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Abstract has a distinct edge type defined through a type of relation-

Entities often interact with each other through 
multiple types of relations, which can be repre-
sented as multilayer networks. Multilayer net-
works among the same set of nodes usually share 
common structures, while each layer can also pos-
sess its distinct node connecting behaviors. This 
paper proposes a flexible latent space model for 
multilayer networks for the purpose of capturing 
such characteristics. Specifically, the proposed 
model embeds each node with a latent vector 
shared among layers and a layer-specific effect for 
each layer; both elements together with a layer-
specific connectivity matrix determine edge for-
mations. To fit the model, we develop a projected 
gradient descent algorithm for efficient parameter 
estimation. We also establish theoretical proper-
ties of the maximum likelihood estimators and 
show that the upper bound of the common latent 
structure’s estimation error is inversely propor-
tional to the number of layers under mild condi-
tions. The superior performance of the proposed 
model is demonstrated through simulation studies 
and applications to two real-world data examples. 

1. Introduction 
Network data represent relationships among entities and are 
ubiquitous in various fields, such as social media, neuro-
science, and computer science (Newman, 2010; Kolaczyk & 
Csárdi, 2014). In many applications, individuals often inter-
act with each other through more than one type of relations. 
For example, people can be coworkers or friends (Lazega 
et al., 2001); or interactions among individuals can hap-
pen through social activities or money exchanges (Banerjee 
et al., 2013). Multiple types of relationships among entities 
naturally introduce multilayer networks, where different net-
works share matched node set, while each single network 
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ship. Tools designed for a single network can be naively 
used to deal with multilayer networks in two ways: either ag-
gregating multiple layers into a single network or analyzing 
each single network separately. However, aggregating multi-
layer networks may lose the specific information contained 
in each layer, while analyzing each network separately does 
not leverage the information that may be shared across dif-
ferent relations. Therefore, it is of importance to design 
tailored tools for multilayer network data. 

Real-world multilayer networks are often observed with 
both homogeneity shared between different layers and het-
erogeneity retained within each layer. For example, nodes 
usually have their own intrinsic traits that are consistent 
across different relations, and at the same time, specific 
activity levels of individual nodes and the overall network 
connecting characteristics, such as the edge density or ho-
mophily patterns, may vary across different layers. Figure 3 
provides an example on multiple social networks among the 
same set of people and demonstrates the heterogeneous node 
individual behaviors in different social relations. In this pa-
per, we propose a flexible model for multilayer networks 
which uses the latent space model for a single network (Hoff 
et al., 2002) as building blocks, with the goal of capturing 
aforementioned observed characteristics for multilayer net-
works. Specifically, we assume each node is represented by 
a common latent vector shared across layers such that the 
commonality among layers is kept. Moreover, we assume 
within each layer, nodes have layer-specific individual ef-
fects and connecting patterns, accommodating distinctions 
between layers. Model specifications and a scalable model 
fitting algorithm are introduced in Section 3. In Section 4, 
we establish theoretical properties of the maximum likeli-
hood estimators of the proposed model. In particular, we 
study the relationship between the estimation of nodes’ com-
mon latent representations and the number of layers. The 
theoretical properties are further supported by simulation 
studies in Section 5. We also demonstrate the performance 
of the proposed model in terms of latent variables estimation 
and link prediction on real-world examples in Section 6. 

The main contributions of this paper include two aspects. 
The first one is on the model specification. Our proposed 
model is more flexible in comparison to existing models in 
the literature (summarized in Section 2) in the sense that it 
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allows layer-specific node individual effects, and such flexi-
bility is shown to be necessary when fitting real-world mul-
tilayer networks. Introducing these additional layer-specific 
node individual parameters brings non-trivial challenges for 
studying theoretical properties of the model, because the 
mean structure of the resulting multilayer networks will go 
beyond the low-rank assumption. The second contribution 
of our work is on theory, in which we prove that the es-
timation error of the layer-shared node representations is 
inversely proportional to the number of layers. This result 
provides the insight that leveraging multilayer networks for 
joint estimation is more beneficial than separate estimation 
with single networks. To the best of our knowledge, this 
is the first theoretical guarantee on latent variable estima-
tion for multilayer latent space models. Moreover, since 
our model contains several tensor factorization models (e.g., 
Nickel et al. (2011); Nickel & Tresp (2013)) as special cases, 
our results also provide theoretical support for these models, 
which is less studied in the literature. 

