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A. Proofs
A.1. Proofs of results in section 3 framework

A.1.1. GENERALIZED MIB OBJECTIVE

We generalized the original MIB structural variational learning objective in equation 8. We show that by choosing
C1 = DKL(qφ ‖ pθ), T = 1 and G1 = G∅, K = 1, we can recover the original MIB objective equation 5.

Proposition 1. Let X ∼ P (X), and let G∅ be an empty Bayesian network over X. Then

D(p ‖ G∅) = min
q|=G

DKL(p ‖ q) = Ip(X)− IG
∅

p (X) = Ip(X) (19)

Proof. By definition, we have IG∅p (X) = 0.

Then we can see that our objective is equivalent to the original MIB objective equation 5 when α1 = 1, β1 = γ.

L = Ldist + Lstr_reg = α1DKL(qφ ‖ pθ) + β1D(qφ ‖ G∅) = α1DKL(qφ ‖ pθ) + β1IG
q

q (20)

A.1.2. DERIVATION OF EQUATION 12

qφ(z | xS) ∝ pθ(z)
∏
i∈S

qφ(z | xi)
pθ(z)

= pθ(z)
∏
i∈S

M∏
j=1

(q̃φ(zj | xi))m
q
ij

=

M∏
j=1

(
pθ(zj)

∏
i∈S

(q̃φ(zj | xi))m
q
ij

) (21)

A.1.3. FULL TABLE 2

We show the full Table 2 in Table 5.

A.2. Proof of results in section 4.1 single-modal generative mode

A.2.1. UNIFYING DISENTANGLED GENERATIVE MODELS

β-VAE For β-vae we have

L =Ldist + Lstr_reg

=C1 + (β − 1)C3 + (β − 1)Lstr_reg(G∅)
=C1 + (β − 1)C3 + (β − 1)D(qφ ‖ G∅)
=Eqφ log pθ(x | u) + EqφDKL(qφ(u | x) ‖ pθ(u)) + (β − 1)DKL(qφ(u) ‖ pθ(u)) + (β − 1)Iq(x ; u)

=Eqφ log pθ(x | u) + (1 + β − 1)DKL(qφ(u) ‖ pθ(u)) + (1 + β − 1)Iq(x ; u)

=Eqφ log pθ(x | u) + βEqφDKL(qφ(u | x) ‖ pθ(u))
≡Lβ−vae

(22)

where we include the structural regularization Lstr_reg using an empty Bayesian network Gβ−vae ≡ G∅. Thus we show that
the β-vae objective is equivalent to imposing another empty Bayesian network structure in the latent space which implies
the independent latent factors.

TCVAE (Chen et al., 2018) We further show that how we can unify other total-correlation based disentangled representation
learning models (Chen et al., 2018; Esmaeili et al., 2019; Kim & Mnih, 2018) by explicitly imposing Bayesian structure Gp
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Table 5. A unified view of {single/multi}-{modal/domain/view} models
MODELS N 1© 2© Gq Gp Ldist Lstr_reg

VAE 1 × ×
[
Gqsingle

] [
Gpsingle

]
[1, C1] []

ICA 1 × ×
[
Gqsingle

]
[] [] [β,Gpsingle]

GAN 1 × × [] Gpsingle [1, C2] []

INFOGAN 1 × × [] Gpsingle [1, C2] [1,GInfoGAN]

β-VAE 1 × ×
[
Gqsingle

] [
Gpsingle

]
[1, C1], [β − 1, C3] [β − 1,G∅]

β-TCVAE 1 × ×
[
Gqsingle

] [
Gpsingle

]
[1, C1], [α2, C3] [β,Gp]

BIVCCA 2 × ×
[
Gqmarginal

] [
Gpjoint

]
[αi, C4(xi, z)]] []

JMVAE 2 × ×
[
Gqjoint

] [
Gpjoint

]
[1, C1] [βi,Gstrcross(xi)]

TELBO 2 × ×
[
Gqjoint,G

q
marginal

] [
Gpjoint

]
[1, C1] [βi,Gstrmarginal(xi)]

MVAE N × ×
[
Gqjoint,G

q
marginal

] [
Gpjoint

]
[1, C1] [βi,Gstrmarginal(xi)]

WYNER 2 X ×
[
Gqjoint,G

q
marginal

] [
Gpjoint

]
[1, C1] [βi,Gstrcross(xi)], [βi,Gstrprivate(xi)]

DIVA 3 X ×
[
Gqmarginal

] [
Gpjoint

]
[1, C1] [βi,Gstrprivate(xi)]

OURS-MM N X X [Gqfull] [Gpfull] [1, C0] [βi,Gstrcross({xi})]

as structural regularization, where a factorized prior distribution is assumed.

