A. Appendix

A.1. Semantics of specifications

We define the semantics of a specification $S = \{(T_1, \delta_1), \ldots, (T_n, \delta_n)\}$ (such that $T_i = (\varphi_i, f_i)$) as follows. Given a string $x = x_1 \ldots x_m$, a string y is in the perturbations space $S(x)$ if:

1. there exists matches $\{(l_1, r_1), \ldots, (l_k, r_k)\}$ (we assume that matches are sorted in ascending order of l_i) such that for every $i \leq k$ we have that (l_i, r_i) is a valid match of φ_j, in x;
2. the matches are not overlapping: for every two distinct i_1 and i_2, $r_{i_1} \leq l_{i_2}$ or $r_{i_2} < l_{i_1}$;
3. the matches respect the δ constraints: for every $j' \leq n$, $|\{(l_i, r_i), j_i \} | j_i = j'\} | \leq \delta_{j'}$.
4. the string y is the result of applying an appropriate transformation to each match: if for every $i \leq k$ we have $s_i \in f_{j_i}(x_{l_i} \ldots x_{r_i})$, then $y = x_1 \ldots x_{l_1-1} s_1 x_{r_1+1} \ldots x_{l_2-1} s_2 x_{r_2+1} \ldots x_m$.

A.2. Proof of Theorem 1

We give the following definition of a convex set:

Definition 1. Convex set: A set C is convex if, for all x and y in C, the line segment connecting x and y is included in C.

Proof. We first state and prove the following lemma.

Lemma 2. Given a set of points $\{p_0, p_1, \ldots, p_t\}$ and a convex set C such that $\{p_0, p_1, \ldots, p_t\} \subseteq C$. These points define a set of vectors $p_0 p_1, p_0 p_2, \ldots, p_0 p_t$. If a vector $\overrightarrow{p_0 p}$ can be represented as a sum weighed by α_i:

$$\overrightarrow{p_0 p} = \sum_{i=1}^{t} \alpha_i \cdot \overrightarrow{p_0 p_i},$$

where α_i respect to constraints:

$$\sum_{i=1}^{t} \alpha_i \leq 1 \land \forall 1 \leq i \leq t. \alpha_i \geq 0,$$

then the point p is also in the convex set C.

Proof. We prove this lemma by induction on t.

- Base case: $t = 1$, if $\overrightarrow{p_0 p} = \alpha_1 \cdot \overrightarrow{p_0 p_1}$ and $0 \leq \alpha_1 \leq 1$, then p is on the segment $p_0 p_1$. By the definition of the convex set (Definition 1), the segment $p_0 p_1$ is inside the convex, which implies p is inside the convex: $p \in p_0 p_1 \subseteq C$.

- Inductive step: Suppose the lemma holds for $t = r$. If a vector $\overrightarrow{p_0 p'}$ can be represented as a sum weighed by α_i:

$$\overrightarrow{p_0 p'} = \sum_{i=1}^{r+1} \alpha_i \cdot \overrightarrow{p_0 p_i}$$

where α_i respect to constraints:

$$\sum_{i=1}^{r+1} \alpha_i \leq 1, \quad \forall 1 \leq i \leq r+1. \alpha_i \geq 0.$$

We divide the sum in Eq 6 into two parts:

$$\overrightarrow{p_0 p'} = \sum_{i=1}^{r} \alpha_i \cdot \overrightarrow{p_0 p_i} + \sum_{i=r+1}^{r+1} \alpha_i \cdot \overrightarrow{p_0 p_{r+1}}$$

Because from Inequality 7, we know that

$$\sum_{i=1}^{r} \alpha_i \leq 1 - \alpha_{r+1},$$

which is equivalent to

$$\sum_{i=1}^{r} \frac{\alpha_i}{1 - \alpha_{r+1}} \leq 1.$$

This inequality enables the inductive hypothesis, and we know point p' is in the convex set C. From Eq 11, we know that the point p is on the segment of $p' p_{r+1}$, since both two points p' and p_{r+1} are in the convex set C, then the point p is also inside the convex set C.

To prove Theorem 1, we need to show that every perturbed sample $y \in S(x)$ lies inside the convex hull of $\text{abstract}(S, x)$.

