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A. Missing Proofs in Section 3
In this section we provide all the missing proofs in Section 3. In what follows we will first restate the corresponding
theorems for the ease of reading and then provide the detailed proofs.

Lemma 3.1. Let ⌃ :=
S

L2L ⌃L and D⌃ be a language model over ⌃⇤. For any two string-to-string maps f, f 0 : ⌃⇤ ! ⌃⇤,
let f]D⌃ and f 0

]
D⌃ be the corresponding pushforward distributions. Then dTV(f]D⌃, f 0

]
D⌃)  PrD⌃(f(X) 6= f 0(X))

where X ⇠ D⌃.

Proof. Note that the sample space ⌃⇤ is countable. For any two distributions P and Q over ⌃⇤, it is a well-known fact that
dTV(P, Q) = 1

2

P
y2⌃⇤ |P(y) � Q(y)|. Using this fact, we have:

dTV(f]D, f 0
]
D) =

1

2

X

y2⌃⇤

��f]D(y) � f 0
]
D(y)

��

=
1

2

X

y2⌃⇤

���Pr
D

(f(X) = y) � Pr
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y2⌃⇤

ED [|1I(f(X) = y) � 1I(f 0(X) = y)|]
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y2⌃⇤

ED[1I(f(X) = y, f 0(X) 6= y) + 1I(f(X) 6= y, f 0(X) = y)]

=
1

2

X

y2⌃⇤

ED [1I(f(X) = y, f 0(X) 6= f(X))] + ED [1I(f 0(X) = y, f 0(X) 6= f(X))]

=
X

y2⌃⇤

ED [1I(f(X) = y, f 0(X) 6= f(X))]

=
X

y2⌃⇤

Pr
D

(f(X) = y, f 0(X) 6= f(X))

= Pr
D

(f(X) 6= f 0(X)).

The second equality holds by the definition of the pushforward distribution. The inequality on the fourth line holds due
to the triangule inequality and the equality on the seventh line is due to the symmetry between f(X) and f 0(X). The last
equality holds by the total law of probability. ⌅
Theorem 3.1. (Lower bound, Two-to-One) Consider a setting of universal machine translation task with two source
languages where ⌃⇤ = ⌃⇤

L0

S
⌃⇤

L1
and the target language is L. Let g : ⌃⇤ ! Z be an ✏-universal language mapping, then

for any decoder h : Z ! ⌃⇤
L

, we have

ErrL0!L

D0
(h � g) + ErrL1!L

D1
(h � g)

� dTV(DL0,L(L), DL1,L(L)) � ✏. (2)

Proof of Theorem 3.1. First, realize that dTV(·, ·) is a distance metric, the following chain of triangle inequalities hold:

dTV(DL0,L(L), DL1,L(L))  dTV(DL0,L(L), (h � g)]D0)

+ dTV((h � g)]D1, DL1,L(L))

+ dTV((h � g)]D0, (h � g)]D1).

Now by the assumption that g is an ✏-universal language mapping and Corollary 3.1, the third term on the RHS of the above
inequality, dTV((h � g)]D0, (h � g)]D1), is upper bounded by ✏. Furthermore, note that since the following equality holds:

DLi,L(L) = f⇤
Li!L]

Di, 8i 2 {0, 1},
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we can further simplify the above inequality as

dTV(DL0,L(L), DL1,L(L))  dTV(f⇤
L0!L]

D0, (h � g)]D0) + dTV((h � g)]D1, f
⇤
L1!L]

D1) + ✏.

Now invoke Lemma 3.1 for i 2 {0, 1} to upper bound the first two terms on the RHS, yielding:

dTV(f⇤
Li!L]

Di, (h � g)]Di)  Pr
Di

�
(h � g)(X) 6= f⇤

Li!L
(X)

�
= ErrLi!L

Di
(h � g).

A simple rearranging then completes the proof. ⌅

We now provide the proof of Theorem 3.2.

