Convex Calibrated Surrogates for the Multi-Label F-Measure Supplementary Material

Implementation of 'decode'

In order to solve the combinatorial optimization problem involved in the mapping decode $: \mathbb{R}^{s^{2}+1} \rightarrow\{0,1\}^{s}$ as defined in Eq. (7) efficiently, we make use of an $O\left(s^{3}\right)$-time procedure due to Dembczynski et al. (2011). Specifically, Dembczynski et al. (2011) gave a procedure that, given a certain set of $s^{2}+1$ statistics of the true conditional distribution $p(\mathbf{y} \mid x)$ at a point $x \in \mathcal{X}$, computes in $O\left(s^{3}\right)$ time a Bayes optimal multi-label prediction $h^{*}(x) \in\{0,1\}^{s}$ at that point with respect to the F_{1}-measure by solving a similar combinatorial optimization problem (the approach generalizes easily to the F_{β}-measure for general β). Our algorithm (Algorithm 2) can be viewed as effectively estimating the same $s^{2}+1$ statistics from the training sample S; in particular, once a scoring function $\mathbf{f}_{S}: \mathcal{X} \rightarrow \mathbb{R}^{s^{2}+1}$ is learned by minimizing our surrogate loss ψ, the estimated statistics at a point $x \in \mathcal{X}$ are given by $\gamma^{-1}\left(\mathbf{f}_{S}(x)\right)$ (where γ^{-1} is the inverse of the link function $\gamma:[0,1] \rightarrow \mathbb{R}$ associated with the strictly proper composite binary loss ϕ used in our surrogate, and is applied element-wise to $\mathbf{f}_{S}(x)$). Our 'decode' mapping effectively corresponds to estimating a Bayes optimal prediction at x using these estimated statistics; we can therefore apply the procedure of Dembczynski et al. (2011) to these estimated statistics.
The implementation below is described for a general input vector $\mathbf{u} \in \mathbb{R}^{s^{2}+1}$ (see Eq. (7)); in our F_{β} learning algorithm, to make a prediction at $x \in \mathcal{X}$, it would be applied to $\mathbf{u}=\mathbf{f}_{S}(x)$. The overall idea is that the combinatorial search over $\widehat{\mathbf{y}} \in\{0,1\}^{s}$ is stratified over the $s+1$ sets $\widehat{\mathcal{Y}}_{l}=\left\{\widehat{\mathbf{y}} \in\{0,1\}^{s}:\|\widehat{\mathbf{y}}\|_{1}=l\right\}, l \in\{0,1, \ldots, s\}$; to find an optimal element $\widehat{\mathbf{y}}^{l, *}$ within each set $\widehat{\mathcal{Y}}_{l}$, one need only solve a problem of the form $\widehat{\mathbf{y}}^{l, *} \in \operatorname{argmin}_{\widehat{\mathbf{y}} \in \widehat{\mathcal{Y}}_{l}} \sum_{j=1}^{s} \widehat{y}_{j} T_{j l}$ for certain numbers $T_{j l}$, which can be done simply by finding the smallest l numbers among $\left\{T_{j l}: j \in[s]\right\}$ and setting the corresponding l entries of $\widehat{\mathbf{y}}^{l, *}$ to 1 (and remaining entries to 0). Solving these $s+1$ subproblems and picking the best solution among them takes a total of $O\left(s^{2} \ln (s)\right)$ time; computing the s^{2} numbers $T_{j l}$ involves a matrix multiplication that takes a total of $O\left(s^{3}\right)$ time. ${ }^{7}$

```
Algorithm 2 Decode
    Input: Vector \(\left.\mathbf{u}=\left(u_{0},\left(u_{j k}\right)_{j, k=1}^{s}\right)\right)^{\top} \in \mathbb{R}^{s^{2}+1}\)
    Parameters: Link function \(\gamma:[0,1] \rightarrow \mathbb{R}\)
    Define matrices \(\mathbf{Q} \in[0,1]^{s \times s}\) and \(\mathbf{V} \in \mathbb{R}^{s \times s}\) as follows:
```

$$
\begin{aligned}
Q_{j k} & =\gamma^{-1}\left(u_{j k}\right) \\
V_{k l} & =\frac{-(1+\beta)^{2}}{\beta^{2} k+l}
\end{aligned}
$$

Compute $\mathbf{T}=\mathbf{Q V} / /$ matrix multiplication, $O\left(s^{3}\right)$ time
For $l=1 \ldots s$: // for loop takes total $O\left(s^{2} \ln (s)\right)$ time
Find the l smallest numbers among $\left\{T_{j l}: j \in[s]\right\}$; call the corresponding indices $j_{1}^{l}, \ldots, j_{l}^{l}$ Define $\widehat{\mathbf{y}}^{l, *} \in\{0,1\}^{s}$ as follows:

$$
\widehat{y}_{j}^{l, *}=\left\{\begin{array}{ll}
1 & \text { if } j \in\left\{j_{1}^{l}, \ldots, j_{l}^{l}\right\} \\
0 & \text { otherwise. }
\end{array} \quad / / \text { this solves } \widehat{\mathbf{y}}^{l, *} \in \operatorname{argmin}_{\widehat{\mathbf{y}} \in \widehat{\mathcal{Y}}_{l}} \sum_{j=1}^{s} \widehat{y}_{j} T_{j l}\right.
$$

Set $z_{l}^{*}=\sum_{j=1}^{s} \widehat{y}_{j}^{l, *} T_{j l}$
End for
Pick $\widehat{\mathbf{y}}^{*} \in\{0,1\}^{s}$ as follows:

$$
\widehat{\mathbf{y}}^{*} \in \underset{\widehat{\mathbf{y}} \in\left\{\mathbf{0}, \widehat{\mathbf{y}}^{1, *}, \ldots, \widehat{\mathbf{y}}^{s, *}\right\}}{\operatorname{argmin}}-\mathbf{1}(\widehat{\mathbf{y}}=\mathbf{0}) \cdot \gamma^{-1}\left(u_{0}\right)+\mathbf{1}(\widehat{\mathbf{y}} \neq \mathbf{0}) \cdot z_{\|\widehat{\mathbf{y}}\|_{1}}^{*}
$$

11: Output: $\widehat{\mathbf{y}}^{*} \in\{0,1\}^{s}$

[^0]
[^0]: ${ }^{7}$ One could in principle use faster matrix multiplication methods that take $o\left(s^{3}\right)$ time, but in practice, this would be helpful for only extremely large values of s.