We first describe the perturbed sample y. The perturbed sample y as a string is defined in the semantics of specification S (see the Appendix A.1). In the rest of this proof, we use a function $E : \Sigma^m \rightarrow \mathbb{R}^{m \times d}$ mapping from a string with length m to a point in $m \times d$-dimensional space, e.g., $E(y)$ represents the point of the perturbed sample y in the
We then prove the Theorem 1. To prove $E(y)$ lies in the convex hull of $\text{abstract}(S, x)$, we need to apply Lemma 2. Notice that a convex hull by definition is also a convex set. Because from Eq 14, we have

$$E(x)E(y) = \sum_{i=1}^{k} \Delta_{((l_i,r_i),j_i,s_i)}.$$

We further define $\Delta_{((l_i,r_i),j_i,s_i)}$ as the vector $E(x_{((l_i,r_i),j_i,s_i)}) - E(x) = E(x)E(x_{((l_i,r_i),j_i,s_i)})$:

$$\Delta_{((l_i,r_i),j_i,s_i)} = \begin{pmatrix} 0, \ldots, 0, E(s), \ldots, 0 \end{pmatrix}.$$

A perturbed sample y defined by matches $\langle (l_1, r_1), \ldots, (l_k, r_k), j_k \rangle$ and for every $i \leq k$ we have $s_i \in f_{j_i}(x_{l_i} \ldots x_{r_i})$, then

$$y = x_1 \ldots x_{l_1-1} s_1 x_{r_1+1} \ldots x_{l_k-1} s_k x_{r_k+1} \ldots x_m.$$

The matches respect the δ constraints: for every $j' \leq n$, $|\{(l_i,r_i),j_i,s_i) \mid j_i = j'\}| \leq \delta_{j'}$. Thus, the size of the matches k also respect the δ constraints:

$$k = \sum_{j'=1}^{n} |\{(l_i,r_i),j_i,s_i) \mid j_i = j'\}| \leq \sum_{j'=1}^{n} \delta_{j'}.$$ (13)

In the embedding space,

$$E(x)E(y) = \begin{pmatrix} 0, \ldots, 0, E(s_1), \ldots, 0 \end{pmatrix} - E(x_{l_1} \ldots x_{r_1}),$$

$$0, \ldots, 0, E(s_k) - E(x_{l_k} \ldots x_{r_k}), \ldots, 0 \end{pmatrix}.$$ (14)

Thus, we can represent $E(x)E(y)$ using $\Delta_{((l_i,r_i),j_i,s_i)}$:

$$\sum_{i=1}^{k} \Delta_{((l_i,r_i),j_i,s_i)}.$$ (14)

We then describe the convex hull of $\text{abstract}(S, x)$. The convex hull of $\text{abstract}(S, x)$ is constructed by a set of points $E(x)$ and $E(v_{((l_i,r_i),j_i,s_i)})$, where points $E(v_{((l_i,r_i),j_i,s_i)})$ are computed by:

$$E(v_{((l_i,r_i),j_i,s_i)}) = E(x) + \sum_{i=1}^{n} \delta_{i} (E(x_{((l_i,r_i),j_i,s_i)}) - E(x)).$$

Alternatively, using the definition of $\Delta_{((l_i,r_i),j_i,s_i)}$, we get

$$E(x)E(v_{((l_i,r_i),j_i,s_i)}) = \sum_{i=1}^{n} \delta_{i} \Delta_{((l_i,r_i),j_i,s_i)}.$$ (15)

A3. Details of Experiment Setup

For AG dataset, we trained a smaller character-level model than the one used in Huang et al. (2019). We followed the setup of the previous work: use lower-case letters only and truncate the inputs to have at most 300 characters. The model consists of an embedding layer of dimension 64, a 1-D convolution layer with 64 kernels of size 10, a ReLU layer, a 1-D average pooling layer of size 10, and two fully-connected layers with ReLUs of size 64, and a linear layer. We randomly initialized the character embedding and updated it during training.

For SST2 dataset, we trained the same word-level model as the one used in Huang et al. (2019). The model consists of an embedding layer of dimension 300, a 1-D convolution layer with 100 kernels of size 5, a ReLU layer, a 1-D average pooling layer of size 5, and a linear layer. We used the pre-trained Glove embedding (Pennington et al., 2014) with dimension 300 and fixed it during training.
For SST2 dataset, we trained the same character-level model as the one used in Huang et al. (2019). The model consists of an embedding layer of dimension 150, a 1-D convolution layer with 100 kernels of size 5, a ReLU layer, a 1-D average pooling layer of size 5, and a linear layer. We randomly initialized the character embedding and updated it during training.

For all models, we used Adam (Kingma & Ba, 2015) with a learning rate of 0.001 for optimization and applied early stopping policy with patience 5.

A.3.1. Perturbations

We provide the details of the string transformations we used:

- \(T_{\text{SubAdj}}, T_{\text{InsAdj}} \): We allow each character substituting to one of its adjacent characters on the QWERTY keyboard.
- \(T_{\text{DelStop}} \): We choose \{and, the, a, to, of\} as our stop words set.
- \(T_{\text{SubSyn}} \): We use the synonyms provided by PPDB (Pavlick et al., 2015). We allow each word substituting to its closest synonym when their part-of-speech tags are also matched.