2. Related Work 
In recent years there has been a growth of statistical models 
for multilayer networks. The majority of the work extends 
the tools for modeling a single network to jointly model-
ing multiple networks, and examples include but are not 
limited to extensions of: the stochastic block model (SBM) 
(Han et al., 2015; Paul & Chen, 2015; 2020), the mixed 
membership SBM (De Bacco et al., 2017), the random dot-
product graph model (Levin et al., 2017; Wang et al., 2017; 
Nielsen & Witten, 2018; Arroyo et al., 2019), and the latent 
space model (Gollini & Murphy, 2016; Salter-Townshend 
& McCormick, 2017; D’Angelo et al., 2018; DAngelo et al., 
2019; Simpson et al., 2019; Wilson et al., 2020). We chose 
to build on the latent space model due to its flexibility in 
capturing commonly observed network characteristics, such 
as node degree heterogeneity, transitivity, homophily, etc. 

Latent space models for a single network are first proposed 
in Hoff et al. (2002), and their variants are further devel-
oped in Hoff (2003; 2008) and Ma et al. (2020). Gollini & 
Murphy (2016) and DAngelo et al. (2019) proposed latent 
space models for multilayer networks, with the assumption 
that the latent representations for each node are the same 
across all layers and the variation between networks is cap-
tured through layer-specific parameters that control overall 
network characteristics, such as edge density or homophily 
patterns. The assumption of common node representations 
implicitly suggests that a node has consistent behaviors 
through all layers and the nodes that behave similarly in 
one layer should also behave similarly in other layers. This 
assumption is relatively strict, as it does not reflect the node-
level differences across different layers. Salter-Townshend 
& McCormick (2017) allows each node to have a distinct 

latent representation in each layer. However, due to their 
specific model assumption, these latent representations are 
“conditional” and therefore not straightforward to interpret. 
D’Angelo et al. (2018) extends Gollini & Murphy (2016) 
and incorporates layer-specific node effects in each layer. 
This work is in spirit the closest to our proposed model. 
However, it considers a different family of latent space mod-
els and adopts Bayesian estimation for model fitting, which 
is computationally much more expensive, and further, there 
is no theoretical guarantee on model estimation. (Wilson 
et al., 2020) and (Simpson et al., 2019) allow more variations 
across layers by taking the layer-specific node covariates 
into account, though node covariates information are not 
generally avaiable in many applications. 

Multilayer networks sometimes also refer to dynamic or 
time-evolving networks (Sewell & Chen, 2015; 2017; Gupta 
et al., 2018), in which connections among the same set of 
nodes are recorded at different timestamps. The focus is 
often on the dependency between different layers due to the 
time order, so the modeling framework is different from that 
of multiple types of relations. Lastly, multilayer networks 
can be viewed as a three-way tensor, where the first two 
dimensions are along the nodes and the third dimension 
is along the layers. Tensor factorization methods (Tucker, 
1966; De Lathauwer et al., 2000; Nickel et al., 2011; Nickel 
& Tresp, 2013) have often been utilized for analyzing multi-
relational data. Some special cases of our model reduce 
to existing tensor factorization models, such as the logistic 
RESCAL model (Nickel & Tresp, 2013). Therefore, the 
estimation approach and theoretical results we develop can 
be directly applied in these cases. 

3. Proposed Model 
Motivated by phenomena observed in real-world multilayer 
networks and limitations in existing work, we aim to pro-
pose a model that has the following properties. First, it 
should be able to capture the homogeneity and heterogene-
ity across multiple layers simultaneously. In particular, it 
should allow node individual effects to vary between lay-
ers. Secondly, model parameters should be straightforward 
to interpret. Lastly, scalable estimation approaches can be 
developed and theoretical guarantees can be established. 

