Convex Calibrated Surrogates for the Multi-Label F-Measure Supplementary Material

Implementation of 'decode'

In order to solve the combinatorial optimization problem involved in the mapping decode : $\mathbb{R}^{s^2+1} \rightarrow \{0,1\}^s$ as defined in Eq. (7) efficiently, we make use of an $O(s^3)$ -time procedure due to Dembczynski et al. (2011). Specifically, Dembczynski et al. (2011) gave a procedure that, given a certain set of $s^2 + 1$ statistics of the true conditional distribution $p(\mathbf{y}|x)$ at a point $x \in \mathcal{X}$, computes in $O(s^3)$ time a Bayes optimal multi-label prediction $h^*(x) \in \{0,1\}^s$ at that point with respect to the F_1 -measure by solving a similar combinatorial optimization problem (the approach generalizes easily to the F_β -measure for general β). Our algorithm (Algorithm 2) can be viewed as effectively estimating the same $s^2 + 1$ statistics from the training sample S; in particular, once a scoring function $\mathbf{f}_S : \mathcal{X} \to \mathbb{R}^{s^2+1}$ is learned by minimizing our surrogate loss ψ , the estimated statistics at a point $x \in \mathcal{X}$ are given by $\gamma^{-1}(\mathbf{f}_S(x))$ (where γ^{-1} is the inverse of the link function $\gamma : [0, 1] \to \mathbb{R}$ associated with the strictly proper composite binary loss ϕ used in our surrogate, and is applied element-wise to $\mathbf{f}_{S}(x)$). Our 'decode' mapping effectively corresponds to estimating a Bayes optimal prediction at x using these estimated statistics; we can therefore apply the procedure of Dembczynski et al. (2011) to these estimated statistics.

The implementation below is described for a general input vector $\mathbf{u} \in \mathbb{R}^{s^2+1}$ (see Eq. (7)); in our F_{β} learning algorithm, to make a prediction at $x \in \mathcal{X}$, it would be applied to $\mathbf{u} = \mathbf{f}_S(x)$. The overall idea is that the combinatorial search over $\hat{\mathbf{y}} \in \{0,1\}^s$ is stratified over the s+1 sets $\hat{\mathcal{Y}}_l = \{\hat{\mathbf{y}} \in \{0,1\}^s : \|\hat{\mathbf{y}}\|_1 = l\}, l \in \{0,1,\ldots,s\}$; to find an optimal element $\hat{\mathbf{y}}^{l,*}$ within each set $\hat{\mathcal{Y}}_l$, one need only solve a problem of the form $\hat{\mathbf{y}}^{l,*} \in \operatorname{argmin}_{\hat{\mathbf{y}}\in\hat{\mathcal{Y}}_l} \sum_{j=1}^s \hat{y}_j T_{jl}$ for certain numbers T_{jl} , which can be done simply by finding the smallest l numbers among $\{T_{jl}: j \in [s]\}$ and setting the corresponding l entries of $\hat{y}^{l,*}$ to 1 (and remaining entries to 0). Solving these s + 1 subproblems and picking the best solution among them takes a total of $O(s^2 \ln(s))$ time; computing the s^2 numbers T_{jl} involves a matrix multiplication that takes a total of $O(s^3)$ time.⁷

Algorithm 2 Decode

- 1: **Input:** Vector $\mathbf{u} = (u_0, (u_{jk})_{j,k=1}^s))^\top \in \mathbb{R}^{s^2+1}$
- Parameters: Link function γ : [0, 1]→ℝ
 Define matrices Q ∈ [0, 1]^{s×s} and V ∈ ℝ^{s×s} as follows:

$$Q_{jk} = \gamma^{-1}(u_{jk})$$
$$V_{kl} = \frac{-(1+\beta)^2}{\beta^2 k + l}$$

- 4: Compute $\mathbf{T} = \mathbf{Q}\mathbf{V}$ // matrix multiplication, $O(s^3)$ time
- // for loop takes total $O(s^2 \ln(s))$ time 5: For $l = 1 \dots s$:
- Find the *l* smallest numbers among $\{T_{il} : j \in [s]\}$; call the corresponding indices j_1^l, \ldots, j_l^l 6:
- Define $\widehat{\mathbf{y}}^{l,*} \in \{0,1\}^s$ as follows: 7:

$$\hat{y}_{j}^{l,*} = \begin{cases} 1 & \text{if } j \in \{j_{1}^{l}, \dots, j_{l}^{l}\} \\ 0 & \text{otherwise.} \end{cases}$$
 // this solves $\hat{\mathbf{y}}^{l,*} \in \operatorname{argmin}_{\hat{\mathbf{y}} \in \hat{\mathcal{Y}}_{l}} \sum_{j=1}^{s} \hat{y}_{j} T_{jl}$

8: Set $z_l^* = \sum_{j=1}^s \hat{y}_j^{l,*} T_{jl}$ 9: End for

- 10: Pick $\widehat{\mathbf{y}}^* \in \{0, 1\}^s$ as follows:

$$\widehat{\mathbf{y}}^* \in \operatorname*{argmin}_{\widehat{\mathbf{y}} \in \{\mathbf{0}, \, \widehat{\mathbf{y}}^{1,*}, \dots, \, \widehat{\mathbf{y}}^{s,*}\}} - \mathbf{1}(\widehat{\mathbf{y}} = \mathbf{0}) \cdot \gamma^{-1}(u_0) + \mathbf{1}(\widehat{\mathbf{y}} \neq \mathbf{0}) \cdot z_{\|\widehat{\mathbf{y}}\|}^*$$

11: **Output:** $\hat{\mathbf{y}}^* \in \{0, 1\}^s$

⁷One could in principle use faster matrix multiplication methods that take $o(s^3)$ time, but in practice, this would be helpful for only extremely large values of s.