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Abstract

We study problems where a learner aims to learn
the valuations of an agent by observing which
goods he buys under varying price vectors. More
specifically, we consider the case of a k-demand
agent, whose valuation over the goods is additive
when receiving up to k goods, but who has no
interest in receiving more than k goods. We set-
tle the query complexity for the active-learning
(preference elicitation) version, where the learner
chooses the prices to post, by giving a biased bi-
nary search algorithm, generalizing the classical
binary search procedure. We complement our
query complexity upper bounds by lower bounds
that match up to lower-order terms. We also study
the passive-learning version in which the learner
does not control the prices, and instead they are
sampled from some distribution. We show that in
the PAC model for passive learning, any empiri-
cal risk minimizer has a sample complexity that
is optimal up to a factor of Õ(k).

1. Introduction
The active learning of agents’ preferences is also known as
preference elicitation. Depending on the setting, we may
wish to model and represent preferences differently. For
example, if there is a set of alternatives to choose from, and
agents cannot make payments, then it is natural to represent
an agent’s preferences by a weak ordering �. If agents
also express preferences over distributions over alternatives,
we may wish to model an agent’s preferences by a utility
function u(·) and assume the agent is maximizing expected
utility. We may learn agents’ preferences by asking them
queries, for example which of two (distributions over) alter-
natives is preferred.
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In other contexts, such as the allocation of goods (or bads,
e.g., tasks), agents are often able to make payments (or
receive them as compensation). In this context, it is natural
to model the agent’s preferences by a valuation function
v(·), and assume that utility is valuation minus payment
made. Depending on the setting, different types of query
may be possible. A value query would ask directly for the
valuation that the agent has for a specific bundle of goods.
But it is not always feasible to ask value queries, for example
because the agent finds the query hard to answer, is reluctant
to answer it out of fear of exploitation, or because there are
simply exogenous restrictions on the type of query we can
make. For example, if we are running a grocery store, the
only way in which we may learn about an agent’s valuation
is by setting prices and seeing what he buys. This is what is
known as a demand query—given these prices, what would
you buy? Such queries will be the focus of our paper.

The very simplest setting involves only a single good. In this
case, active learning of the agent’s valuation is equivalent
to the binary search problem: if we we quote a price p that
is above the valuation we get a “no” answer, and otherwise
a “yes” answer.1 If there are multiple goods but valuations
are additive, so that an agent’s valuation for a bundle S
of items is simply v(S) =

∑
j∈S v({j}), then the agent’s

decision on one good is independent of that on the other
goods, and we can simply parallelize the binary searches
for the individual goods. More interesting is the case of unit
demand, where there are multiple goods but the agent will
buy at most one good, namely the good j that maximizes
v(j) − p(j) if this value is nonnegative. Here, the active
learning problem can be thought of as the following simple
abstract problem. There is a vector of unknown numbers
~v; a query consists of subtracting from it an arbitrary other
vector ~p, and learning the index of the maximum element of
~v − ~p, but not its value. (Note that it makes no difference
whether we add, subtract, and/or allow negative numbers.)
Given the simplicity of this problem, it is likely to have
applications outside of economics as well. For example,
imagine a physical system, each possible state of which has

1Throughout the paper we assume consistent tie-breaking. I.e.,
whenever v(j)− p(j) = 0, the agent either always wants the item,
or always does not want the item. Similarly, whenever two items
i and j provide the same utility, i.e., v(i) − p(i) = v(j) − p(j),
one of the two is always preferred to the other.



Learning the Valuations of a k-demand Agent

a baseline energy that we wish to learn. We can arbitrarily
modify the energy of each state, after which the system will
go to the lowest-energy state, which we then observe. This
is the same problem.2

Surprisingly, to our knowledge, how many queries are
needed for this very basic problem has not yet been an-
alyzed. In this paper, we settle this up to lower order terms
for the generalization of a k-demand agent, who will buy
at most k goods, namely the top k goods j as measured
by v(j) − p(j) (unless there are fewer than k for which
v(j)− p(j) ≥ 0, in which case only those will be bought).
We also study the passive-learning version where we do
not control the price vectors, but instead they are generated
from some distribution. (This would correspond to the case
where the energy modifications are the result of an external
random process.)

1.1. Our Results

In Section 2 we study the active elicitation problem, where
the learner chooses the price vectors to post, observes the
purchased sets, and aims to learn the exact valuations of
the agent. We show that when there are n items, and the
value of each item is an integer between 0 and W , there is
an algorithm that learns the agent’s valuations in

(1 + o(1))

(
n logW

k log(n/k)
+
n

k

)
rounds, when k is not too large. We complement this upper
bound by showing that both first-order terms of our upper
bound are necessary. More specifically, we give adversarial
distributions over valuations, where any algorithm needs
(1 − o(1)) n logW

k log(n/k) and bn−1k c rounds, respectively. Our
algorithm is therefore optimal in a strong sense.