We start with introducing notations. Assuming the mul-
tilayer networks are composed of R different networks 
over a common set of n nodes, with each network rep-
resenting one type of relation. For r = 1, . . . , R, the 
rth layer network is represented by a binary adjacency 

(r) (r)matrix A(r) ∈ {0, 1}n×n , where A = A = 1 ifij ji 
node i and node j are connected in the rth relation and 
A
(r) 
= 0 otherwise. Stacking the R adjacency matrices ij 

together, we obtain a three-way adjacency tensor, denoted 
by A = [A(1); . . . ; A(R)] ∈ {0, 1}n×n×R . Note that our 



��

A Flexible Latent Space Model for Multilayer Networks 

development in this paper focus on adjacency tensor with 
binary entries, however, the proposed model and theoreti-
cal results can be naturally extended to edge types which 
are modeled by other exponentail family models, such as 
continuous or count edges. 

3.1. Latent Space Model for Multilayer Networks 

We extend the main idea in the latent space model for a sin-
gle layer network, where the connecting probability between 
two nodes depends on their latent representations in an unob-
served Euclidean space. Specifically, we assume that each 
node i is represented by a unique latent vector Ui ∈ Rk . 
Given node latent vectors and layer-specific parameters, we 
assume connectivity between each pair of nodes i and j in 
all layers are conditionally independent Bernoulli random 
variables, i.e., � � 

(r) ind (r)
A ∼ Bernoulli P ,ij ij 

where � � 
(r) (r) (r) (r)

logit Pij := Θij = αi + αj + Ui 
>Λ(r)Uj , (1) 

for i, j = 1, . . . , n and r = 1, . . . , R. Note α(r) = 
(r) (r)

(α , . . . , αn )> ∈ Rn are node degree heterogeneity pa-1 
rameters for layer r. Specifically, when all other parameters 
are fixed, the larger α(r) , the more likely that node i con-i 
nects with other nodes in the rth layer. The α(r)s are distinct 
across different layers, allowing nodes to have different de-
gree heterogeneity in different types of relations. Moreover, 
the latent positions U = [U1, . . . , Un]

> ∈ Rn×k are shared 
between all layers, which capture the common structure 
between multiple networks among the same set of nodes. 
The node latent variables U enter the model through a layer-
specific connection matrix Λ(r) ∈ Rk×k , r = 1, . . . , R. In 
general Λ(r) ∈ Rk×k does not need to be diagonal. In the 
special case when Λ(r) = Ik, model (1) for a single layer 
coincides with the inner-product model considered in Hoff 
(2003) and Ma et al. (2020). We propose to use non-diagonal 
Λ(r)s as they allow not only different levels of homophily 
along different dimensions, but also general interactions 
between different dimensions of latent variables. 

In summary, model (1) accommodates enough differences 
between layers, as it embeds each node through two compo-
nents: layer-varying node individual effects {α(r)}R andr=1 
layer-invariant latent positions U . Layer-specific connection 
matrices {Λ(r)}R provide additional flexibility, allowing r=1 
each layer to retain its own network-level characteristics. 
Therefore, information can be borrowed across different 
layers due to the shared latent structure, meanwhile each 
layer is also distinct in terms of its own node connecting 
behaviors. 

Note in order for model (1) to be identifiable, additional 
constraints on parameters are necessary. The following 

proposition states the identifiability conditions, and its proof 
is provided in the Supplementary Material. 

Proposition 1 (Identifiability conditions) Suppose that 
two sets of parameters ({α(r)}Rr=1, {Λ(r)}rR 

=1, U) and 
(r) (r)

({α† }rR 
=1, {Λ† }rR 

=1, U†) satisfy the following conditions: 

1
A1. JnU = U , JnU† = U†, where Jn = In − 1n1

>;n n 
A2. U>U = nIk and U>U† = nIk;† 
A3. At least one of Λ(r)’s, r = 1, 2, · · · , R, is full rank. 
Then 

α(r)1> α(r)> + UΛ(r)U>+ 1nn 

(r) (r)> (r)
1> U> =α + 1nα + U†Λ† n † † † 

for r = 1, . . . , R implies that there exists an orthonormal 
matrix O ∈ Rk×k where O>O = OO> = Ik, such that 

(r) (r)
α = α(r), U† = UO, Λ = O>Λ(r)O, † † 

for r = 1, · · · , R. 

