## A. Notations

We begin the appendix with a restatement of the notations. Denote $c, c^{\prime}, c_{i}$ as some universal positive constants. Notice that their values may not necessarily the same even for those with same notations. We denote $a \lesssim b$ if there exists some positive constant $c_{0}>0$ such that $a \leq c_{0} b$. Similarly we define $a \gtrsim b$ provided $a \geq c_{0} b$ for some positive constant $c_{0}$. We write $a \asymp b$ when $a \lesssim b$ and $a \gtrsim b$ hold simultaneously.

For an arbitrary matrix $\mathbf{X}$, we denote $\mathbf{X}_{i,:}$ as the $i$-th row, $\mathbf{X}_{:, i}$ as its $i$-th column, and $X_{i j}$ as the $(i, j)$-th element. The Frobenius norm of $\mathbf{X}$ is defined as $\|\mathbf{X}\|_{\mathrm{F}}$ while the operator norm is denoted as $\|\mathbf{X}\|_{\mathrm{OP}}$, whose definition can be found in Section 2.3 of Golub and Loan (2013) (P71). Its stable rank $\rho(\mathbf{X})$ is defined as the ratio $\|\mathbf{X}\|_{\text {F }}^{2} /\|\mathbf{X}\|_{\text {OP }}^{2}$ (Section 2.1.15 in Tropp (2015)). The inner product $\langle\mathbf{A}, \mathbf{C}\rangle$ is defined as $\sum_{i j} A_{i j} C_{i j}$.
Associate with each permutation matrix $\boldsymbol{\Pi}$, we define the operator $\pi(\cdot)$ that transforms index $i$ to $\pi(i)$. The Hamming distance $\mathrm{d}_{\mathrm{H}}\left(\boldsymbol{\Pi}_{1}, \boldsymbol{\Pi}_{2}\right)$ between permutation matrix $\boldsymbol{\Pi}_{1}$ and $\boldsymbol{\Pi}_{2}$ is defined as $\mathrm{d}_{\mathrm{H}}\left(\boldsymbol{\Pi}_{1}, \boldsymbol{\Pi}_{2}\right)=\sum_{i=1}^{n} \mathbb{1}\left(\pi_{1}(i) \neq \pi_{2}(i)\right)$. Additionally, we denote $\overline{\mathcal{E}}$ as the complement of the event $\mathcal{E}$ and the signal-to-noise-ratio (SNR) as SNR $=\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2} /\left(m \sigma^{2}\right)$.

## B. Problem Restatement

To begin with, we recall the problem formulation, which reads as

$$
\mathbf{Y}=\mathbf{\Pi}^{\natural} \mathbf{X} \mathbf{B}^{\natural}+\mathbf{W}
$$

where $\mathbf{Y} \in \mathbb{R}^{n \times m}$ represents the observation, $\boldsymbol{\Pi} \in \mathbb{R}^{n \times n}$ denotes the unknown permutation matrix, $\mathbf{X} \in \mathbb{R}^{n \times p}$ is the sensing matrix (design matrix) with $X_{i j} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}(0,1)$ being a standard normal random variable (RV), $\mathbf{B}^{\natural} \in \mathbb{R}^{p \times m}$ is the matrix of regression coefficients, and $\mathbf{W} \in \mathbb{R}^{n \times m}$ is the additive Gaussian noise matrix such that $W_{i j} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$.
Our goal is to reconstruct the pair $(\widehat{\boldsymbol{\Pi}}, \widehat{\mathbf{B}})$ from the observation $\mathbf{Y}$ and sensing matrix (design matrix) $\mathbf{X}$. The proposed one-step estimator can be written as

$$
\begin{aligned}
\widehat{\mathbf{\Pi}} & =\operatorname{argmax}_{\boldsymbol{\Pi} \in \mathcal{P}_{n}}\left\langle\mathbf{\Pi}, \mathbf{Y} \mathbf{Y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle \\
\widehat{\mathbf{B}} & =(\mathbf{X})^{\dagger} \widehat{\boldsymbol{\Pi}}^{\top} \mathbf{Y}
\end{aligned}
$$

where $\mathbf{X}^{\dagger}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$ denotes the pseudo-inverse of $\mathbf{X}$. In the following, we will separately investigate its properties under the single observation model $(m=1)$ and multiple observations model $(m>1)$. The formal statement is packaged in Theorem 1 and Theorem 2.

## C. Appendix for Section 3

This section focuses on the special case where $p=1, m=1$. Consider $\mathbf{X} \in \mathbb{R}^{n}$ to be a Gaussian distributed RV such that $\mathbf{X} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{n \times n}\right)$, and permutation matrix $\boldsymbol{\Pi}^{\natural}$ which satisfies $\mathrm{d}_{\mathrm{H}}\left(\mathbf{I}, \boldsymbol{\Pi}^{\natural}\right)=h \leq n / 4$.

## C.1. Notations

First we define the following events $\mathcal{E}_{i},(1 \leq i \leq 5)$, which reads

$$
\begin{aligned}
\mathcal{E}_{1} & \triangleq\left\{\left\langle\mathbf{X}, \boldsymbol{\Pi}^{\natural} \mathbf{X}\right\rangle \geq c_{0} n\right\} \\
\mathcal{E}_{2} & \triangleq\left\{\|\mathbf{X}\|_{2} \leq 2 \sqrt{n}\right\} \\
\mathcal{E}_{3}(\boldsymbol{\Pi}) & \triangleq\left\{\mathbf{W}^{\top} \mathbf{X} \mathbf{X}^{\top}\left(\boldsymbol{\Pi}^{\natural}-\mathbf{\Pi}\right) \mathbf{W} \lesssim \sigma^{2} n^{2} \log n\right\}, \\
\mathcal{E}_{4}(\boldsymbol{\Pi}) & \triangleq\left\{\left|\langle\mathbf{W}, \mathbf{X}\rangle\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X},\left(\boldsymbol{\Pi}^{\natural}-\mathbf{\Pi}\right)^{\top} \mathbf{X}\right\rangle+\left\langle\mathbf{W},\left(\boldsymbol{\Pi}^{\natural}-\mathbf{\Pi}\right)^{\top} \mathbf{X}\right\rangle\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \mathbf{X}\right\rangle\right| \lesssim \sigma n^{2} \sqrt{\log n}\right\} \\
\mathcal{E}_{5}(\boldsymbol{\Pi} ; \ell) & \triangleq\left\{\|\mathbf{X}-\boldsymbol{\Pi} \mathbf{X}\|_{2}^{2} \geq \frac{12 \ell}{5 e n^{20}}, \mathrm{~d}_{\mathbf{H}}(\mathbf{I}, \boldsymbol{\Pi})=\ell\right\},
\end{aligned}
$$

where $\Pi$ is an arbitrary permutation matrix, and $c_{0}>0$ is some positive constant.

## C.2. Outline of proof

We will prove that ground truth permutation matrix $\Pi^{\natural}$ will be returned with high probability under the assumptions in Theorem 1. The formal statement is shown in Theorem 1. Before we delve into the proof details, we give a roadmap of the proof, which is

- Step I: Under the events $\mathcal{E}_{1} \bigcap_{\boldsymbol{\Pi}}\left(\mathcal{E}_{3}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{4}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{5}(\boldsymbol{\Pi} ; \ell)\right)$, we have

$$
\left\langle\boldsymbol{\Pi}^{\natural}, \mathbf{y} \mathbf{y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle-\left\langle\boldsymbol{\Pi}, \mathbf{y} \mathbf{y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle \gtrsim \frac{c_{0} \beta^{2}}{n^{19}}-c_{1} \beta \sigma n^{2} \sqrt{\log n}-c_{2} \sigma^{2} n^{2} \log n .
$$

Notice that under assumptions in Theorem 1, we conclude that $\left\langle\boldsymbol{\Pi}^{\natural}, \mathbf{y} \mathbf{y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle>\left\langle\boldsymbol{\Pi}, \mathbf{y} \mathbf{y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle, \forall \boldsymbol{\Pi}$, which suggests that $\Pi^{\natural}$ will always be returned by our estimator in Eq. (3).

- Step II: We upper-bound the probability $\mathbb{P}\left(\widehat{\boldsymbol{\Pi}} \neq \boldsymbol{\Pi}^{\natural}\right)$ by $\mathbb{P}\left(\overline{\mathcal{E}}_{1} \bigcup_{\Pi}\left(\overline{\mathcal{E}}_{3}(\boldsymbol{\Pi}) \bigcup \overline{\mathcal{E}}_{4}(\boldsymbol{\Pi}) \bigcup \overline{\mathcal{E}}_{5}(\boldsymbol{\Pi} ; \ell)\right)\right)$ and complete the proof by showing it is at most $\mathrm{cn}{ }^{-1}$.

Having illustrated the proof strategy, we turn to the proof details. The main proof is attached in Section C. 3 while the supporting lemmas bounding $\mathbb{P}\left(\mathcal{E}_{i}\right),(1 \leq i \leq 5)$, are put in Section C.4.