In Section 3, we study the passive learning problem. We
consider a PAC setting, where price vectors are drawn from
a distribution; the learner observes the price vectors as well
as the agent’s choices, and aims to predict the agent’s fu-
ture choices. We establish sample complexity upper and
lower bounds for the passive learning problem by settling
the Natarajan dimension of the corresponding concept class.
We also give efficient algorithms for the empirical risk min-
imization (ERM) problem; by solving this problem, our
upper bound is achieved.

Our bounds for the passive learning task are only approx-

2As a more specific example, suppose there is a set S of nearby
natural structures in a lightning-prone area. We are interested in
determining the electrical resistance of each structure. To do so,
we can place lightning rods of varying heights on the structures,
which will reduce the resistance of the electrical path through each
structure by a known amount, and see where lightning strikes—
which will reveal which of the paths has the lowest resistance for
the given lightning rods.

imately tight in a worst-case sense, which means that in
practice, our learning algorithm is likely to outperform the
theoretical upper bound. In Section 4, we experimentally
evaluate the performance of ERM algorithms. Our findings
show that when prices are i.i.d., the empirical sample com-
plexity of ERM algorithms depends much more mildly on
the number of items n and the demand k than the theoretical
bound suggests.

1.2. Related Work

In economics, there is a long line of work on revealed pref-
erence theory, initiated by Samuelson (1938). Here, the idea
is to infer consumers’ utility functions based on the choices
that they make. However, most of this work concerns divis-
ible goods and consumers that optimize given a monetary
budget. Some work concerns the construction of valuations
that explain the observed choices of the agent. In partic-
ular, Afriat (1967) shows that a sequence of observations
can be explained by a utility function if and only if it can
be explained by a utility function that is piecewise linear,
monotone, and concave. While the proof is constructive,
the representation of the constructed utility function is com-
plex in proportion to the number of observed choices, so in
general the construction fails to be predictive.

In computer science, researchers have worked on both active
and passive learning models. Some of the earliest work
focuses on preference elicitation (Sandholm & Boutilier,
2006), an active-learning variant in which a party such as
an auctioneer asks the agents queries about their valuations,
and the agents respond. Typically, the goal is to determine
the final outcome (say, allocation of resources) with as few
queries as possible, though sometimes this is done by simply
learning each agent’s valuation function precisely and then
computing the allocation.3 Early work established close
connections between preference elicitation and the active
learning of valuation functions (Blum et al., 2004; Lahaie &
Parkes, 2004).

Multiple types of queries are studied in this line of work.
One is a value query, where an agent is asked for his val-
uation for a specific bundle. Another is a demand query,
where an agent is asked which items he would buy at spe-
cific prices for the items. The latter type of query is the
one of interest in this paper. Passive variants where in each
round, prices are sampled from a distribution (or are other-
wise outside our control) and we see what the agent buys
under these prices, also fit the demand-query model—every

3One may worry about incentives, e.g., an agent pretending to
have a low valuation in order to be quoted a low price at the end.
However, if VCG pricing is used, then it is an ex-post equilibrium
for all agents to respond truthfully to every query (Sandholm &
Boutilier, 2006; Nisan et al., 2007). This insight also applies to
our work here.
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round corresponds to a demand query that we do not con-
trol. This is what we study towards the end of this paper.
(There are also passive-learning variants corresponding to
value queries (Balcan & Harvey, 2011; Balcan et al., 2012),
but we will not discuss those here.) Various iterative mech-
anisms (Parkes, 2006), such as ascending combinatorial
auctions, require the agent to indicate a preferred bundle
while prices adjust; these mechanisms are thus also imple-
mented as sequences of demand queries. In other contexts,
it is natural to ask different types of queries yet again: in
voting (Conitzer, 2009; Procaccia et al., 2009), one may ask
a comparison query (which of these two alternatives do you
prefer?), and in cake cutting (Brams & Taylor, 1996; Pro-
caccia & Wang, 2017), one may ask how far the knife needs
to be moved for the agent to become indifferent between
the two parts. However, in this paper we only consider the
setting where agents have valuations for items and respond
to demand queries.

To study the prediction aspect of revealed preferences theory,
Beigman & Vohra (2006) consider a PAC-learning model.
They introduce a complexity measure of classes of utility
functions, and, based on the complexity measure, character-
ize the learnability of different classes. Following Beigman
and Vohra, Zadimoghaddam and Roth (Zadimoghaddam &
Roth, 2012) give efficient learning algorithms for linearly
separable concave utility functions in the PAC model. Their
bound was later improved by Balcan et al. (2014), who
also give generalizations to other classes of utility func-
tions, misspecified models, and non-linear prices. Slightly
departing from the PAC setting, Amin et al. (2015) study
profit maximization in an online learning model. Bei et al.
(2016) extend the results of Balcan et al. to Fisher and ex-
change markets. All these papers study divisible goods and
monetary budgets. In this paper, in contrast, we consider
indivisible goods and k-demand agents without a monetary
budget constraint. Our results are therefore of a combinato-
rial nature.

