
Friendly Adversarial Training

A. Friendly Adversarial Training
For completeness, besides the learning objective by loss value, we also give the learning objective of FAT by class probability.
Then, based on the learning objective by loss value, we give the proof of Theorem 1, which theoretically justifies FAT.

A.1. Learning Objective

Case 1 (by loss value, restated). The outer minimization still follows Eq. (3). However, instead of generating x̃i via inner
maximization, we generate x̃i as follows:

x̃i = argmin
x̃2B✏[xi]

`(f(x̃), yi)

s.t. `(f(x̃), yi)�miny2Y `(f(x̃), y) � ⇢.

Note that the operator argmax in Eq. (4) is replaced with argmin here, and there is a constraint on the margin of loss
values (i.e., the mis-classification confidence).

The constraint firstly ensures yi 6= argminy2Y `(f(x̃), y) or x̃ is mis-classified, and secondly ensures for x̃ the wrong
prediction is better than the desired prediction yi by at least ⇢ in terms of the loss value. Among all such x̃ satisfying
the constraint, we select the one minimizing `(f(x̃), yi). Namely, we minimize the adversarial loss given that a confident
adversarial data has been found. This x̃i could be regarded as a friend among the adversaries, which is termed as friendly
adversarial data.

Case 2 (by class probability). We redefine the above objective from the loss point of view (above) to the class probability
point of view. The objective is still Eq. (3), in which `(f(x̃), y) = `B(`L(f(x̃)), y). Hence, `L(f(x̃)) is an estimate of the
class-posterior probability p(y | x̃), and for convenience, denote by pf (y | x̃) the y-th element of the vector `L(f(x̃)).

x̃i = argmax
x̃2B✏[xi]

pf (yi | x̃)

s.t. maxy2Y pf (y | x̃)� pf (yi | x̃) � ⇢.

The constraint ensures x̃ is misclassified by at least ⇢, but here the margin ⇢ is applied to the class probability instead of the
loss value. Hence, x̃i should usually be different from the one according to the loss value.

A.2. Proofs

We derive a tight upper bound on adversarially robust risk (adversarial risk), and provide our theoretical analysis for the ad-
versarial risk minimization. X and Y represent random variables. Adversarial risk Rrob(f) := E(X,Y )⇠D1{9X 0 2
B✏[X] : f(X 0) 6= Y }. Rrob(f) can be decomposed, i.e., Rrob(f) = Rnat(f) + Rbdy(f), where natural risk
Rnat(f) = E(X,Y )⇠D1{f(X) 6= Y } and boundary risk Rbdy(f) = E(X,Y )⇠D1{X 2 B✏[DB(f)], f(X) = Y }. Note
that B✏[DB(f)] is the set denoting the decision boundary of f , i.e., {x 2 X : 9x0 2 B✏[x] s.t. f(x) 6= f(x0)}.

Lemma 1. For any classifier f : X ! Y , any probability distribution D on X ⇥ Y , we have

Rrob(f) = Rnat(f) + E(X,Y )⇠D1{9X 0 2 B✏[X] : f(X) 6= f(X 0)} · 1{f(X) = Y }.

Proof. By the equation Rrob(f) = Rnat(f) + Rbdy(f),

Rrob(f) = Rnat(f) + Rbdy(f)

= Rnat(f) + E(X,Y )⇠D1{X 0 2 B✏[DB(f)], f(X) = Y }
= Rnat(f) + Pr[X 0 2 B✏[DB(f)], f(X) = Y ]

= Rnat(f) + Pr[f(X) 6= f(X 0), f(X) = Y ]

= Rnat(f) + E(X,Y )⇠D1{9X 0 2 B✏[X] : f(X) 6= f(X 0), f(X) = Y )}
= Rnat(f) + E(X,Y )⇠D1{9X 0 2 B✏[X] : f(X) 6= f(X 0)} · 1{f(X) = Y }

The fourth equality comes from the definition of decision boundary of f , i.e., B✏[DB(f)] = {x 2 X : 9x0 2
B✏[x] s.t. f(x) 6= f(x0)}.
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Minimizing !"#$

Figure 8. Solid line is the classifier. The area between dashed line is decision boundary of the classifier. Minimizing robust risk Rrob is to
find a classifier, where data is less likely located within decision boundary of the classifier.