## C.3. Proof of Theorem 1

Proof 1 For an arbitrary permutation matrix $\boldsymbol{\Pi}$, we can expand the term $\left\langle\boldsymbol{\Pi}, \mathbf{y y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle$ as

$$
\left\langle\boldsymbol{\Pi}, \mathbf{y} \mathbf{y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle=\mathcal{T}_{1}(\boldsymbol{\Pi})+\beta \mathcal{T}_{2}(\boldsymbol{\Pi})+\beta^{2} \mathcal{T}_{3}(\boldsymbol{\Pi})
$$

where $\mathcal{T}_{i}(\boldsymbol{\Pi}),(1 \leq i \leq 3)$, are defined as

$$
\begin{aligned}
& \mathcal{T}_{1}(\boldsymbol{\Pi})=\left\langle\mathbf{W}, \boldsymbol{\Pi}^{\top} \mathbf{X}\right\rangle\langle\mathbf{X}, \mathbf{W}\rangle \\
& \mathcal{T}_{2}(\boldsymbol{\Pi})=\langle\mathbf{W}, \mathbf{X}\rangle\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \boldsymbol{\Pi}^{\top} \mathbf{X}\right\rangle+\left\langle\mathbf{W}, \boldsymbol{\Pi}^{\top} \mathbf{X}\right\rangle\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \mathbf{X}\right\rangle \\
& \mathcal{T}_{3}(\boldsymbol{\Pi})=\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \boldsymbol{\Pi} \mathbf{X}\right\rangle\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \mathbf{X}\right\rangle
\end{aligned}
$$

Step I: We rewrite the difference $\left\langle\mathbf{\Pi}^{\natural}, \mathbf{y y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle-\left\langle\boldsymbol{\Pi}, \mathbf{y} \mathbf{y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle$ as

$$
\begin{aligned}
& \left\langle\boldsymbol{\Pi}^{\natural}, \mathbf{y} \mathbf{y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle-\left\langle\boldsymbol{\Pi}, \mathbf{y} \mathbf{y}^{\top} \mathbf{X} \mathbf{X}^{\top}\right\rangle \\
= & \mathcal{T}_{1}\left(\boldsymbol{\Pi}^{\natural}\right)-\mathcal{T}_{1}(\mathbf{\Pi})+\beta\left(\mathcal{T}_{2}\left(\boldsymbol{\Pi}^{\natural}\right)-\mathcal{T}_{2}(\mathbf{\Pi})\right)+\beta^{2}\left(\mathcal{T}_{3}\left(\boldsymbol{\Pi}^{\natural}\right)-\mathcal{T}_{3}(\mathbf{\Pi})\right) \\
\stackrel{(1)}{=} & \frac{\beta^{2}}{2}\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \mathbf{X}\right\rangle\left\|\mathbf{X}-\boldsymbol{\Pi}^{\natural \top} \mathbf{\Pi} \mathbf{X}\right\|_{2}^{2}+\beta\left(\mathcal{T}_{2}\left(\boldsymbol{\Pi}^{\natural}\right)-\mathcal{T}_{2}(\boldsymbol{\Pi})\right)+\mathcal{T}_{1}\left(\boldsymbol{\Pi}^{\natural}\right)-\mathcal{T}_{1}(\mathbf{\Pi}) \\
\stackrel{(2)}{\geq} & \frac{\beta^{2}}{2} c_{0} n \frac{24}{5 e n^{20}}-\beta\left|\mathcal{T}_{2}\left(\boldsymbol{\Pi}^{\natural}\right)-\mathcal{T}_{2}(\boldsymbol{\Pi})\right|-\left|\mathcal{T}_{1}\left(\boldsymbol{\Pi}^{\natural}\right)-\mathcal{T}_{1}(\mathbf{\Pi})\right| \\
& (3) \\
\geq & \frac{c_{0} \beta^{2}}{n^{19}}-c_{1} \beta \sigma n^{2} \sqrt{\log n}-c_{2} \sigma^{2} n^{2} \log n \stackrel{\text { (4) }}{>} 0,
\end{aligned}
$$

where in (1) we rewrite $\|\mathbf{X}\|_{2}^{2}-\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \boldsymbol{\Pi} \mathbf{X}\right\rangle$ as

$$
\|\mathbf{X}\|_{2}^{2}-\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \boldsymbol{\Pi} \mathbf{X}\right\rangle=\frac{1}{2}\left(\|\mathbf{X}\|_{2}^{2}+\left\|\boldsymbol{\Pi}^{\natural \top} \boldsymbol{\Pi} \mathbf{X}\right\|_{2}^{2}-2\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \boldsymbol{\Pi} \mathbf{X}\right\rangle\right)=\frac{1}{2}\left\|\mathbf{X}-\boldsymbol{\Pi}^{\natural \top} \boldsymbol{\Pi} \mathbf{X}\right\|_{2}^{2},
$$

in (2) we condition on event $\mathcal{E}_{1}, \mathcal{E}_{5}(\boldsymbol{\Pi} ; \ell)$ and have $\|\mathbf{X}-\boldsymbol{\Pi} \mathbf{X}\|_{2}^{2} \geq \frac{12 \ell}{5 e n^{20}} \geq \frac{24}{5 e n^{20}}$, in (3) we condition on $\mathcal{E}_{3}(\boldsymbol{\Pi}), \mathcal{E}_{4}(\boldsymbol{\Pi})$, and in (4) we use the assumption $\log (\mathrm{SNR}) \gtrsim \log n$ in Theorem 1 .

Step II: The error probability $\mathbb{P}\left(\widehat{\Pi} \neq \Pi^{\natural}\right)$ is hence be upper-bounded as

$$
\begin{aligned}
& \quad \mathbb{P}\left(\widehat{\boldsymbol{\Pi}} \neq \boldsymbol{\Pi}^{\natural}\right) \leq \mathbb{P}\left(\overline{\mathcal{E}}_{1} \bigcup_{\Pi}\left(\overline{\mathcal{E}}_{3}(\boldsymbol{\Pi}) \bigcup \overline{\mathcal{E}}_{4}(\boldsymbol{\Pi}) \bigcup \overline{\mathcal{E}}_{5}(\boldsymbol{\Pi} ; \ell)\right)\right) \\
& \stackrel{(5)}{\leq} \mathbb{P}\left(\bigcup_{\boldsymbol{\Pi}}\left(\overline{\mathcal{E}}_{3}(\boldsymbol{\Pi}) \bigcup \overline{\mathcal{E}}_{4}(\boldsymbol{\Pi}) \bigcup \overline{\mathcal{E}}_{5}(\boldsymbol{\Pi})\right) \bigcap \mathcal{E}_{1} \bigcap \mathcal{E}_{2}\right)+\mathbb{P}\left(\overline{\mathcal{E}}_{1}\right)+\mathbb{P}\left(\overline{\mathcal{E}}_{2}\right) \\
& \stackrel{\text { 6 }}{\leq} \sum_{\Pi^{\natural} \neq \boldsymbol{\Pi}} \mathbb{P}\left(\overline{\mathcal{E}}_{3}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{1} \bigcap \mathcal{E}_{2}\right)+\sum_{\Pi^{\natural} \neq \boldsymbol{\Pi}} \mathbb{P}\left(\overline{\mathcal{E}}_{4}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{1} \bigcap \mathcal{E}_{2}\right) \\
& + \\
& \sum_{\ell \geq 2} \mathbb{P}\left(\overline{\mathcal{E}}_{5}(\boldsymbol{\Pi} ; \ell) \bigcap \mathcal{E}_{1} \bigcap \mathcal{E}_{2}\right)+8 n^{-1}+2 e^{-c_{0} n} \\
& \stackrel{(7)}{\leq} 2 n^{-n}+3 \sum_{\ell \geq 2}\binom{n}{\ell} \ell!n^{-2 \ell}+8 n^{-1}+2 e^{-c_{0} n} \\
& \stackrel{8}{\lesssim} c_{0} n^{-n}+n^{-1}+3 \sum_{\ell \geq 2} n^{\ell} n^{-2 \ell} \lesssim c_{0} n^{-1}+\frac{3}{n(n-1)} \lesssim n^{-1}
\end{aligned}
$$

where in (5) we use the union bound, in (6) we complete the proof with Lemma 1 and the fact $\mathbb{P}\left(\overline{\mathcal{E}}_{2}\right) \leq e^{-0.8 n}$, in (7) we invoke Lemma 2, Lemma 3, Lemma 4, and in (8) we use $n!/(n-\ell)!\leq n^{\ell}$ and complete the proof.

## C.4. Supporting Lemmas for Theorem 1

This subsection collects the supporting lemmas for the proof of Theorem 1.
Lemma 1 We have $\mathbb{P}\left(\overline{\mathcal{E}}_{1}\right) \leq 8 n^{-1}+e^{-0.238 n}$ when $n$ is sufficiently large.
Proof 2 Different from the proof in Lemma 9, we consider the case where $\mathbf{X} \in \mathbb{R}^{n}$ is a vector and would lower-bound $\left\langle\mathbf{X}, \Pi^{\natural} \mathbf{X}\right\rangle$. W.l.o.g, we assume the first $h$ entries are permuted and expand the inner product $\left\langle\mathbf{X}, \Pi^{\natural} \mathbf{X}\right\rangle$ as

$$
\left\langle\mathbf{X}, \boldsymbol{\Pi}^{\natural} \mathbf{X}\right\rangle=\sum_{i=1}^{h} X_{i} X_{\pi(i)}+\sum_{i=h+1}^{n} X_{i}^{2}
$$

With union bound, we can upper bound $\mathbb{P}\left(\left\langle\mathbf{X}, \Pi^{\natural} \mathbf{X}\right\rangle \leq c_{0} n\right)$ as

$$
\mathbb{P}\left(\left\langle\mathbf{X}, \boldsymbol{\Pi}^{\natural} \mathbf{X}\right\rangle \leq c_{0} n\right) \stackrel{\mathbb{1}}{\leq} \underbrace{\mathbb{P}\left(\sum_{i=h+1}^{n} X_{i}^{2} \leq \frac{1}{4}(n-h)\right)}_{\zeta_{1}}+\underbrace{\mathbb{P}\left(\sum_{i=1}^{h} X_{i} X_{\pi(i)} \leq-\frac{4 \sqrt{2}+\sqrt{35}}{\sqrt{2}} \sqrt{n \log n}\right)}_{\zeta_{2}}
$$

where $c_{0}>0$ is some positive constant, in (1) we use the fact

$$
\frac{n-h}{4}-\frac{4 \sqrt{2}+\sqrt{35}}{\sqrt{2}} \sqrt{n \log n} \stackrel{\left(h \leq \frac{n}{4}\right)}{\geq} \frac{3 n}{16}-\frac{4 \sqrt{2}+\sqrt{35}}{\sqrt{2}} \sqrt{n \log n} \geq c_{0} n
$$

when $n$ is large. We finish the proof by separately upper-bounding $\zeta_{1} \leq e^{-0.2386 n}$ and $\zeta_{2} \leq 8 n^{-1}$. The detailed computation comes as follows.
Phase I: For $\zeta_{1}$, we can view $\sum_{i=h+1}^{n} X_{i}^{2}$ as a $\chi^{2}-R V$ with $(n-h)$ freedom and have