Theorem 3.2. (Lower bound, Many-to-Many) Consider a universal machine translation task where ⌃⇤ =
S

i2[K] ⌃
⇤
Li

. Let
DLi,Lk , i, k 2 [K] be the joint distribution of sentences (parallel corpus) in translating from Li to Lk. If g : ⌃⇤ ! Z be an
✏-universal language mapping, then for any decoder h : Z ! ⌃⇤, we have

max
i,k2[K]

ErrLi!Lk
DLi,Lk

(h � g) �

1

2
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k2[K]

max
i 6=j

dTV(DLi,Lk(Lk), DLj ,Lk(Lk)) � ✏

2
,

1

K2

X

i,k2[K]

ErrLi!Lk
DLi,Lk

(h � g) �

1

K2(K � 1)

X

k2[K]

X

i<j

dTV(DLi,Lk(Lk), DLj ,Lk(Lk)) � ✏

2
.

Proof of Theorem 3.2. First let us fix a target language Lk. For each pair of source languages Li, Lj , i 6= j translating to
Lk, applying Theorem 3.1 gives us:

ErrLi!Lk
DLi,Lk

(h � g) + Err
Lj!Lk

DLj,Lk
(h � g) � dTV(DLi,Lk(Lk), DLj ,Lk(Lk)) � ✏. (10)

Now consider the pair of source languages (Li⇤ , Lj⇤) with the maximum dTV(DLi,Lk(Lk), DLj ,Lk(Lk)):

2 max
i2[K]

ErrLi!Lk
DLi,Lk

(h � g) � ErrLi⇤!Lk

DLi⇤ ,Lk
(h � g) + Err

Lj⇤!Lk

DLj⇤ ,Lk
(h � g)

� max
i 6=j

dTV(DLi,Lk(Lk), DLj ,Lk(Lk)) � ✏. (11)

Since the above lower bound (11) holds for any target language Lk, taking a maximum over the target languages yields:

2 max
i,k2[K]

ErrLi!Lk
DLi,Lk

(h � g) � max
k2[K]

max
i 6=j

dTV(DLi,Lk(Lk), DLj ,Lk(Lk)) � ✏,

which completes the first part of the proof. For the second part, again, for a fixed target language Lk, to lower bound the
average error, we apply the triangle inequality in (10) iteratively for all pairs i < j, yielding:

(K � 1)
X

i2[K]

ErrLi!Lk
DLi,Lk

(h � g) �
X

i<j

dTV(DLi,Lk(Lk), DLj ,Lk(Lk)) � K(K � 1)

2
✏.

Dividing both sides by K(K � 1) gives the average translation error to Lk. Now summing over all the possible target
language Lk yields:

1

K2

X

i,k2[K]

ErrLi!Lk
DLi,Lk

(h � g) � 1

K2(K � 1)

X

k2[K]

X

i<j

dTV(DLi,Lk(Lk), DLj ,Lk(Lk)) � ✏

2
. ⌅
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B. Missing Proofs in Section 4
In this section we provide all the missing proofs in Section 4. Again, in what follows we will first restate the corresponding
theorems for the ease of reading and then provide the detailed proofs.

Lemma 4.1. If S = {(xi, x0
i
)}n

i=1 is sampled i.i.d. according to the encoder-decoder generative process, the following
bound holds:

Pr
S⇠Dn

 
sup
f2F

|"(f) � b"S(f)| � ✏

!

 2N (F ,
✏

16M
) · exp

✓
�n✏2

16M4

◆
.

Proof. For f 2 F , define `S(f) := "(f) � b"S(f) to be the generalization error of f on sample S. The first step is to prove
the following inequality holds for 8f1, f2 2 F and any sample S:

|`S(f1) � `S(f2)|  8M · kf1 � f2k1.

In other words, `S(·) is a Lipschitz function in F w.r.t. the `1 norm. To see, by definition of the generalization error, we
have

|`S(f1) � `S(f2)|
= |"(f1) � b"S(f1) � "(f2) + b"S(f2)|
 |"(f1) � "(f2)| + |b"S(f1) � b"S(f2)|.