Basu & Echenique (2018) study the learnability of pref-
erence models of choice under uncertainty, and Chase &
Prasad (2018) study the learnability of time dependent
choices. Their models are intrinsically different from ours,
and in particular, they aim to learn binary relations, as op-
posed to predicting combinatorial outcomes. Blum et al.
(2018) consider a setting where a seller has unknown prior-
ity among the buyers, according to which they are allocated
items. They give algorithms that with few mistakes recon-
struct both the buyers’ valuations and the seller’s priority,
whenever the buyers have additive, unit-demand, or single-
minded valuations. These results are incomparable to ours,
since (1) they consider an online model where the goal is
to minimize the number of mistakes, whereas we give al-
gorithms that operate either with active querying or in the
PAC model, and (2) even in their online model, when there

are variable prices, their results apply only to additive or
unit-demand buyers, and the mistake bound depends on that
of the ellipsoid algorithm. The main complexity of their
model comes from the fact that there are multiple agents af-
fecting each other. There is various research on similar, but
less closely related, topics (Besbes & Zeevi, 2009; Babaioff
et al., 2015; Roth et al., 2016; Brero et al., 2017; Roth et al.,
2017; Brero et al., 2018; Balcan et al., 2018; Ji et al., 2018).

2. Active Preference Elicitation
In this section, we study the following active learning model:
there is a single k-demand buyer in the market, to whom
the learning agent (the seller) may pose demand queries,
each consisting of a vector of prices. The buyer values
the i-th item vi, where it is common knowledge that vi ∈
{0, 1, 2, . . . ,W}. The actual values of the buyer, however,
are unknown to the seller, and are for the seller to learn. The
seller repeatedly posts prices on individual items. The buyer
then buys the k (or fewer) items that maximize his quasi-
linear utility, and the seller observes the buyer’s choice of
the k (or fewer) items to buy. The question we are interested
in is the following: what is the minimum number of rounds
(i.e., demand queries) needed such that the seller can acquire
enough information to be sure of (vi)i, and what algorithm
achieves this number?

2.1. The Biased Binary Search Algorithm

We present an algorithm based on biased binary search, Al-
gorithm 1. The algorithm, generalizing the classical binary
search procedure, works in the following way: first, we fix
an item (item 1) as the reference item, and learn its valua-
tion using binary search. Then, throughout the execution,
the algorithm keeps track of the possible range [v−i , v

+
i ] of

each item i’s value. We maintain A as the set of items for
which we have not yet learned the exact valuation. If, for a
given demand query, the reference item is chosen, then we
know that each item i that is not chosen gives utility at most
that of the reference item, allowing us to update v+i . If the
reference item is not chosen, then we know that each item i
that is chosen gives utility at least that of the reference item,
allowing us to update v−i . The algorithm sets prices in such
a way that no matter what the chosen set is, the “information
gain” (as measured by a potential function) from shrinking
the ranges is always about the same. The word “biased” in
the name indicates that the ranges do not necessarily shrink
by a factor of 1

2 . For example, in the unit demand case, if
the reference item is chosen, we get to shrink all the other
items’ ranges, but only by a little; whereas if another item
is chosen, we get to shrink only that item’s range, but by a
lot. This ensures the information gain is (roughly) invariant.
When we learn an item i’s valuation and drop it from A, we
update the number of items n′ = |A| whose valuation we
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Algorithm 1 Biased Binary Search

1: Input: number of items n, range of value W
2: Output: (vi)i
3: Post price pi =∞ for i ≥ 2, and binary search for v1.
4: Let v−1 = v+1 = v1, p1 = v1 − 0.5, A = {2, . . . , n},
n′ = n.

5: For each i ∈ A, let v−i = 0, v+i = W .
6: while true do
7: for i ∈ A do
8: Set pi = v+i − (v+i − v

−
i ) · k log(n′/k)

n′ − 0.5.
9: end for

10: Ask a query at these prices; let S be the winning set.
11: if 1 ∈ S then
12: for i ∈ A \ S do
13: Let v+i = pi + 0.5.
14: end for
15: else
16: for i ∈ S do
17: Let v−i = pi + 0.5.
18: end for
19: end if
20: for i ∈ A do
21: if v+i − v

−
i < 1 then

22: Let A = A \ {i}, n′ = n′ − 1, pi =∞.
23: end if
24: end for
25: Break if 2k ≥ n′.
26: end while
27: Let B be any subset of A of cardinality min(n′, k).
28: Post price pi =∞ for all i ∈ A \B, and binary search

in parallel for (vi)i∈B .
29: Post price pi = ∞ for all i ∈ B, and binary search in

parallel for (vi)i∈A\B .
30: for i ∈ [n] do
31: Let vi = bv+i c.
32: end for
33: Output (vi)i.

still need to learn. If n′ becomes less than twice as large
as k, we divide the remaining items in A into two groups
of size not exceeding k; for each group, we perform binary
search for all items in the group, while posting price∞ for
items in the other group to ensure they are never chosen.
Because the size of neither group exceeds k, an item will be
chosen if and only if its value exceeds the price, independent
of the prices of the other items in the group. Hence, we can
learn the values of all items in the group in parallel, via
binary search.

We now bound the query complexity of the algorithm.