L = C1 + α2C3 + βLstr_reg

Lstr_reg = D(qφ ‖ Gp) = IG
q

q − IG
p

q =

M∑
j

Iq(x ; uj)− Iq(x ; u) = Iq(u)− Iq(u | x) = Iq(u) ≡ TC(u)
(23)

Since we assume a factorized posterior distribution qφ(u | x), we have Iq(u | x) = 0 in the last line of above objective.
Thus the total-correlation minimization term emerges as a structural regularization term naturally in our framework.

A.3. Proof of results in section 4.2 multi-modal/domain/view generative model

A.3.1. UNIFYING MULTI-MODAL/DOMAIN/VIEW GENERATIVE MODELS

We show that we can obtain several representative multi-modal generative models as special cases of our proposed framework
here.

JMVAE (Suzuki et al., 2017) We can see that the objective of JMVAE is a speacial case of our proposed objective when
N = 2.

Wyner-VAE (Ryu et al., 2020) By using structural regularization D(qφ ‖ Gstrcross(xi)), we show that we can obtain the
mutual information regularization term appeared in the learning objective of Wyner-VAE (Ryu et al., 2020)

Lstr_reg = D(qφ ‖ Gstrcross(xi)) = IG
q

q − I
Gstr
cross(x)

q

= Iq(x1 ; u1) + Iq(x2 ; u2) + Iq(x1,x2 ; z)− Iq(x1 ; u1)− Iq(x2 ; u2) = Iq(x1,x2 ; z)

L = Ldist + Lstr_reg = βIq(x1,x2 ; z) + Ldist ≡ Lwyner−vae

(24)

CorEx (Steeg & Galstyan, 2014a) One of the most interesting model with similar goal to decorrelate observed variables is
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CorEx (Steeg & Galstyan, 2014a;b; 2016; Gao et al., 2019), whose objective is

max
Gj ,qφ(zj |xGj )

LCorEx =

M∑
j=1

TC
(
xGj

)
− TC

(
xGj | zj

)
s.t. Gj ∩Gj′ 6=j = ∅

(25)

For each 1 ≤ j ≤M , CorEx objective aims to search for a latent variable Zj to achieve maximum total-correlation reduction
TC

(
xGj

)
− TC

(
xGj | zj

)
of a group of observed variables XGj . We use Mq

:,j and Mp
i,: to represent Gj equivalently, then

our objective is

Ldist = D(qφ ‖ Gp) = IG
q

q − IG
p

q =

M∑
j=1

Iq(zj ; xmq
j )−

N∑
i=1

Iq(zm
p
i ; xi)

=

M∑
j=1

N∑
i=1

mq
ijIq(zj ; xi) +

M∑
j=1

[
Iq(xmq

j | zj)− Iq(xmq
j )
]
−

N∑
i=1

M∑
j=1

mp
ijIq(zj ; xi)−

N∑
i=1

[
Iq(zm

p
i | xi)− Iq(zm

p
i )
]

≤
M∑
j=1

[
Iq(xmq

j | zj)− Iq(xmq
j )
]
+

N∑
i=1

Iq(z
mp

i )

≡ −LCorEx +
N∑
i=1

Iq(zm
p
i )

(26)
Thus with structural regularization Gp we obtained an objective coincides with CorEx-based variational autoencoder (Gao
et al., 2019), which is also upper-bound of original CorEx objective(Steeg & Galstyan, 2014a) with additional disentangle-
ment regularization over latent variables.

A.3.2. DERIVATION OF OBJECTIVE EQUATION 16

We show the detailed derivation of the learning objective of our multi-domain generative model here. As introduced in 4.2,
we impose N structural regularization for each individual XS = {Xi} as D(qφ ‖ Gstrcross ({xi})). First we hvae

Proposition 2. We have following upper-bound

1

N

N∑
i=1

D(qφ ‖ Gstrcross ({xi})) ≤ Lu +

N∑
i=1

EqφDKL(qφ(z | x) ‖ qφ(z | xi)) (27)
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Proof.

