Supplemental Material to Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks

1 The derivation of Eq. (8)

As described in Section 3.1, the gradient of the efficient-attack loss with respect to the searching direction \boldsymbol{u} (we denote \boldsymbol{u}_{i} by \boldsymbol{u} for simplicity) can be approximated as

$$
\begin{equation*}
\widehat{\boldsymbol{g}}_{\boldsymbol{u}} \approx-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}} h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}, \alpha\right) h\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}, \boldsymbol{v}_{j}, \alpha \beta\right) \boldsymbol{v}_{j} . \tag{S1}
\end{equation*}
$$

Here, we give the detailed derivation of Eq. (S1) as follows. In this paper, we define two functions $h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}, \alpha\right)=$ $\frac{f\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}\right)-f\left(\boldsymbol{x}^{\prime}\right)}{\alpha}$ and $\phi(\boldsymbol{u})=h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}, \alpha\right) \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}$ which are used in the derivation. According to these definitions, we have

$$
\begin{align*}
\widehat{\boldsymbol{g}}_{\boldsymbol{u}} & =-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}} \frac{\phi\left(\boldsymbol{u}+\beta \boldsymbol{v}_{j}\right)-\phi(\boldsymbol{u})}{\beta} \boldsymbol{v}_{j} \\
& =-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}}\left(h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}+\beta \boldsymbol{v}_{j}, \alpha\right) \boldsymbol{g}_{\boldsymbol{x}}^{\top}\left(\boldsymbol{u}+\beta \boldsymbol{v}_{j}\right)-h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}, \alpha\right) \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}\right) \frac{\boldsymbol{v}_{j}}{\beta} \tag{S2}\\
& =-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}}\left(h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}+\beta \boldsymbol{v}_{j}, \alpha\right) \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}-h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}, \alpha\right) \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}+\beta h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}+\beta \boldsymbol{v}_{j}, \alpha\right) \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{v}_{j}\right) \frac{\boldsymbol{v}_{j}}{\beta} \\
& \approx-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}} \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}\left(h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}+\beta \boldsymbol{v}_{j}, \alpha\right)-h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}, \alpha\right)\right) \frac{\boldsymbol{v}_{j}}{\beta} \tag{S3}\\
& \approx-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}} \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}\left(\frac{f\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}+\alpha \beta \boldsymbol{v}_{j}\right)-f\left(\boldsymbol{x}^{\prime}\right)}{\alpha}-\frac{f\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}\right)-f\left(\boldsymbol{x}^{\prime}\right)}{\alpha}\right) \frac{\boldsymbol{v}_{j}}{\beta} \tag{S4}\\
& \approx-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}} \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}\left(\frac{f\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}+\alpha \beta \boldsymbol{v}_{j}\right)-f\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}\right)}{\alpha \beta}\right) \boldsymbol{v}_{j} \\
& \approx-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}} \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u} h\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}, \boldsymbol{v}_{j}, \alpha \beta\right) \boldsymbol{v}_{j} \tag{S5}\\
& \approx-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}} \frac{f\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}\right)-f\left(\boldsymbol{x}^{\prime}\right)}{\alpha} h\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}, \boldsymbol{v}_{j}, \alpha \beta\right) \boldsymbol{v}_{j} \tag{S6}\\
& \approx-\frac{\eta}{q q_{v}} \sum_{j=1}^{q_{v}} h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}, \alpha\right) h\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}, \boldsymbol{v}_{j}, \alpha \beta\right) \boldsymbol{v}_{j} .
\end{align*}
$$

Here Eq. (S2) uses the definition of ϕ. And the definition of h is utilized in Eq. (S4) and Eq. (S5). Because $\beta \ll 1$, we neglect $\beta h\left(\boldsymbol{x}^{\prime}, \boldsymbol{u}+\beta \boldsymbol{v}_{j}, \alpha\right) \boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{v}_{j}$ in Eq. (S3). The term $\boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}$ in Eq. S66 is approximated by finite difference method since $\boldsymbol{g}_{\boldsymbol{x}}^{\top} \boldsymbol{u}=D_{\boldsymbol{u}} f\left(\boldsymbol{x}^{\prime}\right)=\frac{f\left(\boldsymbol{x}^{\prime}+\alpha \boldsymbol{u}\right)-f\left(\boldsymbol{x}^{\prime}\right)}{\alpha}$, where $D_{\boldsymbol{u}} f\left(\boldsymbol{x}^{\prime}\right)$ is the directional derivative of f at a point \boldsymbol{x}^{\prime} in the direction of a vector \boldsymbol{u}.