To get the desired upper bound, it suffices for us to bound |"(f1) � "(f2)| by kf1 � f2k1 and the same technique could be
used to upper bound |b"S(f1) � b"S(f2)| since the only difference lies in the measure where the expectation is taken over. We
now proceed to upper bound |"(f1) � "(f2)|:

|"(f1) � "(f2)| =
��Ez⇠D[kf1(x) � x0k2

2] � Ez⇠D[kf2(x) � x0k2
2]
��

=
��Ez⇠D[kf1(x)k2

2 � kf2(x)k2
2 � 2x0T (f1(x) � f2(x))]

��

 Ez⇠D
��(f1(x) � f2(x))T (f1(x) + f2(x)) � 2x0T (f1(x) � f2(x))

��

 Ez⇠D
⇥��(f1(x) � f2(x))T (f1(x) + f2(x))

��⇤+ 2Ez⇠D
⇥��x0T (f1(x) � f2(x))

��⇤

 Ez⇠D [kf1(x) � f2(x)k · kf1(x) + f2(x)k] + 2Ez⇠D [kx0k · kf1(x) � f2(x)k]

 2MEz⇠D [kf1(x) � f2(x)k] + 2MEz⇠D [kf1(x) � f2(x)k]

 4Mkf1 � f2k1.

In the proof above, the first inequality holds due to the monotonicity property of integral. The second inequality holds by
triangle inequality. The third one is due to Cauchy-Schwarz inequality. The fourth inequality holds by the assumption that
8f 2 F , maxx2X kf(x)k  M and the identity mapping is in F so that kx0k = kid(x0)k  kid(·)k1  M . The last one
holds due to the monotonicity property of integral.

It is easy to see that the same argument could also be used to show that |b"S(f1) � b"S(f2)|  4Mkf1 � f2k1. Combine
these two inequalities, we have

|`S(f1) � `S(f2)|  |"(f1) � "(f2)| + |b"S(f1) � b"S(f2)|
 8Mkf1 � f2k1.

In the next step, we show that suppose F could be covered by k subsets C1, . . . , Ck, i.e., F = [i2[k]Ci. Then for any ✏ > 0,
the following upper bound holds:

Pr
S⇠Dn

�
sup
f2F

|`S(f)| � ✏
�


X

i2[k]

Pr
S⇠Dn

�
sup
f2Ci

|`S(f)| � ✏
�
.
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This follows from the union bound:

Pr
S⇠Dn

�
sup
f2F

|`S(f)| � ✏
�

= Pr
S⇠Dn

� [

i2[k]

sup
f2Ci

|`S(f)| � ✏
�


X

i2[k]

Pr
S⇠Dn

�
sup
f2Ci

|`S(f)| � ✏
�
.

Next, within each L1 ball Ci centered at fi with radius ✏

16M
such that F ✓ [i2[k]Ci, we bound each term in the above

union bound as:
Pr

S⇠Dn

�
sup
f2Ci

|`S(f)| � ✏
�

 Pr
S⇠Dn

�
|`S(fi)| � ✏/2

�
.

To see this, realize that 8f 2 Ci, we have kf � fik1  ✏/16M , which implies

|`S(f) � `S(fi)|  8Mkf � fik1  ✏

2
.

Hence we must have |`S(fi)| � ✏/2, otherwise sup
f2Ci

|`S(f)| < ✏. This argument means that

Pr
S⇠Dn

�
sup
f2Ci

|`S(f)| � ✏
�

 Pr
S⇠Dn

�
|`S(fi)| � ✏/2

�
.

To finish the proof, we use the standard Hoeffding inequality to upper bound PrS⇠Dn

�
|`S(fi)| � ✏/2

�
as follows:

Pr
S⇠Dn

�
|`S(fi)| � ✏/2

�
= Pr

S⇠Dn

�
|"(fi) � b"S(fi)| � ✏/2

�

 2 exp

✓
� 2n2(✏/2)2

n((2M)2 � 0)2

◆

= 2 exp

✓
� n✏2

16M4

◆
.

Now combine everything together, we obtain the desired upper bound as stated in the lemma.