$$
\zeta_{1} \stackrel{(2)}{\leq} \exp \left(\frac{n-h}{2}\left(\log \frac{1}{4}-\frac{1}{4}+1\right)\right) \stackrel{3}{\leq} e^{-0.2386 n}
$$

where in (2) we use Lemma 11, and (3) is because $h \leq n / 4$.
Phase II: To bound $\zeta_{2}$, we divide the index set $\{j: j \neq \pi(j)\}$ into 3 disjoint sets $\mathcal{I}_{i}, 1 \leq i \leq 3$, as in Lemma 8 in Pananjady et al. (2017a) (restated as Lemma 13). This division has two properties: (i) indices $j$ and $\pi(j)$ lies in different sets; (ii) the cardinality $h_{i}$ of each $\mathcal{I}_{i}$ satisfies $\lfloor h / 5\rfloor \leq h_{i} \leq h / 3$. Then we obtain

$$
\begin{aligned}
& \zeta_{2} \leq \mathbb{P}\left(\sum_{i=1}^{h} X_{i} X_{\pi(i)} \leq-\frac{4 \sqrt{2}+\sqrt{35}}{\sqrt{2}} \sqrt{n \log n},\left|X_{i}\right| \leq 2 \sqrt{\log n}, \forall i\right)+\mathbb{P}\left(\left|X_{i}\right| \geq 2 \sqrt{\log n}, \exists i\right) \\
& \stackrel{44}{\leq} \sum_{i=1}^{3} \underbrace{\mathbb{P}\left(\sum_{j \in \mathcal{I}_{i}} X_{j} X_{\pi(j)} \leq-\frac{4 \sqrt{2}+\sqrt{35}}{3 \sqrt{2}} \sqrt{n \log n},\left|X_{i}\right| \leq 2 \sqrt{\log n}, \forall i\right)}_{\zeta_{2, i}}+n \underbrace{\mathbb{P}\left(\left|X_{i}\right| \geq 2 \sqrt{\log n}\right)}_{\leq 2 n^{-2}},
\end{aligned}
$$

where in (4) we use the union bound for $\sum_{i=1}^{h} X_{i} X_{\pi(i)}$ and the tail bounds for Gaussian distributed $X_{i}$.
Then we define $Z_{i}=\sum_{j \in \mathcal{I}_{i}} X_{j} X_{\pi(j)}$ and bound $\zeta_{2, i}$ via the Bernstein inequality (Theorem 2.8.4 in Vershynin (2018)). First, we verify that $\mathbb{E}\left(X_{j} X_{\pi(j)}\right)=\left(\mathbb{E} X_{j}\right)\left(\mathbb{E} X_{\pi(j)}\right)=0$. Meanwhile we compute $\sigma^{2}=\sum_{j \in \mathcal{I}_{i}} \mathbb{E}\left(X_{j} X_{\pi(j)}\right)^{2}=h_{i}$. According to the Bernstein inequality, we have

$$
\left|\sum_{j \in \mathcal{I}_{i}} X_{j} X_{\pi(j)}\right| \geq \frac{4}{3}(\log n)^{2}+\sqrt{\frac{16}{9}(\log n)^{4}+2(\log n) h_{i}}
$$

holds with probability $2 n^{-1}$. Meanwhile, we can upper bound as

$$
\frac{4}{3}(\log n)^{2}+\sqrt{\frac{16}{9}(\log n)^{4}+2(\log n) h_{i}} \leq \frac{4}{3}(\log n)^{2}+\sqrt{\frac{16}{9}(\log n)^{4}+\frac{n \log n}{6}} \stackrel{5}{\leq} \frac{4 \sqrt{2}+\sqrt{35}}{3 \sqrt{2}} \sqrt{n \log n}
$$

where (5) is because $n \geq \log ^{3}(n)$ for $n \geq 95$. Hence, we conclude that $\zeta_{2, i} \leq 2 n^{-1}$ and complete the proof by combining the bound for $\zeta_{1}$ and $\zeta_{2}$.

Lemma 2 We have $\mathbb{P}\left(\overline{\mathcal{E}}_{3}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{2}\right) \leq n^{-2 n}$.
Proof 3 For the conciseness of notation, we define $\boldsymbol{\Xi}$ as $\boldsymbol{\Xi} \triangleq \mathbf{X X}^{\top}\left(\Pi^{\natural}-\boldsymbol{\Pi}\right)$. Due to the independence of the $\mathbf{X}$ and $\mathbf{W}$, we can condition on $\mathbf{X}$ and bound $\mathbb{P}\left(\overline{\mathcal{E}}_{3}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{2}\right)$ as

$$
\begin{aligned}
& \mathbb{P}\left(\overline{\mathcal{E}}_{3}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{2}\right) \stackrel{(1)}{\leq} \mathbb{P}\left(\mathbf{W}^{\top} \boldsymbol{\Xi} \mathbf{W} \geq \mathbb{E} \mathbf{W}^{\top} \boldsymbol{\Xi} \mathbf{W}+c \sigma^{2} n^{2} \log n\right) \\
\stackrel{(2)}{\leq} & \exp \left(-\left(\frac{c_{0} n^{4} \log ^{2} n}{\|\boldsymbol{\Xi}\|_{\mathrm{F}}^{2}} \wedge \frac{c_{1} n^{2} \log n}{\|\boldsymbol{\Xi}\|_{2}}\right)\right) \stackrel{(3)}{\leq} n^{-2 n}
\end{aligned}
$$

where in (1) we condition on $\mathcal{E}_{2}$ and use the fact

$$
\mathbb{E} \mathbf{W}^{\top} \boldsymbol{\Xi} \mathbf{W}+c \sigma^{2} n^{2} \log n \lesssim \sigma^{2}\|\mathbf{X}\|_{2}^{2}+c \sigma^{2} n^{2} \log n \lesssim \sigma^{2} n^{2} \log n
$$

in (2) we use Hanson-Wright inequality (Theorem 6.2 .1 in Vershynin (2018), and in (3) we condition on $\mathcal{E}_{2}$ and use $\|\boldsymbol{\Xi}\|_{2} \lesssim\|\mathbf{X}\|_{2}^{2} \lesssim n$.

Lemma 3 We have $\mathbb{P}\left(\overline{\mathcal{E}}_{4}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{2}\right) \leq n^{-2 n}$.
Proof 4 Due to the independence between $\mathbf{W}$ and $\mathbf{X}$, we would like to condition on $\mathbf{X}$ and bound $\mathbb{P}\left(\overline{\mathcal{E}}_{4}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{2}\right)$ as

$$
\mathbb{P}\left(\overline{\mathcal{E}}_{4}(\boldsymbol{\Pi}) \bigcap \mathcal{E}_{2}\right) \leq \exp \left(-\frac{4 c \sigma^{2} n^{4} \log n}{2 \sigma_{\Pi}^{2}}\right)
$$

where $\sigma_{\Pi}^{2}$ is defined as

$$
\sigma_{\boldsymbol{\Pi}}^{2}=\sigma^{2}\left\|\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X},\left(\boldsymbol{\Pi}^{\natural}-\boldsymbol{\Pi}\right)^{\top} \mathbf{X}\right\rangle \mathbf{X}+\left\langle\boldsymbol{\Pi}^{\natural} \mathbf{X}, \mathbf{X}\right\rangle\left(\boldsymbol{\Pi}^{\natural}-\boldsymbol{\Pi}\right) \mathbf{X}\right\|_{F}^{2}
$$

Notice under $\mathcal{E}_{2}$, we have $\sigma_{\boldsymbol{\Pi}}^{2} \lesssim \sigma^{2}\left(4\|\mathbf{X}\|_{2}^{3}\right)^{2}=c \sigma^{2} n^{3}$, and complete the proof by showing

$$
\exp \left(-\frac{4 c \sigma^{2} n^{4} \log n}{2 \sigma_{\Pi}^{2}}\right) \leq \exp \left(-\frac{4 c \sigma^{2} n^{4} \log n}{2 c \sigma^{2} n^{3}}\right)=n^{-2 n} .
$$

Lemma 4 We have $\mathbb{P}\left(\overline{\mathcal{E}}_{5}(\Pi) ; \ell\right) \leq 3 n^{-2 \ell}$.
Proof 5 Adopting a similar approach as in proving Lemma 1, we can decompose the index sets $\{j: j \neq \pi(j)\}$ into 3 disjoint sets $\mathcal{I}_{i}(1 \leq i \leq 3)$ such that: (1) $j$ and $\pi(j)$ do not lie within the same index set $\mathcal{I}_{i}$; and (2) the cardinality $\ell_{i}$ of $\mathcal{I}_{i}$ satisfies $\lfloor\ell / 5\rfloor \leq \ell_{i} \leq \ell / 3$. Then we can bound $\mathbb{P}\left(\mathcal{E}_{5}(\Pi ; \ell)\right)$ as

$$
\begin{aligned}
& \mathbb{P}\left(\left\|\mathbf{X}-\boldsymbol{\Pi}^{\natural} \mathbf{X}\right\|_{2}^{2} \leq \frac{12 \ell}{5 e n^{20}}\right) \stackrel{(1)}{=} \sum_{i=1}^{3} \mathbb{P}\left(\sum_{j \in \mathcal{I}_{i}}\left(X_{j}-X_{\pi(j)}\right)^{2} \leq \frac{4 \ell}{5 e n^{20}}\right) \\
& (2) \\
\leq & \sum_{i=1}^{3} \exp \left(\frac{\ell_{i}}{2}\left(\log \frac{2 l}{5 e n^{20} \ell_{i}}-\frac{2 l}{5 e n^{20} \ell_{i}}+1\right)\right) \stackrel{3}{\leq} 3 n^{-2 \ell} .
\end{aligned}
$$

where (1) is due to the decomposition $\mathcal{I}_{i}, 1 \leq i \leq 3$, (2) is because $\sum\left(X_{j}-X_{\pi(j)}\right)^{2} / 2$ is a $\chi^{2} R V$ with freedom $\ell_{i}$ and Lemma 11, and (3) is due to $\lfloor\ell / 5\rfloor \leq \ell_{i} \leq \ell / 3$ and hence

$$
\frac{\ell_{i}}{2}\left(\log \frac{2 l}{5 e n^{20} \ell_{i}}-\frac{2 l}{5 e n^{20} \ell_{i}}+1\right) \leq \frac{\ell_{i}}{2}\left(\log \frac{2 l}{5 \ell_{i}}-20 \log n\right) \leq-10 \ell_{i} \log n \leq-2 \ell \log n .
$$

## D. Appendix for Section 4

This section provides theoretical analysis for the multiple observations model, i.e., $m>1$. We will show that our estimator in Eq. (3) gives correct permutation matrix $\Pi^{\natural}$ once

$$
\log (\mathrm{SNR}) \gtrsim \frac{\log n}{\rho\left(\mathbf{B}^{\natural}\right)}+\log \log n
$$

The formal statement is packaged in Theorem 2.