1

N

N∑
i=1

D(qφ ‖ Gstrcross ({xi})) = Iq(u ; x) +
1

N

N∑
i=1

Iq(z ; x)− Iq(z ; xi)−
N∑
k 6=i

Iq(z ; xk)


= Iq(u ; x) +

1

N

N∑
i=1

Iq(z ; x) +
1

N

N∑
i=1

−Iq(z ; xi) +

N∑
k 6=i

Iq(z ; xk)


= Iq(u ; x) + Iq(z ; x)−

N∑
i=1

Iq(z ; xi)

= EqφDKL(qφ(u | x) ‖ qmg
φ (u)) +

N∑
i=1

EqφDKL(qφ(z | x) ‖ qmg
φ (z | xi))

= EqφDKL(qφ(u | x) ‖ pθ(u)) +
N∑
i=1

EqφDKL(qφ(z | x) ‖ qφ(z | xi))

− EqφDKL(q
mg
φ (u) ‖ pθ(u))−

N∑
i=1

EqφDKL(q
mg
φ (z | x) ‖ qφ(z | xi))

≤ EqφDKL(qφ(u | x) ‖ pθ(u)) +
N∑
i=1

EqφDKL(qφ(z | x) ‖ qφ(z | xi))

= Lu +

N∑
i=1

EqφDKL(qφ(z | x) ‖ qφ(z | xi))

where qmg
φ (u) ≡ Eqφqφ(u | x) and qmg

φ (z | xi) = Eqφ(x|xi)qφ(z | x) denote the induced marginalization of qφ(x,u, z).
Note that by using the above upper-bound, the inference network distribution qφ(z | xi) introduced in 3.4 is trained to
approximate the true marginalization qmg

φ (z | x). Thus we have following full objective

L = Ldist + Lstr_reg = DKL(qφ(x, z,u) ‖ pθ(x, z,u)) +
1

N

N∑
i=1

D(qφ ‖ Gstrcross ({xi}))

= −Eqφ(z,u|x) log pθ(x | z,u) (Lx)

+ Eqφ(x)DKL(qφ(u | x) ‖ pθ(u)) (Lu)

+

N∑
i=0

Eqφ(x)DKL(qφ(z | x) ‖ qφ(z | xi)) (Lz)

≡ Lx + Lu + Lz (28)

We use qφ(z | x0) ≡ pθ(z) for the simplicity of notations. We further show that Lz can be viewed as a generalized
JS-divergence for the reverse KL-divergence (Nielsen, 2019). We decompose Lz regarding each latent variable Zj ,

Lz =

M∑
j=1

Lzj
, qφ(zj | x) ∝

N∏
i=0

qφ(zj | xi)γij

Lzj = DKL∗

JS (qφ(zj | x0), qφ(zj | x1), . . . , qφ(zj | xN ))

N∑
i=0

γi = 1, γ0j = 1−
N∑
i=1

mq
ij , γij = mq

ij i > 0

(29)

where we use KL∗ to denote the reverse KLD and following the same notation in (Nielsen, 2019) for the generalized JSD.
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A.4. Proof of results in section 5 case study: fair representation learning

We show the detailed derivation of the learning objective 17 here.

L = Ldist + Lstr_reg = DKL(qφ(x, z,u) ‖ pθ(x, z,u)) + β1D(qφ ‖ Gstrinformative) + β2D(qφ ‖ Gstrinvariant)

= DKL(qφ ‖ pθ) + β1Iq(x;a | z) + β2Iq(z ; u) + const

≤ −Eqφ log pθ(x,a | z,u) + β2Iq(z ; u) + (1 + β1)EqφDKL(qφ(z | x,a) ‖ pθ(z)) + const

(30)

We can interpret this derived learning objective as first seeking for a succinct latent representation Z that captures the
sufficient correlation between X and A, then Z is served as a proxy variable to learn an informative representation U with all
information relevant to A eliminated by minimizing Iq(z ; u).

A.5. Details of section 6 case study: invariant risk minimization

We show that the idea in (Arjovsky et al., 2019) can be directly integrated into our proposed framework by imposing stable
Mp structure as constraints across environments, measured by gradient-penalty term shown below

Lgp = Ldist + Eqφ(e) ‖∇MpLscore‖ (31)

B. Experiments
B.1. Generative modeling

Datasets Following the same evaluation protocol proposed by previous works (Ryu et al., 2020; Wu & Goodman, 2018), we
construct the bi-modal datasets MNIST-Label by using the digit label as a second modality, MNIST-SVHN by pairing each
image sample in MNIST with another random SVHN image sharing the same digit label and a bi-view dataset MNIST-
MNIST-Plus-1 by pairing each MNIST sample X1 with another random sample X2 correlated as label(X1)+1 = label(X2).
We illustrate the data generating process using Bayesian networks in Figure 6.

