term θ′, we

have O(Bell(k) (nk Fh + 1) + 1).

The total computational complexity for creating a graph
representation is:

O(Bell(2 + k)n2+k F Fh)

+O(M(2Bell(2 + k) + 1)nk Fh)

+O(MBell(k) (nk Fh + 1) +M).

which is equivalent to

O
(
Bell(2 + k)n2+k F Fh

+M nk Fh (Bell(2 + k) + Bell(k))
)
.

E. Implementation Details
GRNF implementation A PyTorch (Paszke et al.,
2019) implementation of GRNF is available at the
following link https://github.com/dzambon/
graph-random-neural-features and adopts the
efficient version for k = 1, 2 described in (Maron et al.,
2019b). When not specified, ρe(x) = max{0, x} is the
rectified linear unit, ρi(x) = tanh(x) is the hyperbolic
tangent, Fh = 4 features in the hidden tensor, the
probability of having order k = 1 and k = 2 in the hidden
tensor is 2/3 and 1/3, respectively, and the weights θF , θH
drawn from a standard Gaussian distribution. The provided
implementation can run on ordinary laptops.

Replicability of the experiments The source code for
running all the synthetic experiments is available at the
GRNF repository. All the other experiments are performed
with the framework provided by Errica et al. (2020) at
the repository https://github.com/diningphil/
gnn-comparison. All competitor models considered in
our study are set up with the hyper-parameters suggested in
(Errica et al., 2020).

https://github.com/dzambon/graph-random-neural-features
https://github.com/dzambon/graph-random-neural-features
https://github.com/diningphil/gnn-comparison
https://github.com/diningphil/gnn-comparison