## D.1. Notations

Before our discussion, first we define $\widetilde{\mathbf{B}}$ and $\mathbf{B}^{*}$ respectively as

$$
\begin{aligned}
\widetilde{\mathbf{B}} & =(n-h)^{-1} \mathbf{X}^{\top} \boldsymbol{\Pi}^{\natural} \mathbf{X} \mathbf{B}^{\natural}, \\
\mathbf{B}^{*} & =(n-h)^{-1} \mathbf{X}^{\top} \mathbf{Y}=\widetilde{\mathbf{B}}+(n-h)^{-1} \mathbf{X}^{\top} \mathbf{W},
\end{aligned}
$$

where $h$ is denoted as the Hamming distance between identity matrix $\mathbf{I}$ and the ground truth permutation matrix $\Pi^{\natural}$, i.e., $h=\mathrm{d}_{\mathrm{H}}\left(\mathbf{I}, \Pi^{\natural}\right)$. Similar as in Section C, we define events $\mathcal{E}_{i},(6 \leq i \leq 9)$ as

$$
\begin{aligned}
& \mathcal{E}_{6} \triangleq\left\{\left\|\mathbf{X}_{i,:}\right\|_{2} \leq 2 \sqrt{p \log n}, \forall i\right\} ; \\
& \mathcal{E}_{7} \triangleq\left\{\left\|\mathbf{X}_{i,:}\left(\mathbf{B}^{*}-\mathbf{B}^{\natural}\right)\right\|_{2} \lesssim c_{0} \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}+c_{1} \sqrt{m}(\log n) \sigma\left(1+\frac{p}{n}\right), \forall i\right\} ; \\
& \mathcal{E}_{8} \triangleq\left\{\left\langle\mathbf{W}_{i,:},\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{\natural}(i)::}\right) \mathbf{B}^{*}\right\rangle \geq \Delta, \exists i, j\right\} ; \\
& \mathcal{E}_{9} \triangleq\left\{\left\|\left(\mathbf{X}_{\pi^{\natural}(i),:}-\mathbf{X}_{j,:}\right) \mathbf{B}^{\natural}\right\|_{2}^{2}+2\left\langle\left(\mathbf{X}_{\pi^{\natural}(i),:}-\mathbf{X}_{j,:}\right) \mathbf{B}^{\natural}, \mathbf{X}_{j,:}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right)\right\rangle-\left\|\mathbf{X}_{\pi^{\natural}(i),:}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right)\right\|_{2}^{2} \leq \Delta, \exists i, j\right\},
\end{aligned}
$$

where $\Delta$ is defined as

$$
\Delta=16 \sqrt{2} c_{0} \sigma \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}+16 c_{1} \sqrt{2 m}(\log n) \sigma^{2}\left(1+\frac{p}{n}\right)+4 \sqrt{2} c_{2}(\log n) \sigma\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}} .
$$

## D.2. Outline of proof

In front of the rigorous proof in Section D.3, we first illustrate our proof strategy as

- Step I: We relax the wrong recovery $\left\{\widehat{\Pi} \neq \Pi^{\natural}\right\}$ to event $\mathcal{E}$, i.e. $\left\{\widehat{\Pi} \neq \Pi^{\natural}\right\} \subseteq \mathcal{E}$, which reads as

$$
\begin{equation*}
\mathcal{E} \triangleq\left\{\left\|\mathbf{Y}_{i,:}-\mathbf{X}_{\pi \natural}(i),: \mathbf{B}^{*}\right\|_{2}^{2} \geq\left\|\mathbf{Y}_{i,:}-\mathbf{X}_{j,:} \mathbf{B}^{*}\right\|_{2}^{2}, \exists i, j\right\} \tag{14}
\end{equation*}
$$

The physical meaning of $\mathcal{E}$ is that we may reduce the residual $\left\|\mathbf{Y}-\boldsymbol{\Pi}^{\natural} \mathbf{X} \mathbf{B}^{*}\right\|_{\mathrm{F}}$ by changing $\pi^{\natural}(i)$ to $j$. Same relaxation has been previously used in Collier and Dalalyan (2016); Slawski et al. (2019a); Zhang et al. (2019a;b).

- Step II: The core in this step lies in how to lower bound $\mathbb{P}\left(\mathcal{E}_{7}\right)$. First we decompose $\mathcal{E}$ into $\mathcal{E}_{8} \bigcup \mathcal{E}_{9}$ with some simple algebraic manipulations. Under the SNR assumption in Eq. (7), we show both $\mathbb{P}\left(\mathcal{E}_{8}\right)$ and $\mathbb{P}\left(\mathcal{E}_{9}\right)$ are approximately $\mathbb{P}\left(\overline{\mathcal{E}}_{7}\right)$, as in Lemma 5 and Lemma 6, respectively.
To show $\mathbb{P}\left(\overline{\mathcal{E}}_{7}\right)$ is with low probability, in another words, $\mathbb{P}\left(\mathcal{E}_{7}\right)$ is highly likely, we prove the following relations hold with high probability under $\mathcal{E}_{6}$,

$$
\begin{aligned}
\left\|\mathbf{X}_{i,:}\left(\widetilde{\mathbf{B}}-\mathbf{B}^{\natural}\right)\right\|_{2} & \lesssim \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}} ; \\
\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2} & \lesssim \sqrt{m}(\log n) \sigma(n+p),
\end{aligned}
$$

whose proof are in Lemma 9 and Lemma 10, respectively, and hence finish the proof by

$$
\left\|\mathbf{X}_{i,:}\left(\mathbf{B}^{*}-\mathbf{B}^{\natural}\right)\right\|_{2} \leq\left\|\mathbf{X}_{i,:}\left(\widetilde{\mathbf{B}}-\mathbf{B}^{\natural}\right)\right\|_{2}+\frac{1}{n-h}\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2}
$$

In particular, we would like to mention the technique used in bounding $\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2}$. First we review the widelyused bounding procedure, which proceeds as

$$
\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2} \leq\left\|\mathbf{X}_{i,:}\right\|_{2}\|\mathbf{X}\|_{2}\|\mathbf{W}\|_{2} \stackrel{(1)}{\lesssim} \sqrt{p \log n}(\sqrt{n}+\sqrt{p}) \sigma(\sqrt{n}+\sqrt{m}) \stackrel{(2)}{\lesssim} \sqrt{\log n}\left(n^{3 / 2}\right) \sigma+\sqrt{m n \log n} \sigma
$$

where in (1) we use the fact $\left\|\mathbf{X}_{i,:}\right\|_{2} \lesssim \sqrt{p \log n},\|\mathbf{X}\|_{2} \lesssim \sqrt{n}+\sqrt{p},\|\mathbf{W}\|_{2} \lesssim \sigma(\sqrt{n}+\sqrt{m})$ hold with high probability, and in (2) we use $p \asymp n$. Comparing with our results in Lemma 10, this bound experience inflations when $m \ll n$ and will lift the SNR requirement to $\log (\mathrm{SNR}) \gtrsim \log n$, which hides the role of $\rho\left(\mathbf{B}^{\natural}\right)$ compared with our current result in Theorem 2. To handle such problem, we adopt the leave-one-out trick as in El Karoui (2013; 2018); Chen et al. (2019); Sur et al. (2019) and refer to Lemma 10 for the technical details.

Having illustrated our proof strategies, we leave the detailed calculation to Section D.3.

## D.3. Proof of Theorem 2

Proof 6 We restate the definition of event $\mathcal{E}$ as

$$
\mathcal{E} \triangleq\left\{\left\|\mathbf{Y}_{i,:}-\mathbf{X}_{\pi \natural(i),:} \mathbf{B}^{*}\right\|_{2}^{2} \geq\left\|\mathbf{Y}_{i,:}-\mathbf{X}_{j,:} \mathbf{B}^{*}\right\|_{2}^{2}, \exists i, j\right\}
$$

Step I: First we verify that

$$
\widehat{\boldsymbol{\Pi}}=\operatorname{argmin}_{\Pi}\left\|\mathbf{Y}-\boldsymbol{\Pi} \mathbf{X B}^{*}\right\|_{F}
$$

returns the same permutation matrix $\widehat{\Pi}$ as that by Eq. (3). Hence, correct recovery of the ground truth permutation matrix $\Pi^{\natural}$ suggests that

$$
\left\|\mathbf{Y}-\boldsymbol{\Pi}^{\natural} \mathbf{X B} \mathbf{B}^{*}\right\|_{\mathrm{F}}<\left\|\mathbf{Y}-\boldsymbol{\Pi} \mathbf{X B}^{*}\right\|_{\mathrm{F}}, \quad \forall \boldsymbol{\Pi} \neq \boldsymbol{\Pi}^{\natural}
$$