A.3.2. Baseline

Random augmentation performs adversarial training using a weak adversary that simply picks a random perturbed sample from the perturbation space. For a specification \(S = \{(T_1, \delta_1), \ldots, (T_n, \delta_n)\} \), we produce \(z \) by uniformly sampling one string \(z_1 \) from a string transformation \((T_1, \delta_1) \) and passing it to the next transformation \((T_2, \delta_2) \), where we then sample a new string \(z_2 \), and so on until we have exhausted all transformations. The objective function is the following:

\[
\arg\min_{\theta} \mathbb{E}_{(x,y) \sim D} \left(L(x,y,\theta) + \max_{z \in R(x)} L(z,y,\theta) \right) \tag{18}
\]

HotFlip augmentation performs adversarial training using the HotFlip (Ebrahimi et al., 2018) attack to find \(z \) and solve the inner maximization problem. The objective function is the same as Eq 18.

A3T adopts a curriculum-based training method (Huang et al., 2019; Gowal et al., 2019) that uses a hyperparameter \(\lambda \) to weigh between normal loss and maximization objective in Eq. (2). We linearly increase the hyperparameter \(\lambda \) during training.

\[
\arg\min_{\theta} \mathbb{E}_{(x,y) \sim D} \left((1 - \lambda)L(x,y,\theta) + \lambda \max_{z \in \text{augment}_k(S_{\text{adv}}, x)} L(\text{abstract}(S_{\text{adv}}, z), y, \theta) \right).
\]

Also, we set \(k \) in \(\text{augment}_k \) to 2, which means we select 2 perturbed samples to abstract.

A.3.3. Evaluation Results

RQ2: Effects of size of the perturbation space In Figure 4, we fix the word-level model A3T (search) trained on \{(TDup, 2), (TSubSyn, 2)\}. Then, we test this model’s exhaustive accuracy on \{(TDup, \delta_1), (TSubSyn, 2)\} (Figure 4(a)) and \{(TDup, 2), (TSubSyn, \delta_2)\} (Figure 4(b)), where we vary the parameters \(\delta_1 \) and \(\delta_2 \) between 1 and 4, increasing the size of the perturbation space. The exhaustive accuracy of A3T(HotFlip) and A3T(search) decreases by 17.4% and 11.4%, respectively, when increasing \(\delta_1 \) from 1 to 4, and decreases by 2.3% and 1.9%, respectively, when increasing \(\delta_2 \) from 1 to 4. All other techniques result in larger decreases in exhaustive accuracy (≥17.5% in \{(TDup, \delta_1), (TSubSyn, 2)\}) and ≥3.1% in \{(TDup, 2), (TSubSyn, \delta_2)\}).

In Figure 5, we fix the word-level model A3T (search) trained on \{(TDelStop, 2), (TDup, 2), (TSubSyn, 2)\}. Then, we test this model’s exhaustive accuracy on \{(TDelStop, \delta_1), (TDup, 2), (TSubSyn, 2)\} (Figure 5(a)), \{(TDelStop, 2), (TDup, \delta_2), (TSubSyn, 2)\} (Figure 5(b)), and \{(TDelStop, 2), (TDup, 2), (TSubSyn, \delta_3)\} (Figure 5(c)), where we vary the parameters \(\delta_1 \), \(\delta_2 \) and \(\delta_3 \) between 1 and 3, increasing the size of the perturbation space. The exhaustive accuracy of A3T(HotFlip) and A3T(search) decreases by 1.1% and 0.9%, respectively, when increasing \(\delta_1 \) from 1 to 3, decreases by 12.9% and 6.9%, respectively, when increasing \(\delta_2 \) from 1 to 3, and decreases by 1.4% and 0.9%, respectively, when increasing \(\delta_3 \) from 1 to 3. All other techniques result in larger decreases in exhaustive accuracy (≥2.2% in \{(TDelStop, \delta_1), (TDup, 2), (TSubSyn, 2)\}) ≥13.0% in \{(TDelStop, 2), (TDup, \delta_2), (TSubSyn, 2)\}), and ≥2.8% in \{(TDelStop, 2), (TDup, 2), (TSubSyn, \delta_3)\}).
Figure 4. The exhaustive accuracy of \(\{(T_{\text{Dup}}, \delta_1), (T_{\text{SubSyn}}, \delta_2)\} \), varying the parameters \(\delta_1 \) (left) and \(\delta_2 \) (right) between 1 and 4.
Figure 5. The exhaustive accuracy of \{ \{ T_{DelStop}, \delta_1 \}, \{ T_{Dup}, 2 \}, \{ T_{SubSyn}, 2 \} \}, varying the parameters \delta_1 \text{ (left)}, \delta_2 \text{ (middle), and } \delta_3 \text{ (right) between 1 and 3.}