Theorem 1. Algorithm 1 computes the values (vi)i of the

buyer, and has query complexity

(1 + o(1))

(
n logW

k log(n/k)
+
n

k

)
+O(logW ).

Before proceeding to the proof, we note that in the more
interesting case where k is not too large compared to n (i.e.,
k = o(n)), the term O(logW ) is dominated by the other
terms of the bound.

Proof of Theorem 1. We first prove correctness. We show
that throughout the repeat loop, we always have

vi ∈ [v−i , v
+
i ].

Consider the update procedure from Line 10 to Line 18.
When the reference item, item 1, is among the chosen ones,
we know that for any unchosen item i,

vi − pi ≤ v1 − p1 = 0.5.

Therefore,
vi ≤ pi + 0.5

and the right-hand side is what v+i is updated to in this case.
When item 1 is not chosen, we know that for any chosen
item i,

vi − pi ≥ v1 − p1 = 0.5.

Therefore,
vi ≥ pi + 0.5

and the right-hand side is what v−i is updated to in this case.

Now we prove the query complexity upper bound. The
binary search for v1 takes logW demand queries. To ana-
lyze the dominant part of the complexity, let us define the
following potential function:

Φ(((v−i , v
+
i ))i) =

∑
1<i≤n

φ(v+i , v
−
i )

=
∑

1<i≤n

log(v+i − v
−
i ).

The objective is to show that (1) after each query and update,
the potential function decreases by a considerable amount,
and (2) the total possible decrease of the potential function
throughout the execution of the algorithm is bounded. As a
result, the total number of queries must also be bounded. We
first bound the decrease of the potential function. Observe
that when an item is removed from A in Line 22, we fix its
price such that it will never be chosen in all future queries.
Thus, we maintain the following invariant: every time a
query happens, all items chosen are in {1} ∪A.
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Now consider a query where items in S are chosen. When
1 ∈ S, for each i ∈ A that is not chosen (i.e., i ∈ A \ S),
φ(v+i , v

−
i ) decreases by

log(v+i − v
−
i )− log(pi + 0.5− v−i )

= log

(
1

1− k log(n′/k)/n′

)
≥ k log(n′/k)

n′
.

Since there are at least n′ − k such items, the total decrease
is

−∆Φ ≥ k log(n′/k)(1− k/n′).

When 1 /∈ S, for each i ∈ A that is chosen (i.e., i ∈ S),
φ(v+i , v

−
i ) decreases by

log

(
n′

k log(n′/k)

)
.

Since item 1 gives utility v1 − p1 = 0.5, and 1 is still not
chosen, there must be at least k other items giving utility at
least 0.5. As a result, there are exactly k chosen items, so
the total decrease is

−∆Φ = k log(n′/k)(1− log log(n′/k)/ log(n′/k)).

Putting together the two cases, we see that whenever n′/k =
ω(1),

−∆Φ = k log(n′/k)(1− o(1)).

And whenever 2k ≤ n′,

−∆Φ = Ω(k log(n′/k)).

Consider first the case where 2k ≥ n. In such cases, the
algorithm partitions A into two parts of size not exceeding
k, and binary searches for each part respectively. Within
each part, since the number of items available in the part
is no more than the demand of the buyer, and all items in
the other part are too expensive to be chosen, whether one
item will be chosen depends only on the value and price of
the item. As a result, we can binary search for the values of
all items in each part in parallel. The query complexity is
therefore O(logW ).

Now suppose 2k < n. The worst-case query complexity
happens when sets of items of size k are repeatedly chosen
and drop out sequentially. That is, queries keep returning the
same set of k items, until the algorithm completely learns
the valuations restricted to these k items (i.e., they “drop out”
of the learning procedure), and then the queries move on
and keep returning another set of k items, until they “drop
out” too, etc. There are essentially two stages of the worst
case execution pattern: in the first stage of the execution, n′

keeps decreasing, and when 2k ≥ n′, the execution enters

the second stage, where parallel binary search is performed
to determine the values of all items in A. The sequence of
“drop-outs” happens in the first stage and we refer to what
happens between two “drop-outs” as a substage. By the
analysis above, the query complexity of the second stage is
simply O(logW ).

The first stage requires more effort. W.l.o.g., assume that k
divides n. The first stage can be divided into

` = n/k − 1 = ω(1)

substages, where in the i-th substage, the number of active
items at the beginning of the substage is

n′ = (`− i+ 1)k.

First observe that in the i-th substage, the minimum possible
value of φ(v+j , v

−
j ) that can be reached by updating v+j or

v−j is

log

(
k log(n′/k)

n′

)
≥ log

(
1

(`− i+ 1)

)
.

This is because once v+j − v
−
j drops below 1, it will never

be updated again. Since the maximum possible value of
φ(v+j , v

−
j ) is logW , the maximum total decrease of Φ in

the i-th substage is

k (logW + log(`− i+ 1)) .

On the other hand, the decrease per query in the i-th substage
is

(−∆Φ)i =

{
Ω(k), if (`− i+ 1) = O(1)

k log(`− i+ 1)(1− o(1)), otherwise
.