Figure 8 illustrates the message of Lemma 1. Minimizing robust risk Rrob encourages the learning algorithm to find a
classifier whose decision boundary contains less training data. Meanwhile, the classifier should correctly separate data from
different classes. Finding such a classifier is hard. As we can see in Figure 8, the hypothesis set of hyperplanes is enough for
minimizing the natural risk (the left figure). However, a robust classifier (the right figure) has much curvatures, which is
more complicated. Nakkiran (2019) states that robust classification needs more complex classifiers (exponentially more
complex, in some examples). This implies that in order to learn a robust classifier, our learning algorithm needs (a) setting a
large hypothesis set and (b) fine-tuning the decision boundary.

Theorem 1 (restated). For any classifier f , any non-negative surrogate loss function ` which upper bounds 0/1 loss, and
any probability distribution D, we have

Rrob(f)  E(X,Y )⇠D`(f(X), Y )
| {z }

For standard test accuracy

+ E(X,Y )⇠D,X02B✏[X,✏]`
⇤(f(X 0), Y )

| {z }
For robust test accuracy

,

where

`⇤ =

(
min `(f(X 0), Y ) + ⇢, if f(X 0) 6= Y ;

max `(f(X 0), Y ), if f(X 0) = Y.

⇢ is the small constant.
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Proof.

Rrob(f) = Rnat(f) + Rbdy(f)

 E(X,Y )⇠D`(f(X), Y ) + Rbdy(f)

= E(X,Y )⇠D`(f(X), Y ) + E(X,Y )⇠D1{X 2 B✏[DB(f)], f(X) = Y }
= E(X,Y )⇠D`(f(X), Y ) + Pr[X 2 B✏[DB(f)], f(X) = Y ]

= E(X,Y )⇠D`(f(X), Y ) + Pr[f(X) 6= f(X 0), f(X) = Y ]

 E(X,Y )⇠D`(f(X), Y ) + Pr[f(X 0) 6= Y ]

= E(X,Y )⇠D`(f(X), Y ) + E(X,Y )⇠D1{9X 0 2 B✏[X] : f(X 0) 6= Y }
 E(X,Y )⇠D`(f(X), Y ) + E(X,Y )⇠D,X02B✏[X,✏]`

⇤(f(X 0), Y )

The first inequality comes from the assumption that surrogate loss function ` upper bound 0/1 loss function. The second
inequality comes from the fact that there exists misclassified natural data within the decision boundary set. Therefore,
Pr[f(X) 6= f(X 0), f(X) = Y ] [ Pr[f(X) 6= f(X 0), f(X) 6= Y ] = Pr[f(X 0) 6= Y ]. The third inequality comes from the
assumption that surrogate loss function ` upper bound 0/1 loss function, i.e., in Figure 2, the adversarial data X 0 (purple
triangle) is on line of logistic loss (blue line), which is always above the 0/1 loss (yellow line).

Our Theorem 1 informs our strategy to fine tune the decision boundary. To fine-tune the decision boundary, the data “near”
the classifier plays an important role. Those data are easily wrongly predicted with small perturbations. As we show in the
Figure 2, when adversarial data are wrongly predicted, our adversarial data (purple triangle) increases to minimize the loss
by a violation of a small constant ⇢. Thus, our adversarial data can help fine-tune the decision boundary “bit by bit” over the
training.

B. Alternative Adversarial Data Searching Algorithm
In this section, we give an alternative adversarial data searching algorithm to generate friendly adversarial data via modifying
the method to update x̃ in Algorithm 1. We remove the constraint of ✏-ball projection in Eq. (5), i.e.,

x(t+1) = x(t) + ↵ sign(rx(t)`(f✓(x
(t)), y)), 8t � 0 (6)

where x0 is a natural data and ↵ > 0 is step size.