Then we finish the proof by showing that $\overline{\mathcal{E}} \subseteq\left\{\widehat{\boldsymbol{\Pi}}=\boldsymbol{\Pi}^{\natural}\right\}$. Assuming the claim is not true, which means we have matrix $\Pi$ such that

$$
\left\|\mathbf{Y}-\boldsymbol{\Pi}^{\natural} \mathbf{X} B^{*}\right\|_{\mathrm{F}}^{2} \geq\left\|\mathbf{Y}-\boldsymbol{\Pi} \mathbf{X B} \mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}
$$

conditional on event $\overline{\mathcal{E}}$. Meanwhile we have

$$
\left\|\mathbf{Y}-\boldsymbol{\Pi}^{\natural} \mathbf{X} \mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}=\sum_{i=1}^{n}\left\|\mathbf{Y}_{i,:}-\mathbf{X}_{\pi \natural(i),:} \mathbf{B}^{*}\right\|_{2}^{2} \stackrel{1}{<} \sum_{i=1}^{n}\left\|\mathbf{Y}_{i,:}-\mathbf{X}_{\pi(i),:} \mathbf{B}^{*}\right\|_{2}^{2}=\left\|\mathbf{Y}-\boldsymbol{\Pi} \mathbf{X B}^{*}\right\|_{\mathrm{F}}^{2},
$$

which leads to contradiction, where in (1) we use the definition of $\overline{\mathcal{E}}$.
Step II: We verify that $\left\|\mathbf{Y}_{i,:}-\mathbf{X}_{\pi}{ }^{\natural}(i),: \mathbf{B}^{*}\right\|_{2}^{2} \geq\left\|\mathbf{Y}_{i,:}-\mathbf{X}_{j,:} \mathbf{B}^{*}\right\|_{2}^{2}$ is equivalent to

$$
\begin{aligned}
2\left\langle\mathbf{W}_{i,:},\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{\natural}(i),:}\right) \mathbf{B}^{*}\right\rangle & \geq\left\|\left(\mathbf{X}_{\pi^{\natural}(i),:}-\mathbf{X}_{j,:}\right) \mathbf{B}^{\natural}\right\|_{2}^{2}+\left\|\mathbf{X}_{j,:}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right)\right\|_{2}^{2} \\
& +2\left\langle\left(\mathbf{X}_{\pi^{\natural}(i),:}-\mathbf{X}_{j,:}\right) \mathbf{B}^{\natural}, \mathbf{X}_{j,:}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right)\right\rangle-\left\|\mathbf{X}_{\pi^{\natural}(i),:}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right)\right\|_{2}^{2},
\end{aligned}
$$

which suggests that $\mathbb{P}(\mathcal{E}) \leq \mathbb{P}\left(\mathcal{E}_{8}\right)+\mathbb{P}\left(\mathcal{E}_{9}\right)$ and completes the proof with Lemma 5 and Lemma 6.
Lemma 5 We have $\mathbb{P}\left(\mathcal{E}_{8}\right) \leq c_{0} e^{-\left((\log n)^{4} \wedge(\log n)^{2} \rho\left(\mathbf{B}^{\natural}\right)\right)}+c_{1} n^{-1}+c_{2} n e^{-c_{3} n}+c_{4} n e^{-c_{0} m}+2 e^{-p}+6 p^{-2}$.
Proof 7 For the conciseness of notation, we define $\Delta_{1}$ and $\Delta_{2}$ as

$$
\begin{aligned}
& \Delta_{1}=4 c_{0} \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}+4 c_{1} \sqrt{m}(\log n) \sigma\left(1+\frac{p}{n}\right) ; \\
& \Delta_{2}=c_{2}(\log n)\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}} .
\end{aligned}
$$

Then we can bound $\mathbb{P}\left(\mathcal{E}_{8}\right)$ as

$$
\begin{align*}
& \mathbb{P}\left(\mathcal{E}_{8}\right) \stackrel{(1)}{\leq} \mathbb{P}\left(\|\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi \natural}(i),:\right.\right. \\
&\left.\mathbf{B}^{*} \|_{2} \geq \Delta_{1}+\Delta_{2}, \exists i, j\right)+\exp \left(-\frac{\Delta^{2}}{2 \sigma^{2}\left(\Delta_{1}+\Delta_{2}\right)^{2}}\right)  \tag{15}\\
& \stackrel{(2)}{\leq} \underbrace{\mathbb{P}\left(\left\|\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi \natural}(i),:\right)\left(\mathbf{B}^{*}-\mathbf{B}^{\natural}\right)\right\|_{2} \geq \Delta_{1}, \exists i, j\right)}_{\zeta_{1}}+\underbrace{\mathbb{P}\left(\left\|\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{\natural}(i),:}\right) \mathbf{B}^{\natural}\right\|_{2} \geq \Delta_{2}, \exists i, j\right)+n^{-8}}_{\zeta_{2}}
\end{align*}
$$

where in (1) we use the independence between $\mathbf{W}$ and $\mathbf{X}$ and condition on $\mathbf{X}$, in (2) we use the relation $\Delta=$ $4 \sqrt{2} \sigma\left(\Delta_{1}+\Delta_{2}\right)$. Then we will prove that $\zeta_{1} \leq \mathbb{P}\left(\overline{\mathcal{E}}_{7}\right)$ and $\zeta_{2} \asymp e^{-\left((\log n)^{4} \wedge(\log n)^{2} \rho\left(\mathbf{B}^{\natural}\right)\right)}$.
Phase I: bounding $\zeta_{1}$ Conditional on $\mathcal{E}_{7}$, we have

$$
\begin{aligned}
& \quad\left\|\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{\natural}(i),:}\right)\left(\mathbf{B}^{*}-\mathbf{B}^{\natural}\right)\right\|_{2} \leq\left\|\mathbf{X}_{j,:}\left(\mathbf{B}^{*}-\mathbf{B}^{\natural}\right)\right\|_{2}+\left\|\mathbf{X}_{\pi^{\natural}(i),:}\left(\mathbf{B}^{*}-\mathbf{B}^{\natural}\right)\right\|_{2} \\
& \stackrel{(3)}{\leq} 2 c_{0} \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}+2 c_{1} \sqrt{m}(\log n) \sigma\left(1+\frac{p}{n}\right)<\frac{\Delta_{1}}{2},
\end{aligned}
$$

and obtain $\zeta_{1}=0$, where (3) is due to the definition of $\mathcal{E}_{7}$. Then we conclude that $\zeta_{1} \leq \mathbb{P}\left(\overline{\mathcal{E}}_{7}\right)$.
Phase II: bounding $\zeta_{2}$ For $\zeta_{2}$, we upper-bound it as

$$
\begin{align*}
& \zeta_{2} \stackrel{(4)}{\leq} \sum_{\pi^{\natural}(i), j} \mathbb{P}\left(Z \geq c_{2}(\log n)^{2}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2}\right) \stackrel{(5)}{\leq} n^{2} \mathbb{P}\left(|Z-\mathbb{E} Z| \geq c_{3}(\log n)^{2}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2}\right) \\
\stackrel{(6)}{\leq} & n^{2} \exp \left(-\left(\frac{(\log n)^{4}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{4}}{\left\|\mathbf{B}^{\natural} \mathbf{B}^{\natural \top}\right\|_{\mathrm{F}}^{2}} \wedge \frac{(\log n)^{2}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2}}{\left\|\mathbf{B}^{\natural} \mathbf{B}^{\natural \top}\right\|_{\mathrm{OP}}}\right)\right)=n^{2} e^{-\left((\log n)^{4} \wedge(\log n)^{2} \rho\left(\mathbf{B}^{\natural}\right)\right)} \\
\asymp & e^{-\left((\log n)^{4} \wedge(\log n)^{2} \rho\left(\mathbf{B}^{\natural}\right)\right)}, \tag{16}
\end{align*}
$$

where in (4) we define $Z \triangleq\left\|\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi} \ddagger(i),:\right) \mathbf{B}^{\natural}\right\|_{2}^{2}$, in (5) we have $\mathbb{E} Z=4\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2}$ and use
$c_{2}(\log n)^{2}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2} \geq\left(4+c_{3}(\log n)^{2}\right)\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2}$ when $n$ is sufficiently large, and in (6) we use the Hanson-Wright inequality (Theorem 6.2.1 in Vershynin (2018)). Combining Eq. (15), Eq. (16) and Lemma 8 together, we complete the proof.

Lemma 6 Consider the same setting of Theorem 2. Provided the SNR satisfies

$$
\log (\mathrm{SNR}) \gtrsim \frac{6 \log n}{\rho\left(\mathbf{B}^{\natural}\right)}+\log \log n,
$$

we have $\mathbb{P}\left(\mathcal{E}_{9}\right) \leq 2 e^{-p}+n e^{-c_{1} m}+c_{2} p^{-2}+c_{3} n e^{-c_{4} n}$, when $n$ is sufficiently large, where $c_{i}>0,0 \leq i \leq 4$ are some positive constants.