3.2. Parameter Estimation 

We define the objective function as the negative conditional 
log-likelihood of A under model (1): � � 

L U, {α(r)}Rr=1, {Λ(r)}Rr=1 � � 
= − log P A U, {α(r)}Rr=1, {Λ(r)}Rr=1 (2) 

R n n n � �oXXX 
(r) (r) (r)

= − A Θ + log 1 − σ(Θ ) ,ij ij ij 
r=1 i=1 j=1 

where σ(x) = 1/(1 + exp(−x)) is the sigmoid fucntion. 
The goal is to find estimates Ub , {αb(r)}R , and {Λb(r)}R 

r=1 r=1 
that minimize the objective function defined in (2). For 
the purpose of interpretation and estimation, we treat all 
the parameters including the node degree heterogeneity pa-
rameters {α(r)}R and latent positions U as fixed effects. r=1 
This is different from the majority of existing work on sin-
gle layer and multilayer network latent space models (Hoff 
et al., 2002; Hoff, 2003; Salter-Townshend & McCormick, 
2017; D’Angelo et al., 2018; DAngelo et al., 2019), where 
latent vectors U and node effects (if considered) are treated 
as random effects and Bayesian approaches are adopted for 
estimation. Ma et al. (2020) is the first work that treated 
U as fixed latent representations and proposed a scalable 
projected gradient descent algorithm for estimating the sin-
gle layer inner-product latent space model. In pursuit of 
computational efficiency, we adapt the projected gradient de-
scent algorithm for estimating our multilayer network latent 
space model. Specifically, in each iteration, parameter es-
timates for U , {α(r)}R and {Λ(r)}Rr=1 are updated along r=1 
the direction of their negative gradients of L and are fur-
ther projected onto the set of parameter space that satisfies 
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the identifiability condition. The procedure is summarized 
in Algorithm 1. Note that the update of U leverages the 
network links of all types. Therefore, we expect a superior 
estimation of U , in comparison to the estimate when using 
a single network only. 

4. Theoretical Results 
In this section we present our main theoretical results on the 
maximum likelihood estimators of model (1). Note though 
each Θ(r) under model (1) is of rank at most k+2, the tensor 
that represents the overall edge connection probabilities, 
[Θ(1); . . . ; Θ(R)], is beyond the low rank structure due to the 
layer-specific parameters {α(r)}Rr=1. This brings non-trivial 
challenges for studying theoretical properties of estimators 
for the model, since most tensor recovery methods rely on a 
low-rank assumption for the tensor’s mean structure (Kolda 
& Bader, 2009; Wang & Song, 2017; Ghadermarzy et al., 
2018; Wang & Li, 2018). We adopt recently developed tools 
in random tensor theory and tensor inequalities to establish 
an upper bound on the estimation error of [Θ(1); . . . ; Θ(R)]. 
Then using matrix perturbation theory, we further localize 
the overall error bound to a single network layer and apply 
the Davis-Kahan theorem to upper bound the estimation 
error of the common latent vectors U . Specifically, we first 
introduce the feasible parameter space as follows. 

Definition 1 (Feasible parameter space). For n, R, k ∈ 
N, µ ∈ R+, the feasible parameter space F = Fn,R,k (µ) 
is defined as 

F = Fn,R,k (µ) 

= {T = [Θ(1); Θ(2); · · · ; Θ(R)] ∈ Rn×n×R : 

Θ(r) = α(r)1> α(r)> + UΛ(r)U>+ 1n ;n 

U ∈ Rn×k, U>U = nIk, JnU = U, α(r) ∈ Rn , 

Λ(r) ∈ Sk×k , kΘ(r)kmax ≤ µ, r = 1, 2, · · · , R}, 
(3) 

where Jn = In− 
1
1n1

> , Sk×k includes all symmetric k×kn n 
matrices, and k · kmax represents the maximum absolute 
value of entries in a matrix. 

