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Abstract 

This supplementary material contains technical details and additional numerical results of the main article ‘A 
Flexible Latent Space Model for Multilayer Networks’. Section A provides the proof of Thereom 1 in the main 
article, which derives the upper bound of the overall maximum likelihood estimators of the model. The proof of 
Theorem 2, that builds the upper bound of the estimation error of shared latent variables U , is given in Section B. 
Section C presents the proof of Proposition 1 on identifiability conditions of the model. In Section D we provide 
additional simulation results under other settings of n, R and k to further support our theoretical discoveries. 

A. Proof of Theorem 1 

For any parameter T ∈ F , where the definition of F is given in Section 4, the objective function is defined as 

l(T ) = − log P (A|T ) 
R n n n � �oXXX 

(r) (r) (r)
= − A Θ + log 1 − σ(Θ )ij ij ij 

(S1)r=1 i=1 i=1 

R n n n oXXX 
(r) (r) (r)

= − A Θ − b(Θ ) ,ij ij ij 
r=1 i=1 i=1 

where b(x) = log(1 + exp(x)). 

Denote T? ∈ F be the true parameter value, and Tb is obtained from (4), then 

l(Tb) − l(T?) ≤ 0. (S2) 

Further, we have 
l(T?) − l(Tb) XR n n n � � � �oXX 

(r) (r) (r) (r) (r)
= A Θb − Θ − b(Θb ) − b(Θ )ij ij ?,ij ij ?,ij 

r=1 i=1 j=1 

R n n � �� �XXX (S3)(r) (r) (r) (r)
= A − b0(Θ ) Θb − Θij ?,ij ij ?,ij 

r=1 i=1 j=1 

R n n n � �oXXX 
(r) (r) (r) (r) (r)− b(Θb ) − b(Θ ) − b0(Θ ) Θb − Θ .ij ?,ij ?,ij ij ?,ij 

r=1 i=1 j=1 
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By Taylor’s expansion, the last expression in (S3) can be expressed as 

R n n R n nXXX� �� � XXX 1 � �2
(r) (r) b (r) (r) 

b00(e (r) b (r) (r)
A − b0(Θ ) Θ − Θ − Θ ) Θ − Θij ?,ij ij ?,ij ij ij ?,ij2 

r=1 i=1 j=1 r=1 i=1 j=1 
(S4)

R n nXXX� �� � 1(r) (r) b (r) (r) 
b00(v)k b≤ A − b0(Θ ) Θ − Θ − min T − T?k2 

F ,ij ?,ij ij ?,ij 2 |v|≤µ 
r=1 i=1 j=1 

(r) (r) (r)where Θe 
ij = ηij Θb 

ij + (1 − ηij )Θ?,ij for some ηij ∈ (0, 1). By (S2), (S3) and (S4), we have 

R n n � �� �XXX2 (r) (r) (r) (r)kTb − T?k2 ≤ A − b0(Θ ) Θb − ΘF ij ?,ij ij ?,ijmin|v|<µ b00(v) r=1 i=1 i=1 (S5)D E2 
= Z, Tb − T? . 
min|v|<µ b00(v) 

[Z(1); Z(2) ; Z(R)] ∈ Rn×n×R (r) (r)Here we define Z = ; · · · as a three-way tensor with entries Zij = Aij − b0(Θ?,ij ), for 
i, j = 1, . . . , n, r = 1, . . . , R. 

; H(2)For notational simplicity, we decompose each T ∈ F into two parts: T = H + M. Here, H = [H(1) ; · · · ; H(R)] ∈ 
Rn×n×R α(r)1> α(r)> ∈ Rn×nwith H(r) = + 1n is the term related to node degree heterogeneity parameters, andn 
M = [UΛ(1)U>; UΛ(2)U>; · · · ; UΛ(R)U>] ∈ Rn×n×R is the term related to shared latent representations. Therefore, the D E 
quantity Z, Tb − T? in (S5) can be decomposed as D E 

Z, Tb − T? D E D E 
= Z, b + M−M?H−H? Z, c 

(S6) 
R D E D EX 

(r) (r)>
Z(r) α(r)1> α(r)> − α 1> = , b + 1n b − 1nα? + Z, c .? M−M?n n 

r=1 

We bound two summands in (S6) respectively. For any two matrices A and B, we have |hA, Bi| ≤ kAk2kBk? ≤p
kAk2 rank(B)kBkF . The definition of Z implies that entries in Z are independent, mean-zero sub-gaussian random 
variables with E[exp(tZ(r)

)] ≤ exp(t2/8). Therefore, we can apply Lemma 1 (given in Section A.1) to Z(r) for any ij √ 
given r, and obtain that with probability at least 1 − exp(−c1n), kZ(r)k2 ≤ C√1 

0 n, for absolute constants c1 and C1 
0 . 