Proof 8 We upper bound $\mathbb{P}\left(\mathcal{E}_{9}\right)$ as

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{E}_{9}\right) & \leq \mathbb{P}\left(\left\|\left(\mathbf{X}_{\pi^{\natural}(i),:}-\mathbf{X}_{j,:}\right) \mathbf{B}^{\natural}\right\|_{2}^{2}-2\left\|\left(\mathbf{X}_{\pi^{\natural}(i),:}-\mathbf{X}_{j,:}\right) \mathbf{B}^{\natural}\right\|_{2}\left\|\mathbf{X}_{j,:}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right)\right\|_{2}-\| \mathbf{X}_{\pi \natural}(i),:\right. \\
& \left.\left.\leq \mathbf{B}^{\natural}-\mathbf{B}^{*}\right) \|_{2}^{2} \leq \Delta, \exists i, j\right) \\
& \leq \underbrace{\mathbb{P}\left(\|\left(\mathbf{X}_{\pi \natural}(i),:\right.\right.}_{\triangleq \zeta_{1}}-\mathbf{X}_{j,:}) \mathbf{B}^{\natural} \|_{2} \leq \delta, \exists i, j)
\end{aligned} \underbrace{\mathbb{P}\left(\frac{\left\|\mathbf{X}_{\pi^{\natural}(i),:}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right)\right\|_{2}^{2}}{\delta^{2}}+\frac{2 \| \mathbf{X}_{\pi \natural}(i),:}{}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right) \|_{2}+\frac{\Delta}{\delta} \geq 1, \exists i, j\right)}_{\triangleq \zeta_{2}} .
$$

Setting $\delta$ as $\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}} n^{-\frac{3}{c \rho\left(\mathrm{~B}^{\natural}\right)}}$, we would like to show $\zeta_{1} \lesssim n^{-1}$ and $\zeta_{2} \leq \mathbb{P}\left(\overline{\mathcal{E}}_{7}\right)$ under the assumptions in Lemma 6 .
Phase I: bounding $\zeta_{1}$ We set $\delta$ as $\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}} n^{-\frac{3}{c \rho\left(\mathbf{B}^{\natural}\right)}}$, and can upper bound $\zeta_{1}$ as

$$
\begin{equation*}
\zeta_{1} \leq \sum_{i=1}^{n} \sum_{j \neq \pi \natural(i)} \mathbb{P}\left(\left\|\left(\mathbf{X}_{\pi^{\natural}(i),:}-\mathbf{X}_{j,:}\right) \mathbf{B}^{\natural}\right\|_{2} \leq \delta\right) \stackrel{(1)}{\leq} \sum_{i=1}^{n} \sum_{j \neq \pi \natural(i)} n^{-3} \lesssim n^{-1} \tag{17}
\end{equation*}
$$

where (1) comes from the small ball probability as in Lemma 2.6 in Latala et al. (2007), which is also stated as Lemma 12.
Phase II: bounding $\zeta_{2}$ Then we prove that $\zeta_{2}$ can be arbitrarily small under the SNR requirement in Eq. (7). Conditional on event $\mathcal{E}_{7}$, we have

$$
\begin{align*}
& \frac{\left\|\mathbf{X}_{\pi^{\natural}(i),:}\left(\mathbf{B}^{\natural}-\mathbf{B}^{*}\right)\right\|_{2}^{2}}{\delta^{2}} \leq \frac{2 c_{0}^{2} \frac{p^{2}(\log n)^{3}(\log p)^{2}}{n}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2}+2 c_{1}^{2} m(\log n)^{2} \sigma^{2}(1+p / n)^{2}}{\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2} n^{-\frac{6}{c \rho\left(\mathbf{B}^{\natural}\right)}}} \\
& \underbrace{\frac{2(2)}{\leq}}_{\eta_{1}} \begin{array}{l}
\frac{2 c_{0}^{2} p^{2}(\log n)^{3}(\log p)^{2}}{n^{1-6 /\left(c \rho\left(\mathbf{B}^{\natural}\right)\right)}}
\end{array} \underbrace{8 c_{1}^{2} \frac{(\log n)^{2} n^{\frac{6}{c \rho\left(\mathbf{B}^{\natural}\right)}}}{\mathrm{SNR}}}_{\eta_{2}}, \tag{18}
\end{align*}
$$

in (2) we use the fact $p \leq n$. Since we have $n \geq p^{4}(\log n)^{6}(\log p)^{4}$ and $\rho\left(\mathbf{B}^{\natural}\right) \geq 18 / c$, we conclude $\eta_{1} \rightarrow 0$ as $n$ goes to infinity. Meanwhile, because of the assumptions in Eq. (7), we have $\eta_{2}$ to be a small positive constants.

Additionally, we can expand $\Delta / \delta^{2}$ as

$$
\begin{align*}
& \frac{\Delta}{\delta^{2}} \lesssim \frac{n^{\frac{6}{c \rho\left(\mathbf{B}^{\natural}\right)}} \sigma}{\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}^{2}}\left(c_{0} \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}+c_{1} \sqrt{m}(\log n) \sigma\left(1+\frac{p}{n}\right)+c_{2}(\log n)\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}\right) \\
\lesssim & c_{0} \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{m n}} \times \frac{n^{\frac{6}{c \rho\left(\mathbf{B}^{\natural}\right)}}}{\sqrt{\mathrm{SNR}}}+c_{1} \frac{\log n}{\sqrt{m}} \times \frac{n^{\frac{6}{c \rho\left(\mathbf{B}^{\natural}\right)}}}{\sqrt{\mathrm{SNR}}}+c_{2} \frac{\log n}{\sqrt{m}} \times \frac{n^{\frac{6}{c \rho\left(\mathbf{B}^{\natural}\right)}}}{\mathrm{SNR}} . \tag{19}
\end{align*}
$$

Following similar procedures as above, we can prove $\Delta / \delta^{2}$ to be a small positive constant given Eq. (7). Combing Eq. (18) and Eq. (19) together, we conclude

$$
\eta_{1}+\eta_{2}+2 \sqrt{\eta_{1}+\eta_{2}}+\frac{\Delta}{\delta^{2}}<1
$$

which suggests that $\zeta_{2}$ equals zero conditional on events $\mathcal{E}_{7}$. Therefore, we obtain

$$
\zeta_{2} \leq \mathbb{P}\left(\overline{\mathcal{E}}_{7}\right) \stackrel{(3)}{\leq} 2 e^{-p}+6 p^{-2}+n e^{-c_{0} m}+c_{0} n^{-1}+c_{1} n e^{-c_{2} n} \stackrel{(4)}{\lesssim} 2 e^{-p}+n e^{-c_{0} m}+c_{0} p^{-2}+c_{1} n e^{-c_{2} n}
$$

and completes the proof together with Eq. (17), where (3) is due to Lemma 8, and (4) is because of $n \gtrsim p^{2}$.

## D.4. Supporting Lemmas for Theorem 2

Lemma 7 For arbitrary row $\mathbf{X}_{i, \text {; }}$, we have

$$
\left\|\mathbf{X}_{i,:}\right\|_{2} \leq 2 \sqrt{p \log n}
$$

with probability exceeding $1-n^{-p}$.
Proof 9 Notice that $\left\|\mathbf{X}_{i,:}\right\|_{2}^{2}$ is a $\chi^{2}-R V$ with freedom $p$, we have

$$
\mathbb{P}\left(\left\|\mathbf{X}_{i,:}\right\|_{2}^{2} \geq 4 p \log n\right) \leq \exp \left(\frac{p}{2}(\log (4 p \log n)-4 \log n+1)\right) \stackrel{(1)}{\leq} \exp (-p \log n)=n^{-p}
$$

where in (1) we use $2 \log n \geq \log (4 \log n)+1$, when $n \geq 4$.
Lemma 8 We have $\mathbb{P}\left(\mathcal{E}_{7}\right) \geq 1-2 e^{-p}-6 p^{-2}-n e^{-c_{0} m}-c_{0} n^{-1}-c_{1} n e^{-c_{2} n}$.

Proof 10 Invoking Lemma 10, we have

$$
\begin{align*}
& \mathbb{P}\left(\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2} \leq c_{0} \sqrt{m}(\log n) \sigma(n+p), \forall i\right) \\
= & 1-\mathbb{P}\left(\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2}>c_{0} \sqrt{m}(\log n) \sigma(n+p), \exists i\right) \\
\geq & 1-\sum_{i} \mathbb{P}\left(\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2}>c_{0} \sqrt{m}(\log n) \sigma(n+p)\right) \\
\geq & 1-n^{1-p}-n e^{-c_{0} m}-n^{-1}-c_{1} n e^{-c_{2} n} . \tag{20}
\end{align*}
$$

Then we conclude

$$
\begin{aligned}
&\left\|\mathbf{X}_{i,:}\left(\mathbf{B}^{*}-\mathbf{B}^{\natural}\right)\right\|_{2} \leq\left\|\mathbf{X}_{i,:}\left(\widetilde{\mathbf{B}}-\mathbf{B}^{\natural}\right)\right\|_{2}+\frac{1}{n-h}\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2} \\
& \leq\left\|\mathbf{X}_{i,:}\right\|\left\|_{2}\right\| \widetilde{\mathbf{B}}-\mathbf{B}^{\natural}\| \|_{\mathrm{F}}+\frac{1}{n-h}\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2} \\
& \stackrel{(1)}{\leq} c_{0} \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}+\frac{c_{1} \sqrt{m}(\log n) \sigma(n+p)}{n-h} \\
& \text { (2) } c_{0} \frac{p(\log n)^{3 / 2}(\log p)}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}+\frac{4}{3} c_{1} \sqrt{m}(\log n) \sigma\left(1+\frac{p}{n}\right),
\end{aligned}
$$

where in (1) we condition on Lemma 9 and Eq. (20), and in (2) we use the fact $h \leq n / 4$.
Lemma 9 Provided that $n \gtrsim p^{2}, h \leq n / 4$, we have

$$
\left\|\widetilde{\mathbf{B}}-\mathbf{B}^{\natural}\right\|\left\|_{\mathrm{F}} \leq \sqrt{\frac{p}{n}}\right\| \mathbf{B}^{\natural} \|_{\mathrm{F}}(4 \sqrt{6}+(\log n)(\log p))
$$

with probability at least $1-2 e^{-p}-6 p^{-2}$ when $n, p$ are sufficiently large.
Proof 11 We assume that the first $h$ rows of $\mathbf{X}$ are permuted w.l.o.g. First, we expand $\mathbf{X}^{\top} \boldsymbol{\Pi}^{\natural} \mathbf{X}$ as

$$
\mathbf{X}^{\top} \boldsymbol{\Pi}^{\natural} \mathbf{X}=\sum_{i=1}^{h} \mathbf{X}_{\pi(i),:}^{\top} \mathbf{X}_{i,:}+\sum_{i=h+1}^{n} \mathbf{X}_{i,:}^{\top} \mathbf{X}_{i,:}
$$