We employ Small CNN and ResNet-18 to show the performance of deep models against FGSM, PGD-20, PGD-100 and
C&W1 in Figure 9 and Figure 10. Deep models are trained using SGD with 0.9 momentum for 80 epochs with the initial
learning rate 0.01 divided by 10 at 60 epoch. We compare FAT combined with the alternative adversarial data searching
algorithm (⌧ = 0, 1, 3) and standard adversarial training (Madry) with different step size ↵, i.e., ↵ 2 [0.003, 0.015]. The
maximum PGD step K is fixed to 10. All the testing settings are the same as those are stated in Section 6.1.
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Figure 9. Test accuracy of Small CNN trained under different step size ↵ on CIFAR-10

0.003 0.006 0.009 0.012 0.015
Step size �

30
40
50
60
70
80
90

St
an

da
rd

te
st

ac
cu

ra
cy

(%
)

Natural test data

Madry

FAT (� = 0)

FAT (� = 1)

FAT (� = 3)

0.003 0.006 0.009 0.012 0.015
Step size �

25
30
35
40
45
50
55
60

R
ob

us
t

te
st

ac
cu

ra
cy

(%
) FGSM

0.003 0.006 0.009 0.012 0.015
Step size �

20
25
30
35
40
45
50

R
ob

us
t

te
st

ac
cu

ra
cy

(%
) PGD-20 (✏test = 8/255)

0.003 0.006 0.009 0.012 0.015
Step size �

20

25

30

35

40

45

R
ob

us
t

te
st

ac
cu

ra
cy

(%
) C&W�

0.003 0.006 0.009 0.012 0.015
Step size �

20
25
30
35
40
45
50

R
ob

us
t

te
st

ac
cu

ra
cy

(%
) PGD-100

0.003 0.006 0.009 0.012 0.015
Step size �

0
5

10
15
20
25
30
35

R
ob

us
t

te
st

ac
cu

ra
cy

(%
) PGD-20 (✏test = 16/255)

Figure 10. Test accuracy of ResNet-18 trained under different step size ↵ on CIFAR-10
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C. Mixture Alleviation
C.1. Output Distributions of Small CNN’s Intermediate Layers

In Figure 3 in Section 4.2, we only visualize layer #7s output distribution by Small CNN (8-layer convolutional neural
network with 6 convolutional layers and 2 fully connected layers). For completeness, we visualize the output distributions
of layers #7 and #8.

We conduct warm-up training using natural training data of two randomly selected classes (bird and deer) in CIFAR-10,
then involve its adversarial variants generated by PGD-20 with step size ↵ = 0.007 and maximum perturbation ✏ = 0.031.
We show output distributions of layer #6, #7 and #8 by PCA in Figure 11(a) and t-SNE in Figure 11(b).
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(a) Output distributions visualized by PCA
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(b) Output distributions visualized by t-SNE

Figure 11. Output distributions of Small CNN’s intermediate layers. Left column: Intermediate layers’ output distributions on natural data
(not mixed). Middle column: Intermediate layers’ output distributions on adversarial data generated by PGD-20 (significantly mixed).
Right column: Intermediate layers’ output distributions on friendly adversarial data generated by PGD-20-0 (no significantly mixed).

C.2. Output distributions of WRN-40-4’s intermediate layers

We train a Wide ResNet (WRN-40-4, totally 41 layers) using natural data on 10 classes in CIFAR-10 and then include
adversarial variants. We randomly select 3 classes (deer, horse and truck) for illustrating output distributions of WRN-40-4’s
intermediate layers. Adversarial data are generated by PGD-20 with step size ↵ = 0.007 and maximum perturbation
✏ = 0.031 on WRN-40-4. We show output distributions by layer #38, #40 and #41 by PCA in Figure 12(a) and t-SNE in
Figure 12(b).
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Figure 12. Output distributions of WRN-40-4’s intermediate layers. Left column: Intermediate layers’ output distributions on natural data
(not mixed). Middle column: Intermediate layers’ output distributions on adversarial data generated by PGD-20 (significantly mixed).
Right column: Intermediate layers’ output distributions on friendly adversarial data generated by PGD-20-0 (no significantly mixed).