Suppose the estimator Tb is obtained by bT = arg min L(T ), (4)
T ∈F 

where L is defined in (2). Theorem 1 provides the result on 
the error bound for Tb . 

Theorem 1 Given the true parameters T? ∈ F , there exist 
absolute constants c1, c2, such that with probability at least 
1 − R exp(−c1n) − exp(−c2(2n + R)), we have 

kTb − T?k2 ≤ C1nR + C2k
2(2n + R), (5)F 

where C1 and C2 only depend on µ. 

The term C1nR in (5) is induced by the layer specific pa-
rameters {α(r)}Rr=1, and it grows linearly in the number 
of layers. The second term C2k2(2n + R) is induced by 
{UΛ(r)U>}R , and due to the common latent variables Ur=1 
among layers, the order of this term would not grow as fast 
as the first term as R grows. In the next theorem, we specify 
the relationship between the upper bound on the estimation 
error of U and the number of layers. 

(r) (r)Theorem 2 Denote {α? }R {Λ? }R and U? asr=1, r=1, 
the true parameters that form T? ∈ F . Assume that 
(1) (2) (R)
Λ? , Λ? , · · · , Λ? are of full rank, i.e. 

σmin(Λ? 
(r)
) ≥ κ r = 1, 2, · · · , R (6) 

for some constant κ > 0. Assume there exists a constant 
δ > 0 such that R ≤ δn, then with probability at least 
1 − R exp(−c1n) − exp(−c2(2n + R)), we have n o 

min kUb − U?Ok2 ≤ 8κ−2(C1+Ce2k2R−1),F 
O:O>O=OO>=Ik 

(7) 
where Ce2 = C2(2 + δ) and c1, c2, C1, C2 are the same 
constants as in Theorem 1. 

Theorem 2 demonstrates that the upper bound of the estima-
tion error of U decreases inversely as the number of layers 
R grows. The constant term C1 is induced from the layer-
specific terms {α(r)}Rr=1. In Section 5, we will numerically 
further demonstrate that under the regime R = O(n), the 
upper bound in (7) is inversely proportional to R. 

Remark 1 Model (1) contains several tensor factorization 
models as special cases. For example, when α(r) = 0 for 
all r = 1, . . . , R, it reduces to the logistic RESCAL model 
(Nickel & Tresp, 2013), for which theoretical properties were 
formerly unknown. The corollary below provides estimation 
property for latent factors under the logistic RESCAL model. 

Corollary 1 Assume α(r) = 0n, r = 1, . . . , R for all T ∈ 
F . Under the same assumptions as in Theorem 2, as n → 
∞, with probability going to 1 we have n o 

min kUb − U?Ok2 ≤ Cκ−2k2R−1 
F 

O:O>O=OO>=Ik 

for a constant C that only depends on µ. In other words, 
the upper bound of the estimation error of U decreases at 
the rate of O(R−1). 

Proofs of Theorem 1, Theorem 2 and Corollary 1 are all 
provided in the Supplementary Materials. 

5. Simulation Studies 
In this section, we investigate empirical performance of the 
proposed method by simulation studies. Specifically, we 
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Algorithm 1 Projected Gradient Descent Algorithm for Parameter Estimation 
(r) (r)Input: A ∈ Rn×n×R; latent space dimension k ≥ 1; initial estimates: U0, {α0 }rR 

=1, {Λ0 }rR 
=1; step sizes ηu, ηα, ηλ; 

number of iterations T 
Parameters:: U, {α(r)}Rr=1, {Λ(r)}Rr=1 
For t = 0, 1, . . . , T − 1 � �PR (r) 