Pr
S⇠Dn

 
sup
f2F

|"(f) � b"S(f)| � ✏

!
 2N (F ,

✏

16M
) · exp

✓
�n✏2

16M4

◆
. ⌅

We next prove the generalization bound for a single pair of translation task:

Theorem 4.2. (Generalization, single task) Let S be a sample of size n according to our generative process. Then for any
0 < � < 1, for any f 2 F , w.p. at least 1 � �, the following bound holds:

"(f)  b"S(f) + O

 r
log N (F , ✏

16M
) + log(1/�)

n

!
. (7)

Proof. This is a direct corollary of Lemma 4.1 by setting the upper bound in Lemma 4.1 to be � and solve for ✏. ⌅

We now provide the proof sketch of Theorem 4.3. The main proof idea is exactly the same as the one we have in the
deterministic setting, except that we replace the original definitions of errors and Lipschitzness with the generalized
definitions under the randomized setting.

Theorem 4.3. (Sample complexity under generative model, randomized setting) Suppose H is connected and the trained
{EL}L2L satisfy

8L, L0 2 H : b"S(EL, DL0)  ✏L,L0 ,

for ✏L,L0 > 0. Furthermore, for 0 < � < 1 suppose the number of sentences for each aligned corpora for each training

pair (L, L0) is ⌦

✓
1

✏
2
L,L0

·
�
log N (F ,

✏L,L0

16M
) + log(K/�)

�◆
. Then, with probability 1 � �, for any pair of languages

(L, L0) 2 L⇥L and L = L1, L2, . . . , Lm = L0 a path between L and L0 in H , we have "(EL, DL0)  2⇢2
P

m�1
k=1 ✏Lk,Lk+1 .
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Proof Sketch. The first step is prove the corresponding error concentration lemma using covering numbers as the one
in Lemma 4.1. Again, due to the assumption that F is closed under composition, we have DL0 � EL 2 F , hence it
suffices if we could prove a uniform convergence bound for an arbitrary function f 2 F . To this end, for f 2 F , define
`S(f) := "(f) � b"S(f) to be the generalization error of f on sample S. The first step is to prove the following inequality
holds for 8f1, f2 2 F and any sample S:

|`S(f1) � `S(f2)|  8M · kf1 � f2k1.

In other words, `S(·) is a Lipschitz function in F w.r.t. the `1 norm. To see this, by definition of the generalization error,
we have

|`S(f1) � `S(f2)| = |"(f1) � b"S(f1) � "(f2) + b"S(f2)|  |"(f1) � "(f2)| + |b"S(f1) � b"S(f2)|.

To get the desired upper bound, it suffices for us to bound |"(f1) � "(f2)| by kf1 � f2k1 and the same technique could be
used to upper bound |b"S(f1) � b"S(f2)| since the only difference lies in the measure where the expectation is taken over.

Before we proceed, in order to make the notation uncluttered, we first simplify "(f):

"(f) = Er,r0

h
kf � DL0 � ELk2

`2(DL](D⇥Dr))

i
.

Define z ⇠ D to mean the sampling process of (x, r, r0) ⇠ DL](D ⇥ Dr) ⇥ Dr ⇥ Dr0 , x := (x, r, r0) and x0 :=
DL0(EL(x, r0), r). Then

"(f) = Er,r0

h
kf � DL0 � ELk2

`2(DL](D⇥Dr))

i

= Ez⇠D[kf(x) � x0k2
2].

With the simplified notation, it is now clear that we essentially reduce the problem in the randomized setting to the original
one in the deterministic setting. Hence by using exactly the same proof as the one of Lemma 4.1, we can obtain the following
high probability bound:

Pr

 
sup
f2F

|"(f) � b"S(f)| � ✏

!
 2N (F ,

✏

16M
) · exp

✓
�n✏2

16M4

◆
.

As a direct corollary, a similar generalization bound for a single pair of translation task like the one in Theorem 4.2 also
holds. To finish the proof, by the linearity of the expectation Er,r0 , it is clear that exactly the same chaining argument in the
proof of Theorem 4.1 could be used as well as the only thing we need to do is to take an additional expectation Er,r0 at the
most outside level. ⌅