Friendly Adversarial Training

D. FAT for TRADES
D.1. Learning Objective of TRADES

Besides the standard adversarial training, TRADES is another effective adversarial training method (Zhang et al., 2019b),
which trains on both natural data x and adversarial data x̃.

Similar to virtual adversarial training (VAT) adding a regularization term to the loss function (Miyato et al., 2016), which
regularizes the output distribution by its local sensitivity of the output w.r.t. input, the objective of TRADES is

min
f2F

1

n

nX

i=1

⇢
`(f(xi), yi) + �`KL(f(x̃i), f(xi))

�
, (7)

where � > 0 is a regularization parameter, which controls the trade-off between standard accuracy and robustness accuracy,
i.e., as � increases, standard accuracy will decease while robustness accuracy will increase, and vice visa. Meanwhile, x̃i in
TRADES is dynamically generated by

x̃i = argmaxx̃2B✏[xi] `KL(f(x̃), f(x)), (8)

and `KL is Kullback-Leibler loss that is calculated by

`KL(f(x̃), f(x)) =
CX

i=1

`iL(f(x)) log

 
`iL(f(x))

`iL(f(x̃))

!
.

D.2. FAT for TRADES - Realization

Algorithm 3 PGD-K-⌧ (Early Stopped PGD for TRADES)
Input: data x 2 X , label y 2 Y , model f , loss function `KL, maximum PGD step K, step ⌧ , perturbation bound ✏, step
size ↵
Output: x̃
x̃ x+ ⇠N (0, I)
while K > 0 do

if argmaxi f(x̃) 6= y and ⌧ = 0 then
break

else if argmaxi f(x̃) 6= y then
⌧  ⌧ � 1

end if
x̃ ⇧B[x,✏]

�
↵ sign(rx̃`KL(f(x̃), f(x)) + x̃

�

K  K � 1
end while

In Algorithm 3, N (0, I) generates a random unit vector of d dimension. ⇠ is a small constant. `KL is Kullback-Leibler loss.

Given a dataset S = {(xi, yi)}ni=1, where xi 2 Rd and yi 2 {0, 1, ..., C � 1}, adversarial training (TRADES) with early
stopped PGD-K-⌧ returns a classifier ✓⇤:

✓⇤ = argmin
✓

nX

i=1

(
`CE(f✓(xi), yi) + �`KL(f✓(x̃i), f✓(xi))

�
(9)

where f✓ : Rd ! RC is DNN classification function, f✓(·) outputs predicted probability over C classes, The adversarial
data x̃i of xi is dynamically generated according to Algorithm 3, � > 0 is a regularization parameter, `CE is cross-entropy
loss, `KL is Kullback-Leibler loss.

Based on our early stopped PGD-K-⌧ for TRADES in Algorithm 3, our friendly adversarial training for TRADES (FAT for
TRADES) is
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Algorithm 4 Friendly Adversarial Training for TRADES (FAT for TRADES)
Input: network f✓, training dataset S = {(xi, yi)}ni=1, learning rate ⌘, number of epochs T , batch size m, number of
batches M
Output: adversarially robust network f✓
for epoch = 1, . . . , T do

for mini-batch = 1, . . . , M do
Sample a mini-batch {(xi, yi)}mi=1 from S
for i = 1, . . . , m (in parallel) do

Obtain adversarial data x̃iof xi by Algorithm 3
end for
✓  ✓ � ⌘ 1

m

Pm
i�1r✓

⇥
`CE(f✓(x̃i), yi) + �`KL(f✓(x̃i), f✓(xi))