UtΛ
(r)Ut+1 = Ut − ηurU L = Ut + 2ηu r=1 A(r) − σ(Θt )� � 

(r) (r) (r) (r)
α = α − ηαrα(r) L = α + 2ηα A(r) − σ(Θ ) 1n, r = 1, . . . , R t+1 t t t� � 
(r) (r) (r) (r)
Λ = Λ − ηλrΛ(r) L = Λ + ηλU> A(r) − σ(Θ ) Ut, r = 1, . . . , R t+1 t t t t 

(r) (r)
Ut+1 = JnUt+1, Ut+1 = Ut+1W for W ∈ Rk×k s.t. Ut 

> 
+1Ut+1 = nIk, Λt+1 = (W −1)>Λt+1W −1 

(r) (r)Output: Ub = UT , αb(r) = α , Λb(r) = Λ , r = 1, . . . , R T T 

examine the estimation error of parameters with growing 
number of network layers. We also analyze the computa-
tional complexity of Algorithm 1. 

We first study the relationship between the estimation error 
of the maximum likelihood estimators and the number of 
network layers. We set the true parameter values as follows. 

iid• Generate (U?)ij ∼ N (0, 1) for i = 1, . . . , n and j = 
1, . . . k; transform U? by 1) centering U? s.t. JnU? = U?, 
2) rotating U? s.t. U? 

>U? ∝ Ik, and 3) scaling U? s.t. 
U? 
>U? = nIk. 

(r) iid• Generate (α? )i ∼ Uniform(−2, −1) for i = 1, . . . , n 
and r = 1, . . . , R. 

(r) (r) (r)• Generate Λ = diag(λ · · · , λ ) for r = 1, . . . , R,? ?,1, ?,k 
iidwhere λ(r) ∼ Uniform(−1, −0.5).?,i 

Note that though Λ( ?
r)’s are set to be diagonal, we do not 

require Λb(r)’s to be diagonal when fitting the model. 

We set n = 400, R = 100, and k = 2. More simulation 
results with (n, R, k) = (200, 50, 2) and (400, 100, 4) are 
provided in the Supplementary Materials. We generate 30 
independent copies of the adjacency tensor A based on 
model (1). The first R0 out of R layers are used to fit 
the model. We examine how the estimation errors of Ub 

Θ(r)}R0and { b 
r=1 change with R0. The estimation error of 

{Θb (r)}R0 is evaluated by the relative error r=1 � . �PR0 

��PR0 (r) (r)kΘb (r) − Θ? k2 kΘ? k2 , (8)r=1 F r=1 F 

and the estimation error of Ub is evaluated by n o 
min kUb − U?Ok2 /kU?k2 (9)F F . 

O:O>O=OO>=Ik 

Finding the optimal O in (9) is known as the orthogonal Pro-
crustes problem (Schönemann, 1966), which can be solved 
by singular value decomposition (SVD). In particular, de-
note the SVD of Ub>U? be SΣV > , then the optimal O is 
given by V S> . 

(r)Note Algorithm 1 requires initialization of U0, {α }R0 
0 r=1 

(r)}R0and {Λ r=1. When fitting the model, we initialize U0 by0 
first generating i.i.d. N (0, 1) entries and then transforming 
it such that U0 satisfies the identifiability condition. We 
initialize α(r) as 0n, i.e. the vector with all zeros, and we0 

initialize Λ0
(r) as diag(−1, . . . , −1). The step sizes ηα, ηλ 

are chosen to be small and fixed, and ηu is proportional to 
R−1 .0 

Figure 1(a) shows the estimation error of {Θb (r)}R0 given r=1 
in (8) versus R0. We can see as the number of layers grows, 
the relative error of {Θb (r)}R0 decreases and is bounded r=1 
below. By Theorem 1, we have 

R0X 
(r)kΘb (r) − Θ? k2 ≤ C1nR0 + C2k

2(2n + R0) (10)F 
r=1 ��PR0 (r)with high probability. Also note that kΘ? k2 is r=1 F 

of order O(n2R0) due to the constraints we put on the 
parameter space F . Therefore, theoretically the bound 
of the relative error defined in (8) should be of order� � −1 −1R−1 −2O n + n + n . For a fixed n, as R0 increases,0 
this term would decrease to some bound that depends on 
−1n . The result in Figure 1(a) is then understandable as 

Θ(r)the “irreducible” estimation error of b comes from the 
first term in (10), i.e., the estimation error of layer-specific 
parameters αb(r), which does not decrease as the number of 
layers grows. 