Then with probability at least 1 − R exp(−c1n), we have maxr(kZ(r)k2) ≤ C 0 n. Thus, with probability greater than 1 
1 − R exp(−c1n), the first term in (S6) can be bounded as 

R D EX 
(r) (r)>

Z(r) α(r)1> α(r)> − α, b + 1n b ? 1
> − 1nα?n n 

r=1 

RX 
(r) (r)>≤2 kZ(r)k2kαb(r)1> + 1nαb(r)> − α? 1

> − 1nα? kFn n 
r=1 (S7)

R√ X 
(r) (r)>≤2C 0 n kαb(r)1> + 1nαb(r)> − α? 1

> − 1nα? kF1 n n 
r=1 

R√ X 
(r) √ √ 

Rk b=2C1 
0 n kHb(r) −H? kF ≤ 2C1 

0 n H−H?kF . 
r=1 � � 

(r) (r)>The first inequality in (S7) is by the fact that rank αb(r)1> + 1nαb(r)> − α? 1
> − 1nα? ≤ 4.n n 

Next we bound the second term in (S6). For any two three-way tensors A and B with same dimensions n1 × n2 × n3, we√
have |hA, Bi| ≤ kAk2kBk?. The nuclear norm of B, kBk? is further bounded by r1r2kBkF , where r1 is the rank of the 
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matrix that stacks B along its first mode into a matrix of size n1 × (n2n3), and similarly, r2 is the rank of the matrix that 
stacks B along its second mode into a matrix of size n2 × (n1n3) (Wang et al., 2017; Wang & Li, 2018). For any tensor 

[UΛ(1)U>; UΛ(2)U> ; UΛ(R)U>] ∈ Rn×n×RM = ; · · · , stacking it along its first mode, we could obtain an n × nR 
= [UΛ(1)U> UΛ(2)U>matrix M1 · · · UΛ(R)U>]. Since 

= [U Λ(1)U> UΛ(2)U> UΛ(R)U>] = U [Λ(1)U> Λ(2)U> Λ(R)U>],M1 · · · · · · 

so rank of M1 is k. Since each layer in√M is symmetric, stacking the tensor along its second mode similarly yields a rank k 
matrix. This leads to kM − Mkc 

? ≤ 2k · 2kk c = 2kk√ 
cM − MkF M − MkF . Additionally, applying Lemma 1 to Z, we 

have with probability at least 1 − exp(−c2(2n + R)), kZk2 ≤ C 0 2n + R for absolute constants c2 and C2 
0 . Therefore,2 

the second term in (S6) can be bounded as D E √ 
Z, c ≤ kZk2k c M−M?kF 2n + Rk c (S8)M−M? M−M?k? ≤ 2kkZk2k c ≤ 2kC 0 M−M?kF2 

with probability at least 1 − exp(−c2(2n + R)). 

Plugging (S6), (S7) and (S8) into (S5) yields D E2 kTb − T?k2 ≤ Z, Tb − T?F min|v|<µ b00(v) � � (S9) 
≤

√ 
nRk b 

√ 
M−M?kF 

2
2C 0 H−H?kF + 2kC

0 2n + Rk c .1 2min|v|<µ b00(v) 

Lemma 2 in Section A.1 implies that k b ≤ kTb − T?kF , so does k c ≤ kTb − T?kF . Dividing both H −H?kF M−M?kF 

sides in (S9) by kTb − T?kF leads to � �√ √ 
kTb − T?kF ≤ 2C 0 nR + 2kC 0 2n + R . (S10)

2 
1 2min|v|<µ b00(v) 

Taking the square of both sides, we can conclude that with probability at least 1 − R exp(−c1n) − exp(−c2(2n + R)), we 
have 

kTb − T?k2 ≤ C1nR + C2k
2(2n + R), (S11)F 

where C1 = 32(C1 
0 )2/(min|v|<µ b

00(v))2 and C2 = 32(C2 
0 )2/(min|v|<µ b

00(v))2 . 

A.1. Lemmas for Theorem 1 

This subsection includes lemmas that are used in the proof of Theorem 1. 
Let X ∈ Rn1×···×nKLemma 1 (Theorem 1 in Tomioka & Suzuki (2014)). be a K-way tensor. Assume each element 

Xi1...ik is independent, zero mean and satisfies E[etXi1...ik ] ≤ exp (σ2t2/2). Then there exist constants c and C which P 
only depend on σ2 and K such that with probability at least 1 − exp(c k nk), the spectral norm of X is bounded by qPKkX k2 ≤ C k=1 nk. 