⇤

end for
end for

E. FAT for MART
E.1. Learning Objective of MART

MART (Wang et al., 2020) emphasizes the importance of misclassified natural data on the adversarial robustness. Wang
et al. (2020) propose a regularized adversarial learning objective which contains an explicit differentiation of misclassified
data as the regularizer. The learning objective of MART is

min
f2F

1

n

nX

i=1

⇢
`BCE(f(x̃i), yi) + � · `KL(f(x̃i), f(xi)) · (1� `yi

L (f(xi)))

�
, (10)

where � > 0 is a regularization parameter which balances the two parts of the final loss. `KL is Kullback-Leibler loss. `kL
stands for the k-th element of the soft-max output and x̃i in MART is dynamically generated according to Eq. 4 that is
realized by PGD-K. The first part `BCE is the proposed BCE loss in MART that is calculated by

`BCE(f(x̃i), yi) = � log(`yi

L (f(x̃i)))� log(1�max
k 6=yi

`kL(f(x̃i)))

where the first term � log(`yi

L (f(x̃i))) is the cross-entropy loss and the second term � log(1 �maxk 6=yi `
k
L(f(x̃i))) is a

margin term used to increase the distance between `yi

L (f(x̃i)) and maxk 6=yi `
k
L(f(x̃i)). This is a similar to C&W (Carlini &

Wagner, 2017) attack that is to improve attack strength. For the second part, they combine Kullback-Leibler loss (Zhang
et al., 2019b) and emphases on misclassified examples. This part of loss will be large for misclassified examples and small
for correctly classified examples.

E.2. FAT for MART - Realization

Given a dataset S = {(xi, yi)}ni=1, where xi 2 Rd and yi 2 {0, 1, ..., C � 1}, FAT for MART returns a classifier ✓⇤:

✓⇤ = argmin
✓

nX

i=1

(
`BCE(f✓(x̃i), yi) + � · `KL(f✓(x̃i), f✓(xi)) · (1� `yi

L (f✓(xi)))

�
(11)

where f✓ : Rd ! RC is DNN classification function, f✓(·) outputs predicted probability over C classes. The adversarial
data x̃i of xi is dynamically generated according to Algorithm 1, `L is the soft-max activation, � > 0 is a regularization
parameter, `BCE is the proposed BCE loss in MART and `KL is Kullback-Leibler loss. Based on our early stopped
PGD-K-⌧ in Algorithm 1, FAT for MART Algorithm 5.

F. Experimental Setup
F.1. Selection of Step ⌧

Figure 4 presents empirical results on CIFAR-10 via our FAT algorithm,where we train 8-layer convolutional neural network
(Small CNN, blue line) and 18-layer residual neural network (ResNet-18, red line) (He et al., 2016). The maximum step
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Algorithm 5 Friendly Adversarial Training for MART (FAT for MART)
Input: network f✓, training dataset S = {(xi, yi)}ni=1, learning rate ⌘, number of epochs T , batch size m, number of
batches M
Output: adversarially robust network f✓
for epoch = 1, . . . , T do

for mini-batch = 1, . . . , M do
Sample a mini-batch {(xi, yi)}mi=1 from S
for i = 1, . . . , m (in parallel) do

Obtain adversarial data x̃iof xi by Algorithm 1
end for
✓  ✓ � ⌘ 1

m

Pm
i�1r✓

⇥
`BCE(f✓(x̃i), yi) + � · `KL(f✓(x̃i), f✓(xi)) · (1� `yi

L (f✓(xi)))
⇤

end for
end for

K = 10, ✏train = 8/255, step size ↵ = 0.007, and step ⌧ 2 {0, 1, . . . , 10}. We train deep networks for 80 epochs using
SGD with 0.9 momentum, where learning rate starts at 0.1 and divided by 10 at 60 epoch.