2 The derivation of Eq. (21)

To simplify the loss Eq. (21) introduced in Section 3.3, we employ the assumption that is also used in [1]. In detail, we assume that all eigenvectors of C have the same eigenvalues, that is, $\mathrm{C}=\sum_{i=1}^{D} \lambda \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top}$, where \boldsymbol{p}_{i} is the $i^{\text {th }}$ eigenvector.

According to [1] we have trace $(\mathrm{C})=1$ and $\left\|\boldsymbol{p}_{i}\right\|_{2}=1$. It implies that we have $\lambda=\frac{1}{D}$. This yields

$$
\begin{align*}
\min \ell\left(\widehat{\boldsymbol{g}}_{\boldsymbol{x}}\right) & =-\frac{\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \mathrm{C} \boldsymbol{g}_{\boldsymbol{x}}\right)^{2}}{\left(1-\frac{1}{q}\right) \boldsymbol{g}_{\boldsymbol{x}}^{T} \mathrm{C}^{2} \boldsymbol{g}_{\boldsymbol{x}}+\frac{1}{q} \boldsymbol{g}_{\boldsymbol{x}}^{T} \mathrm{C} \boldsymbol{g}_{\boldsymbol{x}}} \\
& =-\frac{\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \frac{1}{D} \sum_{i=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}\right)^{2}}{\left(1-\frac{1}{q}\right) \boldsymbol{g}_{\boldsymbol{x}}^{T} \frac{1}{D} \sum_{i=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \frac{1}{D} \sum_{j=1}^{D} \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\top} \boldsymbol{g}_{\boldsymbol{x}}+\frac{1}{q} \boldsymbol{g}_{\boldsymbol{x}}^{T} \frac{1}{D} \sum_{i=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}} \tag{S7}\\
& =-\frac{\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \frac{1}{D} \sum_{i=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}\right)^{2}}{\left(1-\frac{1}{q}\right) \boldsymbol{g}_{\boldsymbol{x}}^{T} \frac{1}{D^{2}} \sum_{i=1}^{D} \sum_{j=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\top} \boldsymbol{g}_{\boldsymbol{x}}+\frac{1}{q D} \boldsymbol{g}_{\boldsymbol{x}}^{T} \sum_{i=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}} \\
& =-\frac{\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \frac{1}{D} \sum_{i=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}\right)^{2}}{\left(1-\frac{1}{q}\right) \boldsymbol{g}_{\boldsymbol{x}}^{T} \frac{1}{D^{2}} \sum_{i=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}+\frac{1}{q D} \boldsymbol{g}_{\boldsymbol{x}}^{T} \sum_{i=1}^{D} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}} \tag{S8}\\
& =-\frac{\left(\frac{1}{D} \sum_{i=1}^{D} \boldsymbol{g}_{\boldsymbol{x}}^{T} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}\right)^{2}}{\left(1-\frac{1}{q}\right) \frac{1}{D^{2}} \sum_{i=1}^{D} \boldsymbol{g}_{\boldsymbol{x}}^{T} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}+\frac{1}{q D} \sum_{i=1}^{D} \boldsymbol{g}_{\boldsymbol{x}}^{T} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{\top} \boldsymbol{g}_{\boldsymbol{x}}} \\
& =-\frac{\frac{1}{D^{2}}\left(\sum_{i=1}^{D}\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \boldsymbol{p}_{i}\right)^{2}\right)^{2}}{\left(1-\frac{1}{q}\right) \frac{1}{D^{2}} \sum_{i=1}^{D}\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \boldsymbol{p}_{i}\right)^{2}+\frac{1}{q D} \sum_{i=1}^{D}\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \boldsymbol{p}_{i}\right)^{2}} \\
& =-\frac{\frac{1}{D^{2}}}{\left(1-\frac{1}{q}\right) \frac{1}{D^{2}}+\frac{1}{q D} \sum_{i=1}^{D}\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \boldsymbol{p}_{i}\right)^{2}} \\
& =-\frac{q}{D+q-1} \sum_{i=1}^{D}\left(\boldsymbol{g}_{\boldsymbol{x}}^{T} \boldsymbol{p}_{i}\right)^{2}
\end{align*}
$$

Here, we use eigenvectors to represent C in Eq. (S7) and the property, $\boldsymbol{p}_{i}^{\top} \boldsymbol{p}_{j}=\mathbb{1}_{i=j}$, is used in Eq. S8), where $\mathbb{1}_{i=j}$ is the indicator function.

References

[1] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Improving black-box adversarial attacks with a transfer-based prior. NeurIPS, 2019.