T H + cLemma 2. For Tb , T? ∈ F , when decomposing b = b M and T? = H? + M?, we have the following identity: 

k b = k bT − T?k2 H−H?k2 
F + kM − Mc 

?k2 
F .F 

Proof. Since for any T ∈ F we require JU = U , then U>1n = 0. Then we have 

M(r)1n 
(r)c = M? 1n = 0, 

and 
(r)M(r)1> c = 1>M? = 0n n 

for r = 1, . . . , R. Therefore, 
(r) (r) (r)kΘb (r) − Θ k2 kF 

2 + k c k2 (S12)? = kHb(r) −H? M(r) −M? F .F 

Summing (S12) over r gives 
kTb − T?k2 H−H?k2 M−M?k2 

F .= k b 
F + k c 

F 
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B. Proofs of Theorem 2 and Corollary 1 

Theorem 1 and Lemma 2 imply that with probability at least 1 − R exp(−c1n) − exp(−c2(2n + R)), 

M−M?k2 ≤ kTb − T?k2 ≤ C1nR + C2k
2(2n + R),k c 

F F 

or, 
RX 

(r)1 kMc(r) −M? k2 ≤ C1n + (2 + δ)C2k
2nR−1 = C1n + Ce2k2nR−1 (S13)FR 

r=1 

where Ce2 = C2(2 + δ) by the assumption that R ≤ δn. Therefore, there must exist a r0 ∈ {1, · · · , R}, such that 

kMc(r0 ) −M? 
(r0)k2 ≤ C1n + Ce2k2nR−1 . (S14)F 

The assumptions σmin(Λ? 
(r0)) ≥ κ and U? 

>U? = nIk imply that 

(r0) (r0 )σk(M? ) = σk(U?Λ? U? 
>) ≥ nκ. (S15) 

We also note that 
σk+1(M? 

(r0)) = 0 (S16) 

since M? is of rank k. 

Combining (S13) to (S16), together with Davis-Kahan Theorem (Davis & Kahan, 1970; Yu et al., 2015), we have 

n o (r0) 2 2R−1M(r0) −M C2k
2n8nk c 

? k2 
F C1n + e 

min kUb − U?Ok2 ≤ ≤ 8 = 8κ−2(C1+Ce2k2R−1).F (r0) (r0)O:O>O=OO>=Ik {σk(M? ) − σk+1(M? )}2 κ2n2 

(S17) 
This leads to the results in Theorem 2. 

For Corrollary 1, note that when α(r) = 0 for r = 1, . . . , R, we have T = M. Then all the terms related to the node degree 
heterogeneity parameters in the calculations in Section A would be dropped and we would obtain 

kTb − T?k2 ≤ Ck2(2n + R),F 

with probability 1 − c exp (2n + R) for constants c and C that only depend on µ. Applying the same procedure in the proof 
of Theorem 2, we have the results in Corrollary 1. Also note that in the proof of Theorem 1, we only utilize the assumption 
that JU = U to prove Lemma 2. When T = M, we no longer need Lemma 2 to obtain (S10) from (S9). Therefore, the 
assumption JU = U can be disregarded in the corollary. When fitting logistic RESCAL model in real data applications, we 
also do not put such constraints on the estimated parameters. 

C. Proof of Proposition 1 

This section shows the identifiability conditions of model (1), as proposed in Proposition 1. To prove Proposition 1, we need 
the following lemma. 

Lemma 3. For any β = (β1, · · · , βn)
> ∈ Rn, if β1>1n + 1nβ

>1n = 0n, then β = 0n.n 

Proof. The condition can be wriiten as ⎡ ⎤ ⎡ P ⎤ ⎡ ⎤n
β1 i=1 βi 0 ⎢ . ⎥ ⎢ . ⎥ ⎢ . ⎥ 

n ⎣ . ⎦ + ⎣ . ⎦ = ⎣ . ⎦ , (S18). . .Pn
βn i=1 βi 0 Pnwhich implies β1 = · · · = βn = − 1 βi. Thus we must have β = 0n. n i=1 
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By Assumption A1, we have JU = U , JU† = U†, where J = In −1n1>/n. Therefore, UΛ(r)U>1n = U†Λ
(r)

U>1n = 0nn † † 
for r = 1, · · · , R. Suppose two sets of parameters yield the same edge connection probabilities, i.e., 

(r) (r)> (r)
α(r)1> α(r)> + UΛ(r)U> 1> U>+ 1n = α + 1nα + U†Λ (S19)n † n † † † 

for r = 1, . . . , R. Right multiplying 1n to both sides in (S19) gives 

α(r)1> α(r)>1n 
(r)
1> (r)>

1n + 1n = α 1n + 1nα 1n, (S20)n † n † 

or 
(r) (r)