For each ⌧ , we take five trials, where each trial will obtain standard test accuracy evaluated on natural test data and robust
test accuracy evaluated on adversarial test data that are generated by attacks FGSM (Goodfellow et al., 2015), PGD-10
and PGD-20, PGD-100 (Madry et al., 2018) and C&W attack (Carlini & Wagner, 2017) respectively. All those attacks are
white box attacks, which are constrained by the same perturbation bound ✏test = 8/255. Following Zhang et al. (2019b), all
attacks have the random start, and the step size ↵ in PGD-10, PGD-20, PGD-100 and C&W is fixed to 0.003.

G. Supplementary Experiments - FAT Enabling Larger ✏train

In this section, we provide extensive experimental results. The test settings are the same as those are stated in Section 6.1. In
Section G.1, instead of using ResNet-18, we conduct adversarial training on the deep model of Small CNN. In Section G.2,
instead of applying FAT, we compare our FAT for TRADES and TRADE (Zhang et al., 2019b) under different values of
perturbation bound ✏train on the deep models ResNet-18 and Small CNN. In Section G.3, we set maximum PGD steps
K = 20 and report results of FAT and FAT for TRADES over existing methods with larger perturbation bound ✏train. To
sum up, all those extensive results verify that FAT and FAT for TRADES can enable deep models trained under larger values
of perturbation bound ✏train.

G.1. A Different Deep Model - Small CNN

We train Small CNN on CIFAR-10 and SVHN using the same settings as those stated in Section 6.1. We show standard and
robust test accuracy of deep model (Small CNN) on CIFAR-10 dataset (Figure 13) and SVHN dataset (Figure 14).

G.2. FAT for TRADES

We apply FAT for TRADES(Algorithm 4) to Small CNN and ResNet-18 on CIFAR-10 dataset. All training settings are the
same as those are stated in Section 6.1. Regularization parameter � = 6. We present standard and robust test results of
Small CNN (Figure 15) and ResNet-18 (Figure 16).

G.3. Maximum PGD Step K = 20

By setting maximum PGD step K = 20, we conduct more experiments on Small CNN and ResNet-18 using FAT and FAT
for TRADES. Except maximum PGD steps K = 20, training settings are the same as those are stated in Section 6.1. Test
results of robust deep models are shown in Figures 17, 18, 19 and 20.
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Figure 13. Test accuracy of Small CNN trained under different values of ✏train on CIFAR-10 dataset.
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Figure 14. Test accuracy of Small CNN trained under different values of ✏train on SVHN dataset.
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Figure 15. Test accuracy of Small CNN trained by FAT for TRADES (⌧ = 0, 1, 3) and TRADES under different values of ✏train on
CIFAR-10 dataset.
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Figure 16. Test accuracy of ResNet-18 trained by FAT for TRADES (⌧ = 0, 1, 3) and TRADES under different values of ✏train on
CIFAR-10 dataset.
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Figure 17. Test accuracy of Small CNN trained by FAT and standard adversarial training (Madry) with maximum PGD step K = 20
under different values of ✏train on CIFAR-10 dataset.
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Figure 18. Test accuracy of ResNet-18 trained by FAT standard adversarial training (Madry) with maximum PGD step K = 20 under
different values of ✏train on CIFAR-10 dataset.
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Figure 19. Test accuracy of Small CNN trained by FAT for TRADES and TRADES with maximum PGD step K = 20 under different
values of ✏train on CIFAR-10 dataset.
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Figure 20. Test accuracy of ResNet-18 trained by FAT for TRADES and TRADES with maximum PGD step K = 20 under different
values of ✏train on CIFAR-10 dataset.
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G.4. C&W Attack Analysis

As is shown in Figure 6 along with Figure 13 in Section G.1, both standard adversarial training and friendly adversarial
training do not perform well under C&W (Carlini & Wagner, 2017) attack with larger ✏train (e.g., ✏train > 0.075). We
discuss the reasons for these phenomena.

C&W attack. Given x, we choose a target class t and then search for adversarial data x̃ under C&W attack in the Lp

metric by solving

minimize kx̃� xkp + c · h(x̃)

with h defined as

h(x̃) = max(max
i 6=t

f(x̃)i � f(x̃)t,�).