and obtain

$$
\begin{aligned}
& \mathbb{P}\left(\left\|\mathbf{B}^{\natural}-\widetilde{\mathbf{B}}\right\|_{2} \geq \sqrt{\frac{p}{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}(4 \sqrt{6}+(\log n)(\log p))\right) \\
& \leq \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=1}^{h} \mathbf{X}_{\pi(i),:}^{\top} \mathbf{X}_{i,:} \mathbf{B}^{\natural}\right\|_{\mathrm{F}}+\frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:}^{\top} \mathbf{X}_{i,:}-\mathbf{I}\right) \mathbf{B}^{\natural}\right\|_{\|_{\mathrm{F}}} \geq \sqrt{\frac{p}{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}(4 \sqrt{6}+(\log n)(\log p))\right) \\
& \stackrel{(1)}{\leq} \underbrace{\mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=1}^{h} \mathbf{X}_{\pi(i),:}^{\top} \mathbf{X}_{i,:} \mathbf{B}^{\natural}\right\|_{\mathrm{F}} \geq \frac{(\log n)(\log p) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}\right)}_{\zeta_{1}} \\
&+ \underbrace{\mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:}^{\top} \mathbf{X}_{i,:}-\mathbf{I}\right) \mathbf{B}^{\mathfrak{\natural}}\right\|_{\mid} \geq 4 \sqrt{\frac{6 p}{n}}\left\|\mathbf{B}^{\natural}\right\|_{\mathrm{F}}\right)}_{\zeta_{2}}
\end{aligned}
$$

where (1) is because of the union bound. Then we separately bound $\zeta_{1}$ and $\zeta_{2}$.
Phase I: Bounding $\zeta_{1}$ According to Lemma 8 in Pananjady et al. (2017a) (restated as Lemma 13), we can decompose the set $\{j: \pi(j) \neq j\}$ into three disjoint sets $\mathcal{I}_{i}, 1 \leq i \leq 3$, such that $j$ and $\pi(j)$ does not lie in the same set. And the cardinality of set $\mathcal{I}_{i}$ is $h_{i}$ satisfies $\lfloor h / 5\rfloor \leq h_{i} \leq h / 3$. Adopting the union bound, we can upper-bound $\zeta_{1}$ as

$$
\begin{aligned}
\zeta_{1} & \leq \sum_{i=1}^{3} \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:} \mathbf{B}^{\natural}\right\|\left\|_{\mathrm{F}} \geq \frac{(\log n)(\log p) \sqrt{p}}{3 \sqrt{n}}\right\| \mathbf{B}^{\natural} \|_{\mathrm{F}}\right) \\
& \leq \sum_{i=1}^{3} \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:}\right\| \|_{\mathrm{F}} \geq \frac{(\log n)(\log p) \sqrt{p}}{3 \sqrt{n}}\right)
\end{aligned}
$$

Defining $\mathbf{Z}_{i}$ as $\mathbf{Z}_{i}=\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j, \text { :, }}$, we would bound the above probability by invoking the matrix Bernstein inequality (cf. Thm 7.3.1 in Tropp (2015)). First, we have

$$
\mathbb{E}\left(\mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:}\right)=\left(\mathbb{E} \mathbf{X}_{\pi(j),:}\right)^{\top}\left(\mathbb{E} \mathbf{X}_{j,:}\right)=0
$$

due to the independence between $\mathbf{X}_{\pi(j),:}$ and $\mathbf{X}_{j,:}$. Then we upper bound $\left\|\mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:}\right\|_{2}$ as

$$
\left\|\mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:}\right\|_{2} \stackrel{(2)}{=}\left\|\mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:}\right\|\left\|_{\mathbf{F}} \stackrel{(3)}{=}\right\| \mathbf{X}_{\pi(j),:}\left\|_{2}\right\| \mathbf{X}_{j,:} \|_{2} \stackrel{(4)}{\leq} 4 p \log n
$$

where (2) is because $\mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:}$ is rank-1, (3) is due to the fact $\left\|\mathbf{u}^{\top}\right\|_{\mathrm{F}}^{2}=\operatorname{Tr}\left(\mathbf{u v}^{\top} \mathbf{v u}^{\top}\right)=\|\mathbf{u}\|_{2}^{2}\|\mathbf{v}\|_{2}^{2}$ for arbitrary vector $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{p}$, and (4) is because of Lemma 7 .
In the end, we compute $\mathbb{E}\left(\mathbf{Z}_{i} \mathbf{Z}_{i}^{\top}\right)$ and $\mathbb{E}\left(\mathbf{Z}_{i}^{\top} \mathbf{Z}_{i}\right)$ as

$$
\begin{aligned}
& \mathbb{E}\left(\mathbf{Z}_{i}^{\top} \mathbf{Z}_{i}\right)=\mathbb{E}\left(\sum_{j_{1}, j_{2} \in \mathcal{I}_{i}} \mathbf{X}_{\pi\left(j_{1}\right),:}^{\top} \mathbf{X}_{j_{1},:} \mathbf{X}_{j_{2},:}^{\top} \mathbf{X}_{\pi\left(j_{2}\right),:}\right) \stackrel{(5)}{=} \mathbb{E}\left(\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:} \mathbf{X}_{j,:}^{\top} \mathbf{X}_{\pi(j),:}\right) \\
& \stackrel{(6)}{=} \mathbb{E}\left(\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:}^{\top} \mathbb{E}\left(\mathbf{X}_{j,:} \mathbf{X}_{j,:}^{\top}\right) \mathbf{X}_{\pi(j),:}\right)=p\left(\sum_{j \in \mathcal{I}_{i}} \mathbb{E} \mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{\pi(j),:}\right)=p h_{i} \mathbf{I}_{p \times p}=\mathbb{E}\left(\mathbf{Z} \mathbf{Z}^{\top}\right),
\end{aligned}
$$

where (5) and (6) is because of the fact such that $j$ and $\pi(j)$ are not within the set $\mathcal{I}_{i}$ simultaneously. To sum up, we invoke the matrix Bernstein inequality (cf. Thm 7.3.1 in Tropp (2015)) and have

$$
\frac{1}{n-h}\left\|\sum_{j \in \mathcal{I}} \mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:}\right\|_{2} \leq \frac{1}{3}\left(\frac{4 p(\log n)(\log p)}{n-h}+\frac{p \sqrt{16(\log n)^{2}(\log p)^{2}+6 h_{i} \log p / p}}{n-h}\right)
$$

holds with probability $1-2 p^{-2}$.
Exploiting the fact such that $h \leq n / 4, h_{i} \leq h / 3$, and $p \lesssim \sqrt{n}$, we obtain

$$
\frac{p \sqrt{16(\log n)^{2}(\log p)^{2}+6 h_{i} \log p / p}}{n-h} \leq \frac{4 p}{3 n} \sqrt{16(\log n)^{2}(\log p)^{2}+\frac{n}{2 p}(\log n)(\log p)} \stackrel{\substack{ }}{\leq} \frac{4 \sqrt{p}}{3 \sqrt{n}} \times(\log n)(\log p)
$$

in (7) we $n \gtrsim p^{2} \geq 32 p$ and hence

$$
\frac{1}{n-h}\left\|\sum_{j \in \mathcal{I}} \mathbf{X}_{\pi(j),:}^{\top} \mathbf{X}_{j,:}\right\|_{2} \leq(\log n)(\log p)\left(\frac{16 p}{9 n}+\frac{4 \sqrt{p}}{9 \sqrt{n}}\right) \stackrel{8}{\leq} \sqrt{\frac{p}{n}}(\log n)(\log p)
$$

holds with probability exceeding $1-6 p^{-2}$, where in (8) we use $n \geq 256 p / 25$.
Phase II: Bounding $\zeta_{2}$ We upper bound $\zeta_{2}$ as

$$
\begin{aligned}
\zeta_{2} & \leq \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:}^{\top} \mathbf{X}_{i,:}-\mathbf{I}\right) \mathbf{B}^{\mathrm{G}}\right\|\left\|_{\mathrm{F}} \geq 4 \sqrt{\frac{6 p}{n}}\right\| \mathbf{B}^{\natural} \|_{\mathrm{F}}\right) \\
& \leq \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:}^{\top} \mathbf{X}_{i,:}-\mathbf{I}\right)\right\|\left\|_{\mathrm{OP}}\right\| \mathbf{B}^{\mathrm{\natural}}\left\|_{\mathrm{F}} \geq 4 \sqrt{\frac{6 p}{n}}\right\| \mathbf{B}^{\mathrm{\natural}} \|_{\mathrm{F}}\right) \stackrel{(9)}{\leq} 2 e^{-p} .
\end{aligned}
$$

where (9) is because of $(n-h)^{-1}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}-\mathbf{I}\right)\right\|_{2} \leq 6 \sqrt{2 p /(n-h)}$ with probability $2 e^{-p}$ in Example 6.1 in Wainwright (2019) (also listed as Lemma 14) and $h \leq n / 4$.
The proof is completed via combing the results in Phase I and Phase II.
Lemma 10 For an arbitrary index $i$, we have

$$
\mathbb{P}\left(\left\|\mathbf{X}_{i,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2} \geq c_{0} \sqrt{m}(\log n) \sigma(n+p)\right) \leq n^{-p}+e^{-c_{0} m}+n^{-2}+c_{1} e^{-c_{2} n}
$$

Proof 12 For the conciseness of notation, we define $\delta$ as $c_{0} \sqrt{m}(\log n) \sigma(n+p)$. In addition, we assume that $i=1$ w.l.o.g and prove this lemma with the leave-one-out trick, which is previously used in El Karoui (2013); El Karoui et al. (2013); El Karoui (2018); Chen et al. (2019); Sur et al. (2019). First we define a perturbed matrix $\widetilde{\mathbf{X}}$ such that $\widetilde{\mathbf{X}}_{j,:}=\mathbf{X}_{j,:}$, $2 \leq j \leq n$, while $\widetilde{\mathbf{X}}_{1,:} \in \mathbb{R}^{1 \times p}$ is a independent identically distributed Gaussian vector as $\mathbf{X}_{1,:}$, namely, $\mathcal{N}(\mathbf{0}, \mathbf{I})$.
Then we can upper-bound the probability as

$$
\begin{aligned}
& \mathbb{P}\left(\left\|\mathbf{X}_{1,:} \mathbf{X}^{\top} \mathbf{W}\right\|_{2} \geq \delta\right) \leq \mathbb{P}\left(\left\|\mathbf{X}_{1,:} \widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{2}+\left\|\mathbf{X}_{1,:}(\mathbf{X}-\widetilde{\mathbf{X}})^{\top} \mathbf{W}\right\|_{2} \geq \delta\right) \\
\leq & \underbrace{\mathbb{P}\left(\left\|\mathbf{X}_{1,:}(\mathbf{X}-\widetilde{\mathbf{X}})^{\top} \mathbf{W}\right\|_{2} \geq 4 p(\log n) \sqrt{m} \sigma\right)}_{\zeta_{1}}+\underbrace{\mathbb{P}\left(\left\|\mathbf{X}_{i,:} \widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{2} \geq \delta-4 p(\log n) \sqrt{m} \sigma\right)}_{\zeta_{2}}
\end{aligned}
$$