(α(r) − α )1>1n + 1n(α
(r) − α )>1n = 0n. (S21)† n † 

Applying Lemma 3, we have 
= α(r)α

(r) 
, r = 1, . . . , R. (S22)† 

(S19) and (S22) together imply that 
U†Λ† 

(r) 
†U
> = UΛ(r)U> , 

for r = 1, . . . , R. This can be further written as ⎡ ⎤⎡⎤ 
(1) 

UΛ(1)U†Λ†⎢⎢⎣ 
⎥⎥⎦U> 

† = ⎢⎣ ⎥⎦. . . 
. . . U> . (S23) 

(R) UΛ(R)
U†Λ† 

Note that U>U = nIk. Left multiplying U> to the both sides of (S23) gives ⎤⎡ ⎤⎡ 
U>U†Λ

(1) 
Λ(1) 

†⎢⎢⎣ 
⎥⎥⎦U> 

† = n ⎢⎣ ⎥⎦. . . 
. . U> . (S24). 

X 

(R) Λ(R)
U>U†Λ† 

Λ(R)] ∈ Rk×(kR)Further multiplying both sides in (S24) by [Λ(1) Λ(2)] · · · , we have XR R
( () ) 

(UΛ(r))>U†Λ
(r) 

U> = n (Λ(r))2 U> . (S25)† † 
r=1 r=1 o onPR 

nPR
(Λ(r))2 is a positive semi-definite matrix in Rk×k . Assumption A3 implies that (Λ(r))2 is of full rank, r=1 r=1 

and thus invertible. Therefore, (S25) is equivalent to ( )−1 ( )XXR R 

n 
r=1 r=1 onPR 

o−1 nPR1 (r)
(Λ(r))2 (UΛ(r))>U†Λ n r=1 r=1 † 

1 
(Λ(r))2 (UΛ(r))>U†Λ

(r) 
U> = U> . (S26)† † 

∈ Rk×k, then (S26) becomes Let O = 

OU> = U> . (S27)† 

Furthermore, (S27) implies that 
OU>U†O

> = U>U, O(nIk)O
> = nIk.† 

Thus we conclude U† = UO for some O such that OO> = O>O = Ik. 

Lastly, for r = 1, · · · , R, we have 

U†Λ
(r)

U> = UΛ(r)U> = U†O
>Λ(r)OU> ,† † † 

so 
(r) (r)

U>U†Λ U>U† = U>U†O
>Λ(r)OU>U†, or (nIk)Λ (nIk) = (nIk)O

>Λ(r)O(nIk),† † † † † † 

which concludes 
Λ† 
(r) 
= O>Λ(r)O. 
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D. Additional Simulation Results 

In this section we provide simulation results under the setting that n = 200, R = 50, k = 2 and n = 400, R = 100, k = 4. 
Figure S1 and Figure S2 show similar patterns of parameter estimation as we have discussed in the main article. For the 
estimation of the overall connection probabilities {Θb (r)}R0 , it is bounded below mainly due to the irreducible estimation r=1 
error induced by the layer-specific parameters α(r)s. As for the estimation of shared latent variables U , after taking the 
log-log transformation of both relative error of Ub and R0, the curves can be fitted well by lines with slopes close to −1. 
This again demonstrates that the upper bound given in Theorem 2 is dominated by the term Ce 

2R
−1, and the estimation error 

of U is inversely proportional to the number of layers used for estimation. 
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Figure S1. (a) and (b): Estimation error of parameters when n = 200, R = 50 and k = 2. Each light blue curve corresponds to one 
replication; the black curve corresponds to the average of all replications. The red dashed line corresponds to the line whose intercept and 
slope equal to the average fitted intercepts and slopes. (c): Histogram of all fitted slopes. 
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Figure S2. (a) and (b): Estimation error of parameters when n = 400, R = 100 and k = 4. Each light blue curve corresponds to one 
replication; the black curve corresponds to the average of all replications. The red dashed line corresponds to the line whose intercept and 
slope equal to the average fitted intercepts and slopes. (c): Histogram of all fitted slopes. 

References 

Davis, C. and Kahan, W. M. The rotation of eigenvectors by a perturbation. iii. SIAM Journal on Numerical Analysis, 7(1): 
1–46, 1970. 



Supplementary Materials 

Tomioka, R. and Suzuki, T. Spectral norm of random tensors. arXiv preprint arXiv:1407.1870, 2014. 

Wang, M. and Li, L. Learning from binary multiway data: Probabilistic tensor decomposition and its statistical optimality. 
arXiv preprint arXiv:1811.05076, 2018. 

Wang, M., Duc, K. D., Fischer, J., and Song, Y. S. Operator norm inequalities between tensor unfoldings on the partition 
lattice. Linear algebra and its applications, 520:44–66, 2017. 

Yu, Y., Wang, T., and Samworth, R. J. A useful variant of the davis–kahan theorem for statisticians. Biometrika, 102(2): 
315–323, 2015. 