The parameter c > 0 balances two parts of loss.  > 0 encourages the solver to find adversarial data x̃ that will be classified
as class t with high confidence. Note that this paper follows the implementation of C&W1 attack in (Cai et al., 2018)1 and
(Wang et al., 2019)2 where they replace the cross-entropy loss with h(x̃) in PGD, i.e.,

x̃i = argmaxx̃2B✏[xi](max
i 6=yi

f(x̃)i � f(x̃)yi � ). (12)

Analysis. In Figure 6, with larger ✏train, the performance evaluated by PGD attacks increases, while performance
evaluated by C&W attack decreases. The reason is that C&W and PGD have different ways of generating adversarial data
according to Eq. (12) and Eq. (4) respectively. The two interactive methods search adversarial data in different directions
due to gradients w.r.t. different loss. Therefore, the distributions of C&W and PGD adversarial data are inconsistent. As
perturbation bound ✏train increases, there are more PGD adversarial data generated within ✏train-ball. A DNN learned from
more PGD adversarial data becomes more defensive to PGD attacks, but this deep model may not effectively defend C&W
adversarial data.

1curriculum adversarial training GitHub
2dynamic adversarial training GitHub
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H. Extensive State-of-the-art Results on Wide ResNet
H.1. Training Details of FAT on WRN-32-10

In Table 1, we compare our FAT with standard adversarial training (Madry), CAT (Cai et al., 2018) and DAT (Wang et al.,
2019).

We use FAT (✏train = 8/255 and 16/255 respectively) to train WRN-32-10 for 120 epochs using SGD with 0.9 momentum,
and weight decay is 0.0002. Maximum PGD step is 10 and step size is fixed to 0.007. The initial learning rate is 0.1 reduced
to 0.01, 0.001 and 0.0005 at epoch 60, 90 and 110. We set step ⌧ = 0 initially and increase ⌧ by one at epoch 50 and 90
respectively. The maximum step K = 10. We report performance of the deep model at the last epoch. For fair comparison,
in Table 1 we use the same test settings as those in DAT (Wang et al., 2019). Performance of robust deep model is evaluated
standard test accuracy for natural data and robust test accuracy for adversarial data, that are generated by FGSM, PGD-20
(20-steps PGD with random start), PGD-100 and C&W1(L1 version of C&W optimized by PGD-30).

All attacks have the same perturbation bound ✏test = 0.031 and step size in PGD is ↵ = ✏test/4. The same as DAT (Wang
et al., 2019), there is random start in PGD attack, i.e., uniformly random perturbations ([�✏test,+✏test]) added to natural
data before PGD perturbations. We report the median test accuracy and its standard deviation over 5 repeated trails of
adversarial training in Table 1.

H.2. Training details of FAT for TRADES on Wide ResNet

In Table 2, we use FAT for TRADES (✏train = 8/255 and 16/255 respectively) train WRN-34-10 by FAT for TRADES for
85 epochs using SGD with 0.9 momentum and 0.0002 weight decay. Maximum PGD step K = 10 and step size ↵ = 0.007.
The initial learning rate is 0.1 and divided 10 at epoch 75. We set step ⌧ = 0 initially and increased by one at epoch 30, 50
and 70. Since TRADES has a trade-off parameter �, for fair comparison, our FAT for TRADES use the same �. In Table 2,
we set � = 1 and 6 separately, which are endorsed by (Zhang et al., 2019b).

For fair comparison, we use the same test settings as those are stated in TRADES (Zhang et al., 2019b). All attacks have the
same perturbation bound ✏test = 0.031 ( without random start), and step size ↵ = 0.003, which is the same as stated in
the paper (Zhang et al., 2019b). Performance of robust deep model is evaluated standard test accuracy for natural data and
robust test accuracy for adversarial data, that are generated by FGSM, PGD-20, PGD-100 and C&W1(L1 version of C&W
optimized by PGD-30). We report the median test accuracy and its standard deviation of the deep model at the last epoch
over 3 repeated trials of adversarial training in Table 2.