X1

U1 D

X2

U2

X1

U1 D

X2

U2D+1

MNIST-SVHN MNIST-Plus-1

Figure 6. Bayesian networks for illustrating the data generating process of MNIST-SVHN dataset and MNIST-PLUS-1 dataset.

Training details and hyper-parameters For MNIST-Label dataset, we use MLPs with 2 hidden layers for both encoders
and decoders, following the same neural network architecture in (Wu & Goodman, 2018). The dimension of Z modeling the
shared information is 2. The dimension of U1 modeling MNIST image is 20. We don’t include U2 in this setting and set the
dimension of U2 to 0. For MNIST-SVHN dataset, the dimension of Z is 2, the dimension of U1 for MNIST is 20 and the
dimension of U2 for SVHN is 20. For MNIST-MNIST-Plus-1 dataset, the dimension of Z is 2, and the dimension of U1 for
MNIST is 20. We train the model using the Adam optimizer with a learning rate starting from 0.001, and decay the learning
rate by a factor 0.1 whenever a validation loss plateau is found during training. We train the model up to 1000 epochs for all
datasets. We learn the structural variable M with steps_dist = 1 and steps_str = 3 in all experiments. We use the same
neural network architectures for encoder and decoder as (Ryu et al., 2020) in MNIST-SVHN and MNIST-MNIST-Plus-1
datasets.

Qualitative results of MNIST-Label Due to the space limit constraint, we include the qualitative results of MNIST-Label
experiment here. We show the conditionally generated samples in figure 7.
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a b

Figure 7. Conditionally generated samples when (a) label = 6 and (b) label = 7.

B.2. Fairness

Training details and hyperparameter sensitivity We follow the same neural network architecture design and evaluation
process in (Song et al., 2019). The dimension of U is 10 for German and Adult datasets, the dimension of Z is 5. We find
that the experimental result is not sensitive to the dimension of Z when it’s in range 2 to 10. We train the model up to 10000
epochs using Adam optimizer with leraning rate 0.001, and decay the learning rate by a factor 0.1 when loss plateau is
detected. We don’t train the structural variables in this experiment. We re-scale the likelihood in objective to make the loss
terms balance for the consideration of training stability. Numbers in table 3 are evaluated with 10 random runs with different
random seeds.

B.3. Out-of-Distribution Generalization

Figure 8. Training environment accuracy (Left) and testing environment accuracy (Right) on Colored-MNIST dataset

Colored MNIST Colored MNIST is an experiment that was used in (Arjovsky et al., 2019), in which the goal is to predict
the label of a given digit in the presence of varying exterior factor e. The dataset for this experiment is derived from MNIST.
Each member of the Colored MNIST dataset is constructed from an image-label pair (x, y) in MNIST, as follows.

1. Generate a binary label ŷobs from y with the following rule: ŷobs = 0 if y ∈ {0 ∼ 4} and ŷobs = 1 otherwise.
2. Produce yobs by flipping ŷobs with a fixed probability p.
3. Let xfig be the binary image corresponding to y.
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4. Put yobs = x̂ch1, and construct xch1 from x̂ch by flipping x̂ch1 with probability pe.
5. Construct xobs = xfig × [xch0, (1− xch0), 0].(that is, make the image red if xch1 = 1 and green if xch1 = 0.) Indeed,
xobs has exactly same information as the pair (xfig, xch1).

The goal of this experiment is to use the dataset with pe values in small compact range (training dataset) to train a model
that can perform well on all ranges of pe. In particular, we use the dataset with pe ∈ {0.1, 0.2} and evaluate the model on
the dataset with pe = 0.9. For more details of Colored MNIST experiment, please consult the original article.

Training details We follow the same neural network architecture design of encoder and evaluation process in (Arjovsky
et al., 2019). The decoder is 1-layer MLP. We re-scale the likelihood terms to make the gradient norm of each one stays in
the same magnitude. We train the model in a full-batch training manner, that the batch size is 50000. For semi-supervised
training, we randomly partitioned the dataset into two halfs and alternate between training (X,E,Y) and (X,E). The
dimension of Z is 4. Following the same practice in (Arjovsky et al., 2019), we use early-stopping on validation set as
regularization. Numbers in table 4 are evaluated with 10 random runs with different random seeds. We illustrate the training
dynamics of our model by plotting the accuracy progression in both training environments and testing environment in
Figure 8.