This means the number of queries in the i-th substage is at
most

k (logW + log(`− i+ 1))

(−∆Φ)i
.

Now for any 0 < t < 1, the total number of queries in the
first stage is upper bounded by∑

1≤i<`

k (logW + log(`− i+ 1))

(−∆Φ)i

=
∑

2≤i≤`

k (logW + log i)

(−∆Φ)`−i+1

=
∑

2≤i<`t

k (logW + log i)

(−∆Φ)`−i+1
+
∑

`t≤i≤`

k (logW + log i)

(−∆Φ)`−i+1
.

When `t = ω(1), for any `t ≤ i ≤ `, i = ω(1), and
therefore

(−∆Φ)`−i+1 = (k log i)(1− o(1)).
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So when t = ω(1/ log `), we can further bound the total
number of queries by∑
2≤i<`t

(logW + log i) +
∑

`t≤i≤`

(1 + o(1))
logW + log i

log i

≤ `t(logW + log `) + `(1 + o(1))

(
logW

t log `
+ 1

)
Moreover, when when t = 1− ω(log `/ log log `), the sec-
ond term in the above dominates the first term, so we can
further bound the sum by

`(1 + o(1))

(
logW

t log `
+ 1

)
.

Now letting t = 1− o(1), the number is upper bounded by

(1 + o(1))

(
n logW

k log(n/k)
+
n

k

)
.

Putting together the two stages, we conclude that the total
query complexity is

(1 + o(1))

(
n logW

k log(n/k)
+
n

k

)
+O(logW ).

2.2. Matching Lower Bounds

It may appear at first sight that the two-term upper bound in
the first part of Theorem 1 is probably suboptimal. However,
we show that quite surprisingly, our upper bound is in fact
tight up to lower order terms. Specifically, we have the
following proposition.

Proposition 1. The following lower bounds hold for ac-
tively learning the valuations of a k-demand agent with n
items.

• When k = o(n), given a uniform prior over the values,
any (possibly randomized) algorithm that correctly
outputs the values makes at least

(1− o(1))
n logW

k log(n/k)

queries in expectation.

• Even if the values can only be 0 or 1, and there is
precisely one item with value 0, any algorithm that
correctly outputs the values with probability at least p
makes at least d(np− 1)/ke queries.

Proof. To prove the first part, consider the following mu-
tual information argument. To learn the exact values, the
total mutual information gained from observing the query
outcomes has to be n logW . On the other hand, since there

are only
(
n
k

)
possible outcomes, the conditional mutual in-

formation of each query cannot exceed

log

(
n

k

)
= k log(n/k) +O(k).

As a consequence, the number of queries has to be at least

n logW

k log(n/k) +O(k)
= (1− o(1))

n logW

k log(n/k)
.

For the second part, consider an adversary that obliviously
picks the 0-valued item uniformly at random. The algo-
rithm is only required to find the item with value 0. For
each query, we consider the values of the k items with the
lowest prices (with consistent tie-breaking). Observe that if
these items all have value 1, then the only information the
algorithm can obtain from this query is that these k items
have value 1. Let us hold fixed the values of the algorithm’s
random bits. Then, as long as the agent keeps choosing the
lowest-priced items in each query, the algorithm will follow
a fixed sequence of queries. Suppose the algorithm makes
T queries, and let i be the item with value 0. Consider the
sequence of sets of the k lowest-priced items in these T
queries, S1, . . . , ST , where |Sj | = k. As long as T < n/k,
with probability 1− kT/n, item i is not in any of these sets.
In such cases, the best thing the algorithm can do is to output
some item in [n] \ (S1 ∪ · · · ∪ ST ), which, with probability
n−kT−1
n−kT over the random choice of the adversary, is not the

0-valued item. Hence, regardless of the random bits (and
hence also in expectation over them), we see that the failure
probability of the algorithm is at least

1− p ≥ (1− kT/n)(n− kT − 1)

n− kT
,

which implies T ≥ np−1
k .

3. PAC Learning from Revealed Preferences
In this section, we consider the following passive learning
model: there is a single k-demand buyer in the market.
The learner observes a sequence of demand queries and the
agent’s responses. In each query, a price vector is drawn
from a fixed distribution and posted on the items. The
buyer then chooses the (at most) k items that maximize his
quasi-linear utility. The goal of the learner is to learn an
approximately correct hypothesis of the buyer’s valuation
with probability at least 1− δ, such that when a price vector
is drawn from the same distribution, with probability 1− ε,
the learner correctly determines the k items that the buyer
chooses. The question is: what is the minimum number of
queries such that the learner can achieve the above goal?