Figure 1(b) displays in log-log scale the estimation error of bU given by (9) against the number of network layers utilized 
for model fitting. For each replication, we fit a linear model 
to the result, i.e., blog(relative error of U) = a + b log(R0) + �. 

Figure 1(c) shows the histogram of the fitted slopes. Note 
that all fitted slopes are close to −1, with the mean and 
standard deviation being −1.03 and 0.02 respectively. This 
agrees with the result in Theorem 2. 
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Figure 1. (a) and (b): Estimation error of parameters when n = 400, R = 100 and k = 2. Each light blue curve corresponds to one 
replication; the black curve corresponds to the average of all replications. The red dashed line in (b) corresponds to the line whose 
intercept and slope equal to the average of fitted intercepts and slopes respectively. (c): Histogram of all fitted slopes. 

Since Algorithm 1 is a first-order method and aggregates 
gradient information of each layer in a linear manner, the 
running time should be proportional to R. Further, up-
dating Θ(r) in each iteration requires O(n2k) operations.t 
Therefore the computational complexity of Algorithm 1 is 
O(n2Rk). To verify this, we examine the computing time 
under two settings: 1) fixing n, increasing R, and 2) fixing 
R, increasing n. As shown in Figure 2, the running time per 
iteration is linear in R and quadratic in n. 

0.0

0.2

0.4

0.6

50 100 150 200
Numebr of layers

T
im

e 
pe

r 
ite

ra
tio

n 
in

 s
ec

on
ds

0.0

0.1

0.2

0.3

0.4

0.5

50 100 150 200
Numebr of nodes

T
im

e 
pe

r 
ite

ra
tio

n 
in

 s
ec

on
ds

Figure 2. Average running time per iteration in seconds with one-
standard-deviation error bars. Left: n = 200, and the R-square of 
a linear model is 0.998; Right: R = 200, and the R-square of a 
quadratic model is 0.998. 

6. Real Data Applications 
We apply the proposed model to two real-world examples. 
In practice, since there is no true value for the latent vec-
tors, we can’t evaluate the performance in terms of latent 
representation estimation. Instead, we consider two alter-
native approaches. First, though the latent vectors are not 
observed, there are usually observed node features which 
may be correlated with the latent vectors. Therefore, investi-

gating the estimated latent representations against observed 
node features may provide insights on the estimation of la-
tent vectors. Secondly, the estimated latent representations 
can often be used for downstream tasks, such as nodes clas-
sification, node clustering or link prediction. To examine the 
latent vector estimation, we demonstrate the performance 
of the proposed method on link prediction. 

6.1. Lazega Lawyers Data 

The Lazega Lawyers dataset records multiple connection re-
lationships in a Northeastern US corporate law firm (Lazega 
et al., 2001). There are three types of networks between 71 
lawyers, which are their co-worker network, advice network, 
and friendship network (Figure 3). The original network 
can be directed, for example, advice is often given in sin-
gle direction and one nominates the other as a friend. We 
convert the direct networks to indirect ones by removing 
the directions. Besides the network relationships, multiple 
features of individuals are also recorded, including seniority, 
office, gender, law school attended, etc. 

We fit both the multilayer version and single layer version of 
the proposed model (1). Initialization and stepsize choices 
are similar to what we do in Section 5. For comparison, we 
also fit model (1) without the layer-specific node individual 
effect terms, which reduces to the logistic RESCAL (L-
RESCAL) model, as well as the COSIE model (Arroyo 
et al., 2019), which utilizes the random dot-product model 
for multilayer networks and assumes that 

E[A(r)] = UΛ(r)U> , r = 1, . . . , R. 