Phase I: bounding $\zeta_{1}$ To bound $\zeta_{1}$, easily we can verify the following relation

$$
\left\|\mathbf{X}_{1,:}(\mathbf{X}-\widetilde{\mathbf{X}})^{\top} \mathbf{W}\right\|_{2} \leq\left\|\mathbf{X}_{1,:}\right\|_{2}\left\|(\mathbf{X}-\widetilde{\mathbf{X}})^{\top} \mathbf{W}\right\|\left\|_{\mathrm{F}}^{\stackrel{(1)}{=}}\right\| \mathbf{X}_{1,:}\left\|_{2}\right\| \mathbf{X}_{1,:}-\widetilde{\mathbf{X}}_{1,:}\left\|_{2}\right\| \mathbf{W}_{1,:} \|_{2} \stackrel{(2)}{\leq} 4 p(\log n) \sqrt{m} \sigma
$$

with probability exceeding $1-n^{-p}-e^{-c_{0} m}$, where (1) is because only the first row of $\mathbf{X}-\widetilde{\mathbf{X}}$ is nonzero, and (2) conditions on $\mathcal{E}_{6}$ and $\left\|\mathbf{W}_{1,:}\right\|_{2} \leq 2 \sqrt{m} \sigma$ holds with probability at least $1-e^{-c_{0} m}$.
Phase II: bounding $\zeta_{2}$ Since $\delta-4 p(\log n) \sqrt{m} \sigma \gtrsim n(\log n) \sqrt{m} \sigma$, we can upper-bound $\zeta_{2}$ as

$$
\zeta_{2} \leq \mathbb{P}\left(\left\|\mathbf{X}_{i,:} \widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{2} \geq c_{1} n(\log n) \sqrt{m} \sigma\right)
$$

Due to the construction of $\widetilde{\mathbf{X}}$, we have $\mathbf{X}_{1, \text { : }}$ to be independent of $\widetilde{\mathbf{X}}$. Hence, we condition on $\widetilde{\mathbf{X}}^{\top} \mathbf{W}$ and obtain

$$
\begin{aligned}
& \zeta_{2} \leq \mathbb{P}\left(\left\|\mathbf{X}_{i,:} \widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{2} \geq c_{1} n(\log n) \sqrt{m} \sigma,\| \| \widetilde{\mathbf{X}}^{\top} \mathbf{W} \|_{\mathrm{F}}<8 n \sqrt{m} \sigma\right)+\mathbb{P}\left(\left\|\tilde{\mathbf{X}}^{\top} \mathbf{W}\right\| \|_{\mathrm{F}} \geq 8 n \sqrt{m} \sigma\right) \\
\leq & \underbrace{\mathbb{E}_{\tilde{\mathbf{X}}^{\top} \mathbf{W}} \mathbb{1}\left(\left\|\mathbf{X}_{i,:} \widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{2} \geq c_{2}(\log n)\left\|\tilde{\mathbf{X}}^{\top} \mathbf{W}\right\| \|_{\mathrm{F}}\right)}_{\zeta_{2,1}}+\underbrace{\mathbb{P}\left(\left\|\widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{\mathrm{F}} \geq 8 n \sqrt{m} \sigma\right)}_{\zeta_{2,2}} .
\end{aligned}
$$

For $\zeta_{2,1}$, we define $Z=\left\|\mathbf{X}_{i,:} \widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{2}^{2}$ and have

$$
\begin{aligned}
& \zeta_{2,1} \leq \mathbb{E}_{\widetilde{\mathbf{X}}^{\top} \mathbf{W}} \mathbb{1}\left(|Z-\mathbb{E} Z| \geq c_{3}(\log n)^{2}\left\|\widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{\mathrm{F}}^{2}\right) \\
& \stackrel{(3)}{\leq}_{\leq}^{\mathbb{E}_{\tilde{\mathbf{X}}^{\top} \mathbf{W}} \exp \left(-\left(\frac{(\log n)^{4}\left\|\widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{\mathrm{F}}^{4}}{\left\|\widetilde{\mathbf{X}}^{\top} \mathbf{W} \mathbf{W}^{\top} \widetilde{\mathbf{X}}\right\|_{\mathrm{F}}^{2}} \wedge \frac{(\log n)^{2}\left\|\widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{\mathrm{F}}^{2}}{\left\|\widetilde{\mathbf{X}}^{\top} \mathbf{W} \mathbf{W}^{\top} \widetilde{\mathbf{X}}\right\| \|_{\mathrm{OP}}}\right)\right) \stackrel{(4)}{\leq} n^{-2},}
\end{aligned}
$$

where (3) is because of the Hanson-Wright inequality (Theorem 6.2.1 in Vershynin (2018)), and (4) is due to the stable rank $\rho\left(\widetilde{\mathbf{X}}^{\top} \mathbf{W}\right) \geq 1$. Meanwhile we upper-bound $\zeta_{2,2}$ as

$$
\begin{aligned}
& \quad \mathbb{P}\left(\left\|\widetilde{\mathbf{X}}^{\top} \mathbf{W}\right\|_{2} \geq 8 n \sqrt{m} \sigma\right) \leq \mathbb{P}\left(\|\widetilde{\mathbf{X}}\|_{\mathrm{OP}}\|\mathbf{W}\|_{\mathrm{F}} \geq 8 n \sqrt{m} \sigma\right) \\
& \stackrel{(5)}{\leq} \mathbb{P}\left(\|\widetilde{\mathbf{X}}\|_{\mathrm{OP}} \geq 2(\sqrt{n}+\sqrt{p})\right)+\mathbb{P}\left(\|\mathbf{W}\|_{\mathrm{F}} \geq \frac{8 n \sqrt{m} \sigma}{2(\sqrt{n}+\sqrt{p})},\|\widetilde{\mathbf{X}}\|_{\mathrm{OP}} \leq 2(\sqrt{n}+\sqrt{p})\right) \\
& \stackrel{\text { (6) }}{\leq} \mathbb{P}\left(\|\widetilde{\mathbf{X}}\|_{\mathrm{OP}} \geq 2(\sqrt{n}+\sqrt{p})\right)+\mathbb{P}\left(\|\mathbf{W}\|_{\mathrm{F}} \geq \sqrt{2 n m} \sigma\right) \stackrel{7}{\leq} e^{-c_{0} n}+e^{-0.8 n m},
\end{aligned}
$$

where (5) is because of the union bound, in (6) we use $p \leq n$, and in (7) we use $\|\mathbf{X}\|_{\mathrm{OP}} \geq 2(\sqrt{n}+\sqrt{p})$ with probability less than $e^{-c_{0} n}$ (Chandrasekaran et al., 2012) and the fact $\|\mathbf{W}\|_{\mathrm{F}}^{2} / \sigma^{2}$ is a $\chi^{2}-R V$ with $n m$ freedom, and Lemma 11.

## E. Useful Facts

This section lists some useful facts for the sake of self-containing.
Lemma 11 For a $\chi^{2}-R V Z$ with $\ell$ freedom, we have

$$
\begin{aligned}
& \mathbb{P}(Z \leq t) \leq \exp \left(\frac{\ell}{2}\left(\log \frac{t}{\ell}-\frac{t}{\ell}+1\right)\right), t<\ell \\
& \mathbb{P}(Z \geq t) \leq \exp \left(\frac{\ell}{2}\left(\log \frac{t}{\ell}-\frac{t}{\ell}+1\right)\right), t>\ell
\end{aligned}
$$

Lemma 12 (Small ball probability, Lemma 2.6 in Latala et al. (2007)) Given an arbitrary fixed vector $\mathbf{y} \in \mathbb{R}^{n}$, we have

$$
\mathbb{P}\left(\|\mathbf{y}-\mathbf{A g}\|_{2} \leq \alpha\|\mathbf{A}\|_{\mathrm{F}}\right) \leq \exp (\kappa \log (\alpha) \varrho(\mathbf{A})), \quad \forall \alpha \in\left(0, \alpha_{0}\right)
$$

where $\mathbf{g}$ is a Gaussian $R V$ following $\mathcal{N}\left(\mathbf{0}, \mathbf{I}_{n \times n}\right), \mathbf{A} \in \mathbb{R}^{n \times n}$ is a non-zero matrix, and $\alpha_{0} \in(0,1)$ and $\kappa>0$ are some universal constants.

Lemma 13 (Lemma 8 in Pananjady et al. (2017a)) Consider an arbitrary permutation map $\boldsymbol{\pi}$ with Hamming distance $k$ from the identity map, i.e., $\mathrm{d}_{\mathrm{H}}(\boldsymbol{\pi}, \mathbf{I})=k$. We define the index set $\{i: i \neq \pi(i)\}$ and can decompose it into 3 independent sets $\mathcal{I}_{j}(1 \leq j \leq 3)$, i.e., $i$ and $\pi(i)$ are in different sets $\mathcal{I}_{j}$ for arbitrary $i \in\{i: i \neq \pi(i)\}$, such that the cardinality of each set satisfies $\left|\mathcal{I}_{j}\right| \geq\lfloor k / 3\rfloor \geq k / 5$.

Lemma 14 (Example 6.1 in Wainwright (2019)) Let $G \in \mathbb{R}^{n_{1} \times n_{2}}$ be generated with iid standard normal random variables, we have $\|\mathbf{G}\|_{\mathrm{OP}} \leq 4 \sqrt{n_{2} / n_{1}}$, hold with probability exceeding $1-2 e^{-n_{2} / 2}$.