3.1. Learnability by ERM Algorithms

We show that an algorithm that outputs any value vector
that is consistent with the observations (a.k.a. an empirical
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risk minimization (ERM) algorithm) learns the ground truth
efficiently. Moreover, the sample complexity of any ERM
learner is optimal up to a factor of Õ(k).4

The problem here is a multiclass PAC learning problem. The
data domain Xn = Rn contains all possible price vectors,
and the set of labels

Yn,k = {S ⊆ [n] | |S| ≤ k}

consists of all subsets of [n] of size at most k. Each value
vector v acts as a classifier v : Xn → Yn,k that, given a price
vector, determines the set of chosen items. Our hypothesis
class Hn,k is the set of classifiers induced by all possible
value vectors. Given a distribution D over Xn, we aim
to learn, with probability at least 1 − δ, an approximately
correct hypothesis h ∈ Hn,k by observing sample data
points xi ∼ D and labels yi = v(xi), such that

Pr
x∼D

[v(x) 6= h(x)] ≤ 1− ε.

To study the above problem, we investigate the Natarajan
dimension of the hypothesis classHn,k, as defined below.

Definition 1 (Natarajan dimension (Natarajan, 1989)). Let
H ⊆ YX be a hypothesis class and let S ⊆ X . We say
thatH N-shatters S if there exists f1, f2 : S → Y such that
∀x ∈ S, f1(x) 6= f2(x), and for every T ⊆ S there is a
g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S \ T, g(x) = f2(x).

The Natarajan dimension ofH, denoted dN (H), is the max-
imal cardinality of a set that is N-shattered byH.

The Natarajan dimension of a hypothesis class is closely
related to the sample complexity of the corresponding learn-
ing task. Letmr

H(ε, δ) be the sample complexity of learning
H with error ε and confidence 1− δ in the realizable case,
i.e., when the labels are determined by some h∗ ∈ H. Ben-
David et al. (Ben-David et al., 1995) and Daniely et al.
(Daniely et al., 2015) together show:

Theorem 2 ((Ben-David et al., 1995; Daniely et al., 2015),
rephrased). There exist constants C1 and C2 such that for
anyH,

C1

(
dN (H) + ln

(
1
δ

)
ε

)
≤ mr

H(ε, δ) ≤

C2

(
dN (H)

(
ln
(
1
ε

)
+ ln(|Y|) + ln(dN (H))

)
+ ln

(
1
δ

)
ε

)
.

Moreover, the upper bound is attained by any ERM learner.

In words, Theorem 2 says that up to logarithmic dependence
on 1/ε, dN (H), and |Y|, the sample complexity mr

H(ε, δ)

4Õ hides a polylog factor.

of hypothesis classH is determined solely by the Natarajan
dimension dN (H) ofH. It is therefore crucial to determine
the Natarajan dimension of the hypothesis classHn,k corre-
sponding to our problem. We show (see the appendix for a
proof):

Lemma 1. The Natarajan dimension ofHn,k is n.

The harder part of the lemma is the upper bound on the
Natarajan dimension, for which our proof works in the fol-
lowing way. Suppose towards a contradiction that there is a
set S of n + 1 price vectors shattered by Hn,k. We create
a graph with n + 1 vertices, where vertices 1 through n
correspond to the n items, and vertex n + 1 corresponds
to a dummy item which has value 0. Let f1 and f2 be the
two classifiers as in Definition 1. For each x ∈ S, we add
an undirected edge into the graph with a directed weight
determined by x, f1(x) and f2(x). Each classifier g induces
a way to direct these edges, with the two possible direc-
tions corresponding to g(x) = f1(x) and g(x) = f2(x),
respectively. With |S| = n+ 1 edges, there must be a cycle,
and we argue that it is impossible to construct a classifier g
such that the cycle becomes a directed cycle in one of the
two directions. This leads to a contradiction, since by our
assumption, there exists such a classifier g ∈ Hn,k.

Recall that forHn,k, the set of labelsYn,k containing all sub-
sets of [n] of size at most k has cardinalityO(nk), and there-
fore ln |Yn,k| = O(k lnn). Given Theorem 2, Lemma 1
directly implies:

Theorem 3. There exist constants C1 and C2, such that

C1

(
n+ ln

(
1
δ

)
ε

)
≤ mr

Hn,k
(ε, δ) ≤

C2

(
n
(
k lnn+ ln

(
1
ε

))
+ ln

(
1
δ

)
ε

)
.

Moreover, the upper bound is attained by any ERM learner.

That is, any ERM learner achieves the optimal sample com-
plexity up to a factor of O(k lnn+ ln(1/ε)).

3.2. Computational Efficiency of ERM

While the above theorem establishes sample complexity up-
per and lower bounds for the passive learning problem, it
does not address the issue of computational complexity. Be-
low we show that there are in fact efficient ERM algorithms
for the learning problem.

Proposition 2. Given ` consistent samples, the ERM prob-
lem can be solved by solving a system of difference con-
straints with n variables and at most ` · k · (n − k + 1)
constraints.

Proof. Observe that given samples {(pj , Sj)}j∈[`], a value
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(a) Error rate of ERM vs ` (5 ≤ k ≤ 25, n = 50). (b) Error rate of ERM vs ` (20 ≤ n ≤ 100, k = 1).

(c) Error rate of ERM vs k (100 ≤ ` ≤ 500, n = 50). (d) Error rate of ERM vs n (100 ≤ ` ≤ 500, k = 1).