We choose the dimension of the latent space to be k = 2 
for the purpose of visualization. Figure 4 shows the esti-
mated U from each model, and the colors are based on the 
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(a) Co-worker network (b) Friendship network (c) Advice network 

Figure 3. Visualization of the Lazega lawyer data. Nodes in different layers exhibit different connecting patterns. For example, the two 
red nodes are isolated in the friendship network but have several links in other layers, while the blue node is not connected to other nodes 
in the co-worker network but is well-connected in the friendship and advice networks. 
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Figure 4. Upper row: estimated U based on single networks. Lower row: jointly estimated U based on multilayer networks using different 
methods. Color represents the lawyer’s office. 
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Figure 5. Link Prediction: AuROC on the test sets for 12 layers of the Karnataka Data. 

lawyers’ three offices: Boston, Hartford and Providence. 
From Figure 4, we can see more clear separation of peo-
ple from different offices in the latent space based on the 
estimation from multilayer networks, in comparison to the 
estimation using single networks. Moreover, comparing 
the proposed method to the other two multilayer network 
models which do not incorporate node individual effects, 
the proposed method shows the most clear separation in 
terms of the lawyers’ offices, which, among the available 
node features, is presumably the most correlated one with 
all three types of networks. 

6.2. Karnataka Data 

In practice, estimation of the latent space model is often an 
initial step, and the estimated model can be further used for 
downstream tasks on networks, for example, link prediction. 
Suppose we are interested in predicting missing links in a 
target network. With multilayer networks, we investigate 
whether connections in other layers would assist in the pre-
diction of links in the target layer, due to the correlation in 
network structures between different layers. 

Banerjee et al. (2013) provided multiple social networks 
in villages in rural southern Karnataka, India. Within each 
village, 12 types of social relations are recorded, including 
borrow money from, give advice to, help with a decision, 
borrow kerosene or rice from, lend kerosene or rice to, lend 
money to, obtain medical advice from, engage socially with, 
are related to, go to temple with, invite to one’s home, and 
visit in another’s home. Some of the relations are directed, 
and as in Section 6.1, the directed networks are converted 
to indirected ones based on the existence of any single di-
rectional edge between nodes. The networks are collected 
at both individual level and household level. We analyzed 
the data on the household level and selected one represen-

tative village with 99 nodes. For each type of relation, we 
randomly remove 20% entries of the adjacency matrix as 
missing. For comparison, we fit the single layer version 
of the proposed model, the multilayer latent space model 
with and without layer-specific node individual effect terms, 
and the COSIE model using the observed entries. Then 
we predict link probabilities on those missing entries using 
the fitted parameters and node latent representations. The 
dimension of the latent space is set to k = 3 for all meth-
ods. The experiments are replicated 30 times and we report 
AuROC for link prediction in Figure 5. As we can see, for 
each type of relation, using information from multiple net-
works has superior performances than using the layer itself 
only, which demonstrates that different layers share com-
mon structures and leveraging such information is beneficial. 
Moreover, the proposed method achieves the best perfor-
mance in most layers, in comparison to the methods which 
do not take layer-specific node degree heterogeneity into 
account. This further supports the observed phenomenon 
that individual node behavior can vary from relation to rela-
tion, and modeling such flexibility is critical for capturing 
real-world network characteristics. 

7. Conclusion and Discussion 
In this paper, we have proposed a flexible and interpretable 
latent space model for multilayer networks. The proposed 
model is able to capture the common structure shared across 
different networks and meanwhile allows for heterogeneous 
layer-specific node connecting patterns. We have developed 
an efficient algorithm for parameter estimation. Moreover, 
theoretical guarantees on maximum likelihood estimators, in 
particular, improvements in the estimation of shared latent 
representations, are established. We have also demonstrated 
the proposed model on real-world data examples. 
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This work can be extended in several potential directions. 
Real-world networks are heterogeneous in the sense of not 
only multiple edge types, but also various node types (Sun 
& Han, 2013; Huang et al., 2018; Yu et al., 2018; Zhang & 
Chen, 2020; Zitnik et al., 2018). One interesting direction 
is to extend the proposed modeling framework to networks 
with both multiple edge types and multiple node types, with 
each node type embedded into a unique latent space. 
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