Fair comparison based on TRADES’s experimental setting. However, in TRADES’s experimental testing3, they use
random start before PGD perturbation that is deviated from the statements in the paper (Zhang et al., 2019b). For fair
comparison, we also retest the robust deep models under PGD attacks with random start. We evaluate their publicly released
robust deep model4 WRN-34-10 and compare it with ours trained by FAT for TRADES. The test results are reported in
Table 3.

FAT for TRADES on larger WRN-58-10. We employ Wide ResNet with larger capacity, i.e., WRN-58-10 to show
our superior performance achieved by FAT for TRADES in Table 3. All the training settings are the same as details on
WRN-34-10 in this section. The regularization parameter � is fixed to 6.0. All attacks have the same perturbation bound
✏test = 0.031 and step size ↵ = 0.003, which is the same as TRADES’s experimental setting. Robustness against FGSM,
PGD-20(20-steps PGD with random start) and C&W1 is reported in Table 3.

H.3. FAT for MART on Wide ResNet

We train WRN-34-10 by FAT for MART (✏train = 8/255 and 16/255 respectively) using SGD with 0.9 momentum and
0.0002 weight decay. Maximum PGD step K = 10 and step size ↵ = 0.007. The initial learning rate is 0.1 and divided
10 at epoch 60 and 90 respectively. We set step ⌧ = 0 initially and increase ⌧ by one at epoch 20, 40, 60 and 80. The
regularization parameter � is fixed to 6.0. The maximum step size K = 10.

3TRADES GitHub
4TRADES’s pre-trained model
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Table 3. Robustness (test accuracy) of deep models on CIFAR-10 dataset (evaluated with random start)
Model Defense Natural FGSM PGD-20 C&W1

WRN-34-10 TRADES (� = 6.0) 84.92 67.00 57.18 54.72
FAT for TRADES (✏train = 8/255) 86.38 ± 0.548 67.64 ± 0.572 56.65 ± 0.262 54.51 ± 0.299
FAT for TRADES (✏train = 16/255) 84.39 ± 0.030 67.38 ± 0.370 57.67 ± 0.198 54.62 ± 0.140

WRN-58-10 FAT for TRADES (✏train = 8/255) 87.09 68.7 57.17 55.43
FAT for TRADES (✏train = 16/255) 85.28 68.08 58.39 55.89

Fair comparison based on MART’s experimental setting. For fair comparison, all attacks have the same perturbation
bound ✏test = 8/255 and step size ↵ = ✏test/10, which is the same setting in MART (Wang et al., 2020). White-box
robustness of the deep model against attacks such as FGSM, PGD-20 (20-steps PGD with random start) and C&W1 (L1
version of C&W optimized by PGD-30) is reported. We evaluate Wang et al. (2020) publicly released robust deep model5
WRN-34-10 and compare it with ours trained by FAT for MART. In Table 4, we report the median test accuracy and its
standard deviation over 3 repeated trails of FAT for MART on WRN-34-10.

FAT for MART on larger WRN-58-10. In Table 4, we also employ WRN-58-10 to show the performance achieved by
FAT for MART. All the training and testing settings are the same as those on WRN-34-10.

Table 4. Robustness (test accuracy) of deep models on CIFAR-10 dataset
Model Defense Natural FGSM PGD-20 C&W1

WRN-34-10 MART (� = 6.0) 83.62 67.38 58.24 53.67
FAT for MART (✏train = 8/255) 86.40 ± 0.071 68.94 ± 0.195 57.89 ± 0.144 52.28 ± 0.110
FAT for MART (✏train = 16/255) 84.39 ± 0.390 68.52 ± 0.297 59.13 ± 0.180 52.85 ± 0.459

WRN-58-10 FAT for MART (✏train = 8/255) 87.10 69.52 58.57 52.73
FAT for MART (✏train = 16/255) 85.19 69.00 59.82 53.01

5MART’s pre-trained model