Figure 1: Performance of ERM for different number of items n, demand k, and size of training set `.

vector v is an ERM (i.e., v is consistent with all (pj , Sj))
iff for each j ∈ [`],

• if |Sj | = k:

– for any i ∈ Sj , vi − pji ≥ 0,5 and

– for any i1 ∈ Sj and i2 /∈ Sj , vi1 − p
j
i1
≥ vi2 −

pji2 ;6

• if |Sj | < k:

– for any i ∈ Sj , vi − pj ≥ 0, and
– for any i /∈ Sj , vi − pj ≤ 0.

5Tie-breaking issues can be dealt with by requiring a small
margin that can be computed efficiently from the samples.

6An alternative approach is to introduce an auxiliary variable
here for the agent’s threshold utility for buying an item, reducing
the number of constraints but increasing the number of variables.

For each sample j, if |Sj | = k, there are k constraints of
the first type, and k · (n− k) constraints of the second type;
if |Sj | < k, there is one constraint for each i ∈ [n], and
therefore

n ≤ k · (n− k + 1)

constraints in total.

Thus, to compute an ERM, it suffices to solve the system
with n variables, (vi)i∈[n], and the above constraints, whose
total number is no more than

` · k · (n− k + 1).

It follows immediately from Proposition 2 that the ERM
problem can be solved efficiently by solving the corre-
sponding system of difference constraints using efficient
LP solvers or single-source shortest path algorithms.
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4. Experimental Evaluation
In this section, we study empirically the accuracy of ERM
learners for PAC learning from revealed preferences.

We implement the ERM learner by solving the system in
Proposition 2 using an LP solver, where the objective is to
maximize the minimum margin. We draw the ground truth
value vector uniformly at random from the unit hypercube
[0, 1]n, and for each sample, we draw the price vector uni-
formly at random from [−1, 0]n. The purchased set is then
calculated according to the value and price vectors. Note
that since the prices are non-positive, there are always k
items purchased. To study the performance of ERM for dif-
ferent values of k, we fix the number of items to be n = 50,
and examine the accuracy of the ERM learner for

k ∈ {5, 10, 15, 20, 25}

respectively. To study the performance of ERM for different
values of n, we fix the agent to be unit-demand (i.e., k = 1),
and calculate the accuracy of the ERM learner for

n ∈ {20, 40, 60, 80, 100}

respectively. In both experiments, we let the size of the
training set grow, and plot the empirical error rate for each
size of the training set

` ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

When computing the error rate, we train 10 different classi-
fiers using different sample sets, evaluate them on the same
test set of size 10000, and take the average.

Figure 1 summarizes the average error rates and standard
deviations for different n, k, and `. As can be seen from
Figures 1a and 1b, for all values of n and k examined, the
empirical error rate decreases sharply as the size of the train-
ing set ` grows. With a training set of size ` = 500, for all
(n, k) pairs examined, the error rate drops below 0.1. This
suggests that in practice, the constant factor hidden in our
sample complexity upper bound is quite small, especially
when the distribution of the price vector is uniform in the
unit hypercube. On the other hand, as can be seen from
Figures 1c and 1d, although the sample complexity upper
bound in Theorem 3 grows roughly linearly in n and k, the
empirical error rates of ERM learners for different values
of k (in Figure 1c) and different values of n (in Figure 1d)
seem quite close, especially when the training set is large
enough (e.g., when ` = 500). Based on this, we conjecture
that the sample complexity of ERM depends much more
mildly on n and k when the distribution of prices is uniform,
or is independent over items.

5. Future Directions
The most compelling future direction is to consider more
general classes of valuation functions, e.g., matroid-demand

agents. Also, real-world agents often do not know exactly
their own valuations. To this end, instead of perfectly accu-
rate queries, one may consider noisy queries with various
forms of noise.
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A. Omitted Proofs
Proof of Lemma 1. We first show that

dN (Hn,k) ≥ n.

We construct a set S ⊆ X , such that |S| = n andHn,k N-shatters S. For j ∈ [n− 1], let xj be such that

xji =

 −1, i = j or i = n
−∞, 1 ≤ i ≤ k and i 6= min{j, k}
∞, otherwise

.

Let xn be such that

xni =

 0, i = n
−∞, 1 ≤ i ≤ k − 1
∞, otherwise

.

Let S = {xj}j∈[n]. Let f1 and f2 be such that

f1(xj) = [k − 1] ∪max{j, k},

and
f2(xj) = f1(xj) ∪ {n} \ {j}

for all j. Note that f2(xj) = [k − 1] ∪ {n} for j ∈ [n− 1] and [k − 1] for j = n. For any T ⊆ S, we construct g ∈ Hn,k
such that g(xj) = f1(xj) = j for xj ∈ T , and g(xj) = f2(xj) = n for xj ∈ S \ T . Let gi denote the value of item i in the
value vector that generates g. Let gn = 0.1 if xn ∈ T and−0.1 otherwise. For each j ∈ [n−1] such that xj ∈ T , let gj = 1.
For each j such that xj ∈ S \ T , let gj = −1. We now check that h satisfies the above condition. For any 1 ≤ j ≤ n− 1,
clearly [k] \min{j, k} are among the purchased items, since they have price −∞. Also, any item in [n− 1] \ ([k] ∪ {j})
cannot be purchased, since they have price∞. If xj ∈ T , then gj = 1, and

gj − xjj = 1− (−1) = 2 > 1.1 = 0.1− (−1) ≥ gn − xjn.

So the purchased set is g(xj) = [k] = f1(xj). If xh ∈ S \ T , then gj = −1, and

gj − xjj = −1− (−1) = 0 < 0.9 = −0.1− (−1) ≤ gn − xjn.

So the purchased set is g(xj) = f1(xj) ∪ {n} \ {j} = f2(xj). For xn, if xn ∈ T , we have

gn − (xn)n = 0.1− 0 = 0.1 > 0,

so the purchased set is g(xn) = [k − 1] ∪ {n} = f1(xn). If xn /∈ T , we have

gn − (xn)n = −0.1− 0 = −0.1 < 0,

so item n will not be purchased, and the purchased set is g(xn) = [k− 1] = f2(xn). It follows that S can be N-shattered by
Hn,k.

Now we show that
dN (Hn,k) < n+ 1.

For any S ⊆ X where |S| = n+ 1, we show thatHn,k does not N-shatter S. Suppose not, and let f1 and f2 be the functions
that satisfy the shattering conditions. Given f1 and f2, we now construct some T ⊆ S, such that there is no g ∈ Hn,k
satisfying g(x) = f1(x) for x ∈ T and g(x) = f2(x) for x ∈ S \ T . Suppose S = {x1, . . . , xn+1}. We create a graph with
n+ 1 vertices, undirected edges, and directed edge weights, where:

• each item i ∈ [n] corresponds to a vertex,

• vertex n+ 1 corresponds to a dummy item, which always has value 0,
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• each xj ∈ S corresponds to an edge (uj , vj) where uj = min(f1(xj) ∪ {n + 1} \ f2(xj)) and vj = min(f2(xj) ∪
{n+ 1} \ f1(xj)), and

• the directed weight on the edge corresponding to xj from uj to vj is xjuj
− xjvj .

For notational simplicity, if the directed weight from u to v is w, we say the directed weight on the same edge from v to u is
−w.

Observe that since there are n+ 1 vertices and |S| = n+ 1 edges in the graph, there must be a cycle. Let (c1, . . . , c`) be
such a cycle, and w1, . . . , w` be the directed weights, where wi is the weight from ci to ci+1. We construct the set T using
this cycle.

First consider the case where
∑
i wi 6= 0. W.l.o.g. suppose

∑
i wi > 0. Let T be any subset of S satisfying:

• for j where (uj , vj) is in the cycle with the same direction (i.e., there exists some i ∈ [`] such that uj = ci, vj = ci+1),
xj ∈ T , and

• for j where (uj , vj) is in the cycle with the opposite direction (i.e., there exists some i ∈ [`] such that vj = ci,
uj = ci+1), xj /∈ T .

Suppose g is a price vector such that g(xj) = f1(xj) if xj ∈ T and g(xj) = f2(xj) if xj ∈ S \ T . Since for each i ∈ [`],
item ci is preferred to item ci+1, the prices must satisfy:

gci − xjci ≥ vci+1
− xjci+1

,

where xj corresponds to edge (ci, ci+1) or (ci+1, ci). Given the definition of the weights on the edges, the above condition
of the prices is equivalent to:

gci − gci+1
≥ xjci − x

j
ci+1

= wi.

Now summing over i ∈ [`], we have
0 =

∑
i∈[`]

(gci − gci+1
) ≥

∑
i∈[`]

wi > 0,

a contradiction. In other words, there is no such g for the set T constructed.

Now consider the case where
∑
i wi = 0. We consider two different constructions of T , and show that the only possible

values (restricted to the cycle) that may generate the required labels have to be the same up to a constant shift. This leads to a
contradiction, since given consistent tie-breaking, the same values cannot lead to different labels. Let T be the set constructed
in the previous case. Consider T1 = T and T2 = S \ T . Let g1 and g2 be two price vectors such that gi(xj) = fi(x

j) if
xj ∈ Ti, and gi(xj) = f3−i(x

j) if xj ∈ S \ Ti = T3−i. By the argument in the previous case, we have

g1ci − g
1
ci+1
≥ wi.

Since
∑
i wi = 0, it must be the case that for any i ∈ [`],

g1ci − g
1
ci+1

= wi.

On the other hand, for g2, we have
g2ci+1

− g2ci ≥ −wi.

Again, since
∑
i wi = 0, it must be the case that for any i ∈ [`],

g2ci+1
− g2ci = −wi.

That is,
g2ci − g

2
ci+1

= wi.

So, restricted to the cycle (c1, . . . , c`), up to a constant shift, g1 and g2 are exactly the same. Yet, they generate different
labels restricted to the cycle, leading to a contradiction under consistent tie-breaking. This concludes the upper bound on
dN (Hn,k).


